Что является механизмом нервной регуляции

Организм людей – это уникальная по своему развитию и контролю система, в которой каждой клетке отведено свое место и роль. В процессе эволюции она непрерывно усложнялась, чтобы добиться преимуществ над остальными представителями природы. Так, гуморальная регуляция – с помощью жидких сред, уже не справлялась со своими обязанностями. Возникла нервная регуляция – с множеством промежуточных нейронов и отдаленных центров контроля. Однако, обе они тесно взаимодействуют для достижения жизненных целей – обеспечения постоянства и безопасности внутренней среды.

Особенности гуморальной регуляции

Механизм гуморальной регуляции функций организма осуществляется с помощью специфических химических соединений – биологических веществ. Они поступают в жидкие среды – кровь, а также лимфу, затем перемещаются к тканям и внутренним структурам. Ведущая роль при этом, безусловно, принадлежит гормонам.


Их вырабатывают особые структурные единицы – железы внутренней секреции. Как правило, они локализуют вдали от контролируемого органа. При этом благодаря гуморальной регуляции осуществляется воздействие сразу на несколько зон организма. К примеру, половое созревание, пищеварение, рост.

Тем не менее, возможности гуморальной регуляции в организме человека ограничены. Ведь она воздействует сравнительно медленно – требуется выработка химических соединений, их поступление в русло крови и достижение подконтрольной области. Действие гормона продолжительное, оно не прекращается даже при значительном снижении его концентрации. В этом основная особенность эндокринной регуляции, что актуально для сохранения постоянства внутренней среды.

В чем же суть гуморальной регуляции, можно понять на примере роста человека. По мере развития плода и формирования внутренних желез секреции, начинается выработка биологических веществ для правильного телосложения. Если гормонов в крови много – вырастет гигант, тогда как при их низкой концентрации – карлик. Приемлемый рост обеспечивается тщательно выверенным самой природой соотношением количества гормона.

То же самое можно отнести к каждой функциональной деятельности – для пищеварения это инсулин, для движения и скорости реакции – адреналин и норадреналин, для репродуктивной деятельности – половые гормоны. Все, даже самые мелкие и, на первый взгляд, незначительные изменения в организме людей, находятся под строгим гуморальным контролем.

Особенности нервной регуляции

В процессе эволюции нервная регуляция сформировалась позже – к этому были необходимы предпосылки. Так, по мнению специалистов, живым единицам уже стало не хватать только гуморальных связей между клетками. Ведь требовалось быстрее передавать получаемую информацию и реагировать на внешние и внутренние угрозы.

У людей все этапы нервной регуляции осуществляются с помощью центральных структур – головного мозга с подкорковыми ядрами, а также периферических образований – нервных сплетений. К примеру, человек опаздывает на работу и видит приближение подходящей ему электрички. Его мозг просчитывает, какое время необходимо для достижения платформы и отдает команды дыхательной, сердечнососудистой системе, а также мышцам конечностей. В итоге опаздывающий человек успевает добежать и впрыгнуть в вагон электрички.

Только нервной регуляцией, конечно, не обойтись. Она отличается нейрогуморальной направленностью. Ведь, требуется и выработка гормонов, и их влияние на функциональные возможности людей.

Взаимодействие систем

Все разнообразие механизмов регуляции функциональной активности человеческого организма специалисты традиционно классифицируют на нервные, а также гуморальные процессы. Тогда как они практически неотделимы и составляют единую систему. Ее задача – обеспечение постоянства внутренней среды организма. Благодаря этому люди приспосабливаются к изменениям извне, и вид получает возможность сохраняться в природе.


И нервный, и гуморальный механизм имеют разнообразные связи на всех уровнях функционирования мозговых центров, а также при передаче сигнальной информации к контролируемым структурам. Так, регуляция функций в организме осуществляется в большинстве случаев с помощью рефлекторной дуги, в которой взаимосвязь между сигнальными молекулами осуществляется посредством гуморальных факторов. В таком качестве выступают нейромедиаторы – особые химические соединения. Именно они корректируют восприимчивость рецепторов и их функциональные возможности.

Однако, гуморальная регуляция организма находится под контролем головного мозга. Он может запускать или замедлять выделение гормонов. Как правило, эти процессы между кровью и мозгом осуществляются на бессознательном уровне. Особенно в дыхательной, пищеварительной, сердечнососудистой системах. В ряде ситуаций требуется сознательный контроль – к примеру, быстро добежать на работу, чтобы не опоздать. Именно в том, как взаимодействуют нервная и гуморальная регуляции, и заключается их единство и эффективность.

