Афферентные центростремительные нервные волокна

Проводящие пути представляют собой совокупность нервных окончаний и волокон, которые проходят через определенные участки головного и спинного мозга. Проводящие пути центральной нервной системы обеспечивают прямую двухстороннюю связь между головным и спинным мозгом. Изучая их, можно понять, как взаимосвязаны между собой все основные органы организма и внешняя среда и как можно всем этим управлять. При этом выделяют афферентные, эфферентные и ассоциативные пути.

Центростремительные волокна

Афферентные нервные пути классифицируются на пути бессознательной и сознательной чувствительности. Именно при помощи них обеспечивается связь между всеми интеграционными центрами, расположенными в головном мозге. К примеру, они обеспечивают прямую связь между мозжечком и корой полушарий большого мозга.

Основные афферентные пути ЦНС сознательной общей чувствительности – это волокна болевой, температурной и тактильной чувствительности, а также сознательной проприоцептивной. Основные бессознательные проводящие пути общей чувствительности – это передний и задний спинно-мозжечковые. К специальным проводящим относятся вестибулярный, слуховой, вкусовой, обонятельный и зрительный.

Волокна тактильной, температурной и болевой чувствительности


Данный путь берет свое начало с рецепторов в эпителии, импульсы от которых поступают в клетки спинномозгового узла, а после этого в спинной мозг, к ядрам зрительного бугра. Затем к коре постцентральной извилины, в которой и происходит их полный анализ. В данный проводящий путь вовлечено три тракта:

  1. Таламо-корковый.
  2. Ганглиоспинномозговой.
  3. Боковой спинно-таламический тракт, который проходит в боковом канатике спинного мозга и покрышке ствола головного мозга.

За получение тактильных ощущений в лицевой части головы и изменений температуры тела отвечает тройничный нерв. При его повреждении у человека начинаются сильные боли в области лица, которые то исчезают, то вновь появляются. Тройничный нерв проходит через шейный отдел, там, где перекрещиваются моторные волокна кортикоспинального тракта. Аксоны чувствительных нейронов тройничного нерва проходят через одну из частей продолговатого мозга. Через эти аксоны в мозг поступает информация о болевых ощущениях в ротовой полости, зубах, а также в верхней и нижней челюстях.

Волокна сознательной общей чувствительности


Этот путь проводит через себя все виды общей чувствительности от головы до шеи. Рецепторы начинают свой путь в мышцах и коже, проводят импульсы к чувствительным ганглиям и переходят в ядра тройничного нерва. Далее путь переходит на зрительные бугры, а потом распространяется на клетки постцентральной извилины. При этом включается три основных тракта:

  • таламокорковый;
  • ганглиоядерный;
  • ядерно-таламический.

Волокна сознательной проприоцептивной чувствительности

Этот путь берет свое начало своими рецепторами в сухожилиях, надкостнице, мышцах и связках, а также в суставных сумках. При этом проводится полная информация о вибрациях, положении тела, степени расслабления и сокращения мышц, давлении и весе. Нейроны данного пути располагаются в спинномозговых узлах, ядрах клиновидного и тонкого бугорков продолговатого мозга, зрительного бугра промежуточного мозга, в котором затем начинается переключение импульсов. Информация анализируется и заканчивает свой путь в центральной извилине коры большого полушария мозга. Этот путь включает в себя три тракта:

  1. Таламокорковый, который заканчивается в проекционном центре, то есть в центральной извилине головного мозга.
  2. Тонкий и клиновидный пучки, проходящие в заднем канатике спинного мозга.
  3. Бульбарно-таламический тракт, проходящий в покрышке ствола головного мозга.

Спиномозговые волокна


Афферентные пути спинного мозга образуются при помощи аксонов, или, как их еще называют по-другому, окончания нейронов. Аксоны находятся только в спинном мозге и не выходят за его пределы, а также создают связь между всеми сегментами органа. Атомическое строение данных волокон состоит в том, что длина аксонов довольно большая и соединяется с другими нервными окончаниями. От рецепторов к центральной нервной системе за счет афферентных проводящих путей спинного и головного мозга проводятся нервные сигналы. Все нервные волокна, расположенные по всей длине спинного мозга, участвуют в данном процессе. Сигнал к органам проводится от разных отделов ЦНС и между нейронами. Беспрепятственное прохождение сигнала от периферии к центральной нервной системе достигается при помощи проводящих путей спинного мозга.

Задний и передний спиномозжечковые тракты

Афферентные пути мозжечка относятся к бессознательным и берут свое начало в боковом канатике спинного мозга, а оттуда уже проводят информацию о том, в каком состоянии находятся органы опорно-двигательного аппарата. Передний спиномозжечковый тракт поступает в мозжечок через верхнюю ножку, в связи с этим он проходит через покрышку продолговатого мозга, среднего мозга и моста. Задний спиномозжечковый тракт проходит в продолговатом мозге и проникает через нижнюю ножку.

Эти два тракта передают в мозжечок информацию от связок, суставных сумок, рецепторов мышц, сухожилий, надкостницу. Именно они отвечают за поддержание равновесия и координацию движений человека, поэтому роль их в организме очень важна.

Слуховые волокна


Данный путь проводит информацию от рецепторов Кортиева органа, который располагается во внутреннем ухе. Нервные импульсы поступают в мост, содержащий в себе слуховые ядра по волокнам преддверно-улиткового нерва. Через слуховые ядра информация передается на ядра трапециевидного тела. После этого импульсы поступают на подкорковые центры слуха, которые включают в себя зрительный бугор, нижние холмики и коленчатые медиальные тела.

В среднем мозге на эти слуховые раздражители возникают возвратные реакции, при этом афферентные слуховые пути переключаются в ядра таламуса, в которых происходит оценка слуховых раздражителей – они отвечают за движения, происходящие непроизвольно: ходьба, бег. От коленчатых тел начинает исходить слуховая лучистость – этот тракт проводит импульсы от внутренней капсулы до проекционного центра слуха. Только здесь уже начинает происходить оценка звуков. В задней части височной извилины располагается ассоциативный слуховой центр. Именно в нем все звуки начинают восприниматься как слова.

Вкусовые анализаторы


Импульсы афферентного пути вкусовых анализаторов развиваются от рецепторов корня языка, входящих в состав языкоглоточных нервов и располагающихся на языке, которые входят в состав лицевого нерва. Импульсы от них поступают в продолговатый мозг, а потом к ядрам лицевого и языкоглоточного нерва. Наименьшая часть всей получаемой информации от этих импульсов доставляется в мозжечок, образуя тем самым ядерно-мозжечковый путь, и обеспечивает рефлекторную регуляцию тонуса мышц языка, головы и глотки. Большая часть информации поступает в зрительные бугры, после чего импульсы достигают крючка височной доли, в котором происходит их сознательный анализ.

Зрительные анализаторы


Афферентные проводящие пути ЦНС зрительного анализатора начинаются от колбочек и палочек сетчатки глазного яблока. Импульсы поступают в зрительный перекресток в составе зрительных нервов, а затем по тракту направляются к подкорковым центрам головного мозга, то есть в зрительный бугор, коленчатые латеральные тела и верхние холмики, расположенные в средней части мозга.

В среднем мозге на эти раздражители возникает ответная реакция, при этом в ядрах таламуса начинается бессознательная оценка импульсов, которые обеспечивают непроизвольные движения, воспроизводимыми человеком. Основными такими бессознательными движениями являются бег и ходьба. В проекционном центре зрения или в шпорную борозду затылочной доли головного мозга импульсы поступают по зрительной лучистости от коленчатых тел, находящихся в составе внутренней капсулы, после чего начинается полный анализ поступающих данных. В коре, которая прилегает к шпорной борозде, находит свое место расположения центральная часть, отвечающая за зрительную память, которую еще называют ассоциативным зрительным центром.

Обонятельный анализатор


Афферентный путь обонятельного анализатора берет свое начало от рецепторов слизистой оболочки, локализующейся в верхней части носового хода. После этого импульсы направляются к аксонам обонятельных луковиц, и протекают они по волокнам обонятельных нервов. Затем импульсы направляются к проекционному центру обоняния, который находится в районе парагиппокампальной извилины и крючка. Следуют эти импульсы по тракту до коры височной доли головного мозга. К подкорковым центрам, которые располагаются в средней и промежуточной части мозга, направляется большая часть информации, получаемая от обонятельных рецепторов. Подкорковые центры мозга в ответ на обонятельные раздражители обеспечивают рефлекторную регулировку тонуса мышц.