Различия

Несмотря на явную взаимосвязь механизмов нервной, а также гуморальной регуляции, на уровне биологической и морфофункциональной единицы они имеют различия. В большинстве своем их разделяют по свойствам:

  • нервная регуляция в отличие, от гуморальной, целенаправленная – импульс перемещается в строго предназначенную зону;
  • гуморальный сигнал – с током крови распространяется по всему организму, а реакция тканей зависит от присутствия молекулярных рецепторов;
  • скорость сигналов выше по нервному волокну, а не в жидких средах организма;
  • время сохранения сигнала в нервной системе короткое, поэтому и реакция контролируемого органа быстрая, тогда как концентрация гормонов сохраняется продолжительный период;
  • изученность нервной регуляции лучше, поскольку она поддается регистрации инструментальными аппаратами, а исследование гуморальных функций затрудненно обширностью подчиненных тканей.

Результатом, как отличий, так и сходства гуморальных и нервных механизмов контроля деятельности внутренних органов является целостность человека, как биологической единицы. Преимущества одной системы компенсируют возможные недочеты другой, однако, ведущая роль принадлежит, все же высшей нервной регуляции.

Гуморальные железы

Внутренние органы, которые выделяют гормональные вещества, локализуются у людей в разных частях тела. Благодаря этому они прицельнее осуществляют гуморальную регуляцию. Так, в основании полушарий головного мозга расположен гипофиз. Сам по себе небольшого размера, он выделяет крайне важные для человека биологически активные соединения. К примеру, гормон роста.


Тогда как контроль концентрации в русле крови возложен на инсулин. Его выделяют особые клетки в ткани поджелудочной железы. При его малом количестве формируется тяжелое своими осложнениями заболевание – диабет.

Двойственное влияние оказывают на организм человека гормоны щитовидной железы. При их чрезмерном выделении развивается гипертиреоз, а при дефиците гипотиреоз. Оба расстройства негативно отражаются на деятельности остальных внутренних органов, а у детей – на интеллектуальном и физическом развитии.

Другими железами гуморальной регуляции являются – паращитовидные клетки, надпочечники, вилочковое образование, а также половые структуры – яичники и яички. Все они тесно взаимодействуют между собой и с центральной нервной системой. Это позволяет человеку адаптироваться и к внутренним изменениям – в периоды полового созревания/угасания, и к внешним факторам – плохая экология, неправильное питание, интоксикации. При сбое в работе гуморальных механизмов, будет наблюдаться усиление работы нервных клеток. При исчерпании компенсаторных возможностей – возникнут различные болезни.

Патологии

Влияние тесной взаимосвязи нервной регуляции с гуморальным контролем человек ощущает на себе лучше всего в непривычных для него условиях – когда требуется приложить больше усилий для выполнения поставленных задач. К примеру, в случае пожара при высокой загазованности воздуха, нагрузка возрастает на дыхательную, а также сердечнососудистую системы. Организм при возрастании концентрации углекислого газа, старается его компенсировать. Если же это не удается, появляются такие заболевания, как бронхит, астма, фарингит хронического течения.

Патологические состояния в сердечной мышце – это часто результат сбоя в выделении гормонов надпочечников, адреналина с норадреналином. При их колебаниях в кровяном русле возникают различные сердечные аритмии, тахикардии, а затем и сердечная недостаточность. Нервная регуляция далеко не всегда справляется с защитной функцией, ведь гормоны длительное время могут сохранять свое влияние на сердце.

Хорошо изучены патологии щитовидной железы. Они приводят к изменениям в обменных процессах. От их концентрации напрямую зависит потребление тканями кислорода. Если их много, то температура тела повышается, усвоение питательных веществ ускоряется, рост тела усиливается. Все эти симптомы характерны для гипертиреоза. Тогда как при замедлении поступления гормонов возникает микседема – повышение массы, тела, апатия, снижение обменных процессов и температуры.

Тяжело протекают патологии репродуктивной системы, если в основе лежат сбои гормонального фона. К примеру, изменяется характер волосяного покрова, телосложения, модуляции голоса, способность к размножению.

Прогноз при заболеваниях гуморального характера во многом будет определен своевременностью обращения человека за медицинской помощью и грамотностью подбора гормональной терапии. В большинстве случаев врачам удается достичь положительных результатов в борьбе за восстановление адекватной регуляции внутренних органов.