Исходя из этого, можно определить, что основная особенность обонятельных рецепторов заключается в том, что нервные импульсы изначально поступают в кору полушарий головного мозга, а не в подкорковые центры обоняния. В связи с этим, человек сначала чувствует запах, затем начинает оценивать его и только после этого в мозге формируется бессознательная окраска раздражителя на эмоциональном уровне. На весь процесс при этом затрачиваются всего лишь доли секунды.

Вестибулярный тракт

Вестибулярный афферентный путь начинается от рецепторов полукружного канала внутреннего уха, маточки и рецепторов, входящих в состав этого органа. Данный тракт в центральной нервной системе отвечает координацию движений и поддержку равновесия при физических и вестибулярных нагрузках.

Афферентные центростремительные проводящие пути и особенность их строения свидетельствуют о том, человеку нужно прилагать массу усилий, чтобы сохранить здоровье и целостность каждого органа по отдельности и вместе взятых. Каждая составляющая данного пути обеспечивает организм всей необходимой информацией, помогает сразу же обрабатывать ее и приводить в исполнение осуществление всех жизненно важных процессов. Это важно в работе всего организма в целом и отдельных органов.

Способность ощущать и двигаться — два основных свойства всех животных организмов от самых простых до самых сложных. Существа, обладающие нервной системой, в своих способностях ощущать и двигаться далеко превосходят более простые организмы, не имеющие нервов. Нервные клетки сенсорных (афферентных) и двигательных (эфферентных) систем должны тесно взаимодействовать между собой, чтобы эти системы в функциональном плане обеспечивали адекватное приспособление к условиям среды обитания. Афферентные системы перерабатывают информацию, поступающую в мозг от рецепторов, а эфферентные системы — информацию, идущую от мозга к эффекторам (мышцы, железы).

Сенсорная (афферентная) система начинает действовать, когда какое-либо явление окружающей среды (стимул или раздражитель) воздействует па рецептор (чувствительный нейрон). В каждом рецепторе воздействующий физический фактор (свет, звук, тепло, давление) преобразуется в потенциал действия, нервный импульс. Нервные импульсы, вырабатываемые рецепторами, передаются по сенсорному волокну в перерабатывающий центр, куда сходится информация от группы рецепторов. Частота импульсов и общее количество рецепторов, передающих импульсы, отражают силу стимула, размеры объекта и другие его характеристики. В последующих интегративных центрах сенсорной системы может добавляться информация от других рецепторов (ощущения другой модальности), а также информация памяти о сходном прошлом опыте. В какой-то момент природа и значение того, что мы ощущаем, определяется в результате осознанной идентификации, которую мы называем восприятием. После этого наступает время действия, если оно необходимо.

Таким образом, рецептор — это периферический конец анализатора, где производится грубый анализ стимула, а центральный конец анализатора находится в коре головного мозга, где и осуществляется тонкий, качественный анализ информации, поступающей от детекторов стимула. По этой схеме работают все сенсорные системы.

Физиологические процессы в мозге и психические процессы протекают параллельно, но не идентичны. В образах восприятия отражаются такие свойства предметов и явлений, для которых нет специальных анализаторов (например, величина предмета, вес, форма, регулярность и др.), что свидетельствует о сложности организации этого психического процесса. Здесь мы сталкиваемся как бы с двумя сторонами одной реальности: материальной — мозг и физиологические процессы в нем, а с другой стороны — психика и наблюдаемые нами психические процессы. Психические процессы представляют собой формы сознания, они же формируют бессознательное.

Вегетативную нервную систему подразделяют на симпатическую и парасимпатическую. Работа этих двух систем-антагонистов поддерживает в организме стабильность его внутренней среды. До появления методов прямой регистрации активности ЦНС изучение различных физиологических показателей функционирования вегетативной нервной системы (секреция нота, ритм сердца, кровяное давление, расширение зрачков и т.п.) было основным методическим приемом психофизиологов.

Вегетативная нервная система регулирует работу сердца, желез и гладкой мускулатуры без активного участия нашего сознания. В течение многих лет считалось, что функции вегетативной системы недоступны для нормального самоконтроля. Создание в последнее время так называемых методик биологически обратной связи и изучение практик восточной медитации позволяют предполагать, что многие функции вегетативной системы можно поставить под контроль воли. Однако такая перспектива не изменяет нашей невозможности сознательного контроля внутреннего состояния организма.

Симпатическая система мобилизует организм для действия (катаболизм), а парасимпатическая восстанавливает запасы энергии в организме (анаболизм). Симпатическая система имеет тенденцию действовать быстро и как единое целое, тогда как парасимпатическая активация более кратковременна и носит более локальный характер.

Группа нервных тканей объединяет ткани эктодермального происхождения, которые в совокупности образуют нервную систему и создают условия для реализации ее многочисленных функций. Обладают двумя основными свойствами: возбудимостью и проводимостью.

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) - клетка с одним длинным отростком - аксоном, и одним/несколькими короткими - дендритами.


Спешу сообщить, что представление, будто короткий отросток нейрона - дендрит, а длинный - аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит - отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон - отросток нейрона, по которому импульс перемещается от тела нейрона.

Отростки нейронов проводят сгенерированные нервные импульсы и передают их другим нейронам, эффекторам (мышцы, железы), благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.


Отростки нейронов покрыты жироподобным веществом - миелиновой оболочкой, которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, двигалась бы нога.

Существует болезнь, при которой собственные антитела уничтожают миелиновую оболочку (случаются и такие сбои в работе организма.) Эта болезнь - рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов - а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.


Вы уже убедились, насколько значимы нейроны, их высокая специализация приводит к возникновению особого окружения - нейроглии. Нейроглия - вспомогательная часть нервной системы, которая выполняет ряд важных функций:

  • Опорная - поддерживает нейроны в определенном положении
  • Изолирующая - ограничивает нейроны от соприкосновения с внутренней средой организма
  • Регенераторная - в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая - с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии - шванновских клеток. Между ними хорошо заметны перехваты Ранвье - участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.


Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.


Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие - они передают возбуждение (нервный импульс) от рецепторов в ЦНС. Рецептором называют концевое окончание чувствительных нервных волокон, воспринимающих раздражитель.

Вставочные нейроны также называются промежуточные, ассоциативные - они обеспечивают связь между чувствительными и двигательными нейронами, передают возбуждение в различные отделы ЦНС.

Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны - они передают нервный импульс (возбуждение) из ЦНС на эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов - коленный рефлекс (однако вставочного нейрона на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.


На схеме выше вы наверняка заметили новый термин - синапс. Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс "преобразуется" в химический: происходит выброс особых веществ - нейромедиаторов (наиболее известный - ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.


Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение передается другому нейрону, и он генерирует нервный импульс. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими ;) Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к мышцам организма, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.


Собираясь вместе, аксоны образуют нервные пучки. Нервные пучки объединяются в нервы, покрытые соединительнотканной оболочкой. В случае, если тела нервных клеток концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервные узлы - или ганглии (от др.-греч. γάγγλιον — узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных - плечевое сплетение.


Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.


Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом - опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

IV. проводящие пути головного и спинного мозга

Проводящие пути –цепь нейронов, соединяющих функционально однородные участки серого вещества в ЦНС, занимающих в белом и сером веществе головного и спинного мозга определенное место и проводящих одинаковый импульс.

Проводящие пути являются частью сложных рефлекторных дуг, которые соединяют между собой различные отделы центральной нервной системы и обеспечивают двухстороннюю функциональную связь между отдельными структурами головного и спинного мозга. Они отличаются многочисленностью, сложностью строения и надежностью функционирования.

В зависимости от величины, формы и направления нервного импульса проводящие пути получают название: путь (tractus), пучок (fasciculus), волокна (fibrae), спайка (commissura), петля (lemniscus) или лучистость (radiatio).

Все проводящие пути ЦНС подразделяют на три группы:

В процессе становления проводящей системы в онтогенезе первоначально формируются проекционные пути, а затем комиссуральные и ассоциативные.

Ассоциативные проводящие пути соединяют участи коры в пределах одного полушария.

А. Короткие волокна, дугообразные волокна, fibrae arcuatae cerebri, которые соединяют корковые поля соседних извилин.

Б. Длинные волокна, которые соединяют корковые поля отдаленных извилин (верхний продольный пучок, fasciculus longitudinalis superior, нижний продольный пучок, fasciculus longitudinalis inferior, пояс, cingulum, крючковидный пучок, fasciculus uncinatus).