РЕГУЛИРУЮЩИЕ СИСТЕМЫ ОРГАНИЗМА И ИХ ВЗАИМОДЕЙСТВИЕ

Регуляция функций органов- это изменение интенсивности их работы для достижения полезного результата согласно потребно­стям организма в различных условиях его жизнедеятельности. Классифицировать регуляцию целесообразно по двум основным признакам: механизму ее осуществления (три механизма: нервный, гуморальный и миогенный) и времени ее включения относительно момента изменения величины регулируемой константы организма. Выделяют два типа регуляции: по отклонению и по опережению (см. раздел 1.6).

Регуляция осуществляется согласно нескольким принципам, ос­новными из которых являются принцип саморегуляции и систем­ный принцип (см. раздел 1.5). Наиболее общий из них - принцип саморегуляции, который включает в себя все остальные. Принцип саморегуляциизаключается в том, что организм с помощью собст­венных механизмов изменяет интенсивность функционирования органов и систем согласно своим потребностям в различных усло­виях жизнедеятельности. Так, при беге активируется деятельность ЦНС, мышечной, дыхательной и сердечно-сосудистой систем. В покое их активность значительно уменьшается.

НЕРВНЫЙ МЕХАНИЗМ РЕГУЛЯЦИИ 1.1.1. Виды влияний нервной системы и механизмы их реализации

В литературе встречается несколько понятий, отражающих ви­ды и механизм влияния нервной системы на деятельность органов и тканей. Целесообразно выделить два вида влияний нервной сис­темы на органы - пусковое и модулирующее (корригирующее).

А, Пусковое влияние.Это влияние вызывает деятельность ор­гана, находящегося в покое; прекращение импульсации, вызвав­шей деятельность органа, ведет к возвращению его в исходное

состояние. Примером такого влияния может служить запуск сек­реции пищеварительных желез на фоне их функционального по­коя; инициация сокращений покоящейся скелетной мышцы при поступлении к ней импульсов от мотонейронов спинного мозга или от мотонейронов ствола мозга по эфферентным (двигатель­ным) нервным волокнам. После прекращения импульсации в нервных волокнах, в частности в волокнах соматической нервной системы, сокращение мышцы также прекращается - мышца рас­слабляется.

Б. Модулирующее (корригирующее) влияние.Данный вид влияния изменяет интенсивность деятельности органа. Оно рас­пространяется как на органы, деятельность которых без нервных влияний невозможна, так и на органы, которые могут работать без пускового влияния нервной системы. Примером, модулирую­щего влияния на уже работающий орган может служить усиление или угнетение секреции пищеварительных желез, усиление или ослабление сокращения скелетной мышцы. Пример модулирую­щего влияния нервной системы на органы, которые могут рабо­тать в автоматическом режиме, - регуляция деятельности сердца, тонуса сосудов. Этот вид влияния может быть разнонаправлен­ным с помощью одного и того же нерва на разные органы. Так, модулирующее влияние блуждающего нерва на сердце выражает­ся в угнетении его сокращений, но этот же нерв может оказывать пусковое влияние на пищеварительные железы, покоящуюся глад­кую мышцу желудка, тонкой кишки.

Модулирующее влияние осуществляется:

посредством изменения характера электрических процессов в возбудимых клетках органа возбуждения (деполяризация) или торможения (гнперполяризация);

•за счет изменения кровоснабжения органа (сосудодвигательный эффект);

•с помощью изменения интенсивности обмена веществ в органе (трофическое действие нервной системы).

Идею о трофическом действии нервной системы сформулировал И.П.Павлов. Вопыте на собаках он обнаружил симпатическую •етвь, идущую к сердцу, раздражение которой вызывает усиление сердечных сокращений без изменения частоты сокращений (уси­ливающий нерв Павлова). Впоследствии было показано, что раз­дражение симпатического нерва действительно усиливает в сердце обменные процессы. Развивая идею И.П.Павлова. Л.О.Орбели и А.Г.Гинецинский в 20-х годах XX ъ. открыли феномен усиления пжращсний утомленной скелетной мышцы при раздражении иду­щего к ней симпатического нерва (феномен Орбели-Гшеципского, рис. 1.1). Считают, что усиление сокращений утомленной мышцы в опыте Орбели - Гинецинского связано с активацией в ней об­менных (трофических) процессов под влиянием норадреналина. Полагают, что норадреналин, выделяющийся из окончаний постганглионарных симпатических сосудистых сплетений, активи­руя специфические рецепторы мембраны мышечных волокон, за­пускает каскад химических реакций в цитоплазме, ускоряющих обменные (трофические) процессы.


Рис. 1.1. Повышение работоспособности утомленной изолированной икроножной мышцы лягушки при раздражении симпатического нерва. Сокращения мышцы (а) вызываются ритмическим (30 мин) раздражением двигательных нервных волокон. Моментам раздражения симпатического нерва соответствуют поднятия сигнальной липни (б) В дальнейшем было установлено, что раздражение симпатиче­ских нервов не только улучшает функциональные характеристики скелетных мышц, но и повы-

шает возбудимость периферических рецепторов и в целом - возбудимость структур ЦНС.

Трофическое действие на иннервируемые ткани оказывают и афферентные нервные волокна.Так, адекватная стимуляция или раздражение электрическим током терминален специфической Популяции первичных сенсорных нейронов, тела которых лежат в Спинальных ганглиях, ведет к освобождению из терминалей аф­ферентных волокон химических веществ, оказывающих специфи­ческое действие на окружающую ткань. Этими веществами явля­ются преимущественно нейропептиды. Наиболее часто при этом выявляются субстанция Р и пептид, родственный гену кальцито-нипа. Они не только несут афферентную информацию, но и ока­зывают трофическое влияние на иннервируемые ткани.

В свою очередь биологически активные вещества, выраба­тываемые разными клетками организма, оказывают трофиче­ское действие на саму нервную систему. Об этом, в частности, свидетельствует угнетение активности ферментов, ответствен­ных за синтез ацетилхолина в преганглионарных симпатиче­ских нейронах после разрушения ганглионарного симпатиче­ского нейрона. Преганглионарные симпатические нейроны на­ходятся в боковых рогах спинного мозга. По-видимому, имеется несколько нейрональных факторов, регулирующих рост, раз­витие нервных клеток и функционирование зрелых нервных клеток. Одно из таких веществ - фактор роста нервов (ФРН). Это инсулиноподобное вещество наиболее сильно стимулирует рост симпатических и спинномозговых ганглиев. Если в орга­низм новорожденных животных ввести антитела к ФРН, то в симпатической нервной системе развиваются дегенеративные изменения. Наибольшее количество ФРН вырабатывается в слюнных железах, продуцируется ФРН также гладкими мы­шечными волокнами стенок внутренних органов. Обнаружено также вещество, регулирующее рост и развитие мотонейронов спинного мозга.

Считают, что адаптационно-трофическое действие оказывают многие нейропептиды:либерины, соматостатин, энкефалины, эн-дорфины, брадикинин, нейротензин, холецистокинин, фрагменты АКТГ, окситоцин.

Таким образом, и соматическая, и вегетативная нервная систе­ма могут оказывать как пусковое, так и модулирующее влияние. Однако пусковое влияние нервной системы для скелетной мышцы (запуск или прекращение ее сокращений) осуществляется только с помощью соматической нервной системы, а модулирующее (изме­нение силы сокращений) - с помощью и соматической, и вегета­тивной нервной системы. Например, активация симпатической нервной системы ведет к усилению сокращения утомленной ске­летной мышцы. Пусковое и модулирующее влияние на внутренние органы осуществляется только с помощью вегетативной нервной системы.

Дата добавления: 2015-10-22 ; просмотров: 1595 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

3. Нервная регуляция функций организма

Главная роль в регуляции функций организма и обеспечении его целостности принадлежит нервной системе. Этот механизм регуляции является более совершенным. Во-первых, нервные влияния передаются значительно быстрее, чем химические воздействия, и потому организм через нервную систему осуществляет быстрые ответные реакции на действие раздражителей. В связи со значительной скоростью проведения нервных импульсов взаимодействие между частями организма устанавливается быстро в соответствии с потребностями организма.

Во-вторых, нервные импульсы приходят к определенным органам, и потому ответные реакции, осуществляемые через нервную систему, не только более быстрые, но и более точные, чем при гуморальной регуляции функций.

Вся деятельность нервной системы осуществляется рефлекторным путем. С помощью рефлексов осуществляется взаимодействие различных систем целого организма и его приспособление к меняющимся условиям среды.