Коммиссуральпые пути соединяют симметричные части правого и левого полушарий. К ним принадлежат:

1. Мозолистое тело, corpus callosum.

2. Передняя спайка, commissura anterior. Относится к обонятельному мозгу.

3. Спайка свода, commissura hippocampi (fornicis). Соединяет корковые поля гиппокампа правого и левого полушарий.

4. Задняя спайка, comissura posterior.

5. Спайка поводков, comissura habenulare.

6. Межталамическое сращение, adhesio intertalamica.

Проекционные путисоединяют кору с подкорковыми образованиями головного мозга и спинным мозгом.

Проекционные проводящие пути связывают кору головного мозга с его нижележащими отделами (короткие проводящие пути) и со спинным мозгом (длинные проводящие пути).

По направлению проведения нервного импульса проекционные пути подразделяют на две группы:

• афферентные(восходящие, центростремительные, чувствительные), которые проводят нервный импульс от рецепторов, воспринимающих информацию из внешнего мира или внутренней среды организма к различным отделам головного мозга и к коре полушарий;

• эфферентные(нисходящие, центробежные, двигательные), передающие импульс от коры головною мозга и других его отделов на периферию.

ЧУВСТВИТЕЛЬНЫЕ (афферентные) ПРОВОДЯЩИЕ ПУТИ

Под чувствительностью понимают способность организма воспринимать воздействия раздражителей внешней и внутренней среды.

Вид чувствительности определяется характером рецептора, воспринимающего раздражение. Среди рецепторов различают экстерорецепторы(тактильная, болевая, температурная),располагающиеся в коже и слизистых оболочках.; проприорецепторы(мышечно-суставная, вибрационная, чувство давления и веса),которые находятся в мышцах, сухожилиях, связках, суставных капсулах; и висцерорецепторы(чувствительность внутренних органов и сосудов),расположенные в различных внутренних органах и сосудах.

В зависимости от вида чувствительности афферентные проводящие пути подразделяют на:

• экстероцептивные (контактные – общей чувствиельности и дистантные – видовой чувствительности,

• проприоцептивные (корковые – сознательные и мозжечковые – бессознательные),

Те из них, которые заканчиваются в коре полушарий большого мозга, получили название проводников сознательной чувствительности, или проводящих путей коркового направления.

Для чувствительных путей коркового направления характерно:

1. Наличие 3-х нейронов.

2. I-е нейроны представлены псевдоуниполярными нейронами, тела которых расположены в спинно-мозговом узле, а периферические отростки образуют рецепторы.

3. Тела II-х нейронов располагаются в ядрах спинного или продолговатого мозга.

4. Аксоны II-х нейронов образуют (как правило) перекрест.

5. Большинство аксонов II-х нейронов идут к зрительному бугру в составе медиальной петли.

6. Волокна этих путей располагаются, как правило, в дорсальных отделах ствола мозга.

7. Тела III-х нейронов располагаются в латеральных отделах зрительного бугра.

8. Все они проходят в средней трети заднего бедра внутренней капсулы.

9. Аксоны III-х нейронов по пути в кору образуют или проходят в составе лучистого венца.

Нервная ткань

Нервная ткань состоит из нервных клеток, выполняющих специфическую функцию, и связанных с ними клеток нейроглии, которая осуществляет вспомогательные функции. Специфическая функция нервных клеток заключается в том, что они приходят в состояние возбуждения под влиянием раздражения и проводят возбуждение в виде нервных импульсов. Нейроглия выполняет в нервной ткани опорную, трофическую, секреторную и защитную функции. Из нервной ткани построена нервная система.

Нервные клетки или нейроны, нейроциты (рис. 12, 13), разных отделов нервной системы различаются своими размерами и формой. Общей характерной чертой для них является наличие отростков, по которым проводятся нервные импульсы. Различают два вида отростков - дендриты и аксоны (нейриты). Дендриты представляют собой обычно короткие древовидно-ветвящиеся (dendriticus - древовидный) отростки; только у некоторых нейронов (чувствительных) дендриты длинные. Количество дендритов у разных нейронов различное. По дендритам нервные импульсы проводятся по направлению к телу нервной клетки. Аксон у каждого нейрона всегда один. По аксону нервные импульсы проводятся от тела нейрона к другим нейронам или к клеткам органов тела (в мышцы и др.). Длина аксонов у разных нервных клеток колеблется от нескольких микрометров до 1,0 - 1,5 м. В зависимости от функции различают чувствительные (афферентные), вставочные (ассоциативные) и двигательные (эфферентные) нервные клетки.

По количеству отростков нервные клетки делятся на три группы: униполярные нейроны - с одним отростком, биполярные - с двумя отростками (дендрит и аксон) и мультиполярные - три и более отростков. Униполярные нейроны фактически являются двуотростчатыми, только оба отростка у них начинаются от общего выроста тела клетки. Наиболее распространенной формой нейронов у человека являются мультиполярные.

Нервные клетки, как правило, имеют одно ядро округлой формы, расположенное в центре тела клетки. В ядре находится 2 - 3 крупных ядрышка. Цитоплазма нервной клетки содержит не только характерные для всех клеток органоиды, но и специфические структуры - базофильное (тигроидное) вещество и нейрофибриллы.

Базофильное (тигроидное) вещество (рис. 14) выявляется в теле клетки и ее дендритах в виде зернистости, состоящей из нерезко отграниченных глыбок. Строение тигроидной зернистости изменяется при различных функциональных состояниях нервной системы. Так, при отравлениях, кислородном голодании и других неблагоприятных условиях глыбки базофильного (тигроидного) вещества распадаются и исчезают. Предполагают, что базофильное (тигроидное) вещество представляет часть цитоплазмы, в которой активно синтезируются белки.

Нейрофибриллы (см. рис. 14) выявляются в цитоплазме тела и всех отростков нейрона в форме тонких нитей. В теле клетки они ориентированы по-разному и в совокупности образуют сеть, в отростках расположены параллельно друг другу. Нейрофибриллы являются специфическими структурами нейрона, проводящими возбуждение (нервные импульсы).

В нервной системе встречаются нейроны, обладающие секреторной функцией, - секреторные нейроны. Они сравнительно крупные, в их цитоплазме содержатся капли секрета. Такие клетки имеются в гипоталамической области головного мозга.

Нейроглия состоит из клеток разной величины, строения и функции и подразделяется на макроглию и микроглию. Клетки макроглии (глиоциты) находятся в веществе мозга между нейронами, а также выстилают изнутри желудочки головного мозга и канал спинного мозга, входят в состав оболочек нервных волокон, образующих нервы, и сопровождают нервные окончания. Разные клетки макроглии выполняют различные функции в нервной системе: секреторную, опорную и трофическую. Микроглия представлена клетками, способными к амебовидному движению и обладающими свойством фагоцитоза (глиальные макрофаги).

Нервные волокна. Нейронные отростки, покрытые оболочками (см. рис. 13), называются нервными волокнами. В каждом волокне нервный отросток занимает центральное положение и носит название осевого цилиндра. В зависимости от строения оболочки нервные волокна делятся на безмиелиновые (безмякотные) и миелиновые (мякотные).

Безмякотные нервные волокна находятся преимущественно в вегетативной нервной системе. Их оболочка состоит из клеток нейроглии (леммоциты, или шванновские клетки), которые своей цитоплазмой плотно прилежат друг к другу и образуют сплошной тяж, содержащий ядра овальной формы. Некоторые безмякотные волокна содержат не один, а несколько осевых цилиндров. Такой тип волокон называется кабельным.

Миелиновые нервные волокна отличаются от безмие- линовых тем, что их осевые цилиндры больше по диаметру, а оболочка толще и устроена сложнее. В оболочке миелинового волокна различают внутренний и наружный слои. Внутренний слой называется миелиновым (мякотным) слоем, или оболочкой. Он содержит жироподобные вещества (липиды) и белки. Наружный слой состоит из леммоцитов, или шванновских клеток (клеток нейроглии), и называется нейролеммой или шванновской оболочкой. На протяжении миелинового нервного волокна имеются сужения, именуемые перехватами (перехваты Ранвье). Они соответствуют границам между соседними шванновскими клетками. По функциональному признаку различают чувствительные (афферентные, центростремительные) и двигательные (эфферентные, центробежные) нервные волокна. По чувствительным волокнам передаются нервные импульсы из рецепторов в центральную нервную систему, а по двигательным волокнам через их окончания передаются импульсы из головного или спинного мозга в органы.

Нервы состоят из пучков нервных волокон и соединительнотканных оболочек, покрывающих как отдельные пучки волокон, так и весь ' нерв. В составе некоторых нервов встречаются нервные клетки.

Нервными окончаниями называются концевые аппараты, которыми нервные волокна оканчиваются в органах (тканях) или на других нервных клетках. Различают три группы нервных окончаний: рецепторы (чувствительные окончания), эффекторы (двигательные окончания) и нервные окончания, образующие контакты между нейронами, - межнейронные синапсы.

Рецепторы являются концевыми аппаратами дендритов афферентных (чувствительных) нейронов в разных органах тела, воспринимающих раздражения как из внешней, так и из внутренней среды. Соответственно рецепторы делятся на две большие группы: экстерорецепторы (воспринимают внешние раздражения) и интеро- рецепторы. В свою очередь интерорецепторы подразделяются на вис- церорецепторы (рецепторы внутренних органов) и проприорецепторы (рецепторы мышц, связок и суставов). В зависимости от характера воспринимаемого раздражения различают болевые рецепторы, терморецепторы, хеморецепторы и т. д. Строение рецепторов также неодинаково (рис. 15). Одни из них представляют собой только ветвления осевого цилиндра нервного волокна (без оболочек), другие, помимо того, содержат клетки глиоциты и могут быть покрыты соединительнотканной капсулой (рецепторы, имеющие капсулу, называются инкапсулированными).

Своеобразные рецепторы, именуемые нервно-мышечными веретенами, имеются в скелетных мышцах. Нервно-мышечное веретено состоит из одного или нескольких внутриверетенных мышечных волокон, вокруг которых в виде намотки расположены ветвления осевого цилиндра чувствительного нервного волокна. К нервно-мышечному веретену подходят также двигательные нервные волокна, образующие в нем моторные бляшки. Двигательные волокна являются аксонами так называемых гамма-мотонейронов спинного мозга, которые принимают участие в регуляции степени сокращения мышечных волокон веретена.

Эффекторы являются концевыми аппаратами аксонов эфферентных (двигательных) нейронов в исчерченных и неисчерченных (поперечнополосатых и гладких) мышцах и железах. С помощью эффекторов происходит передача нервных импульсов в ткани рабочих органов (мышца, железа). Наиболее сложно устроены двигательные нервные окончания в исчерченной мышечной ткани. Они называются моторными бляшками, или нервно-мышечными синапсами. Основными частями нервно-мышечного синапса являются пресинаптическая мембрана, постсинаптическая мембрана и синаптическая щель (рис. 16). Пресинаптическая мембрана образована концевым ветвлением осевого цилиндра нервного волокна, которое подходит к мышечному волокну и погружается в него. В этой мембране имеются митохондрии и так называемые синаптические пузырьки. Постсинаптическая мембрана образована ближайшим участком сарколеммы (оболочки) мышечного волокна. Синаптическая щель представляет собой субмикроскопическое пространство между двумя мембранами (обнаруживается только в электронном микроскопе), заполненное гомогенным веществом.

Межнейронные синапсы служат для передачи нервного возбуждения с одних нервных клеток на другие, благодаря чему осуществляется связь между ними. В нервной системе нейроны контактируют друг с другом и образуют рефлекторные дуги, по которым происходит передача нервных импульсов из рецепторов через центральную нервную систему до рабочих органов. В рефлекторной дуге концевые веточки аксона одного нейрона вступают в контакт в одних случаях с телом другого нейрона, образуя межнейронный аксосоматический синапс, а в других случаях - с дендритом другого нейрона (аксодендритический синапс).

Строение межнейронных синапсов в принципе сходно с таковым нервно-мышечных синапсов (см. рис. 16). В них также различают пресинаптическую и постсинаптическую мембраны и находящуюся между ними синаптическую щель. Пресинаптическая мембрана образована концевой веточкой аксона одного нейрона, а постсинаптическая мембрана - телом или дендритом другого нейрона. Одним из характерных свойств синапсов является проведение нервных импульсов только в одном направлении: с аксона одного нейрона к телу или дендриту другого.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.