При повышении кровяного давления в аорте рефлекторно меняется деятельность сердца. В ответ на температурные воздействия внешней среды у человека суживаются или расширяются кровеносные сосуды кожи, под влиянием различных раздражителей рефлекторно меняется сердечная деятельность, интенсивность дыхания и т. д.

Благодаря рефлекторной деятельности организм быстро реагирует на различные воздействия внутренней и внешней среды.

Раздражения воспринимаются особыми нервными образованиями - рецепторами. Существуют различные рецепторы: одни из них раздражаются при изменении температуры окружающей среды, другие - при прикосновении, третьи - при болевом раздражении и т. п. Благодаря рецепторам центральная нервная система получает информацию обо всех изменениях окружающей среды, а также об изменениях внутри организма.

При раздражении рецептора в нем возникает нервный импульс, который распространяется по центростремительному нервному волокну и достигает центральной нервной системы. О характере раздражения центральная нервная система "узнает" по силе и частоте нервных импульсов. В центральной нервной системе происходит сложный процесс переработки поступивших нервных импульсов, и уже по центробежным нервным волокнам импульсы от центральной нервной системы направляются к исполнительному органу (эффектору).

Для осуществления рефлекторного акта необходима целостность рефлекторной дуги (рис. 2).



Рис. 2. Схема простейшей рефлекторной дуги спинномозгового рефлекса

Обездвижьте лягушку. Для этого заверните лягушку в марлевую или полотняную салфетку, оставив открытой лишь, голову. Задние лапки при этом должны быть вытянуты, а передние плотно прижаты к туловищу. Введите тупое лезвие ножниц в рот лягушки и отсеките верхнюю челюсть с черепной коробкой. Спинной мозг не разрушайте. Лягушку, у которой сохранен только спинной мозг, а вышележащие отделы центральной нервной системы удалены, называют спинальной. Укрепите лягушку в штативе, зажав зажимом нижнюю челюсть либо приколов булавками нижнюю челюсть к пробке, укрепленной в штативе. Оставьте лягушку висеть несколько минут. О восстановлении рефлекторной деятельности после удаления головного мозга судите по появлению ответной реакции на щипок. Лягушку во избежание подсыхания кожи периодически опускайте в стакан с водой. Налейте в маленький стаканчик 0,5-процентный раствор соляной кислоты, опустите в него заднюю лапку лягушки и наблюдайте рефлекторное отдергивание лапки. Смойте кислоту водой. На задней лапке, на середине голени, сделайте кольцевой разрез кожи и хирургическим пинцетом снимите ее с нижней части лапки, проследив за тем, чтобы кожа была тщательно снята со всех пальцев. Опустите лапку в раствор кислоты. Почему теперь лягушка не отдергивает конечность? В этот же раствор кислоты опустите другую лапку лягушки, с которой кожа не снята. Как реагирует лягушка теперь?

Разрушьте спинной мозг лягушки, введя в позвоночный канал препаровальную иглу. Опустите лапку, на которой сохранена кожа" в раствор кислоты. Почему теперь лягушка не отдергивает лапку?

Нервные импульсы при любом рефлекторном акте, приходя в центральную нервную систему, способны распространяться по разным ее отделам, вовлекая в процесс возбуждения многие нейроны. Поэтому правильнее говорить, что структурную основу рефлекторных реакций составляют нейронные цепи из центростремительных, центральных и центробежных нейронов.

Между центральной нервной системой и исполнительными органами существуют как прямые, так и обратные связи. При действии раздражителя на рецепторы возникает двигательная реакция. В результате этой реакции в исполнительных органах (эффекторах) - мышцах, сухожилиях, суставных сумках - возбуждаются рецепторы, от которых нервные импульсы поступают в центральную нервную систему. Это вторичные центростремительные импульсы, или обратные связи. Эти импульсы постоянно сигнализируют нервным центрам о состоянии двигательного аппарата, и в ответ на эти сигналы из центральной нервной системы к мышцам поступают новые импульсы, включающие следующую фазу движения или изменяющие движение в соответствии с условиями деятельности.

Обратная связь очень важна в механизмах координации, которую осуществляет нервная система. У больных, у которых нарушена чувствительность мышц, движения, особенно ходьба, утрачивают плавность, становятся некоординированными.

Человек рождается с целым рядом готовых, врожденных рефлекторных реакций. Это безусловные рефлексы. К ним относятся акты глотания, сосания, чихания, жевания, слюноотделение, отделение желудочного сока, поддержание температуры тела и др. Количество врожденных безусловных рефлексов ограничено, и они не могут обеспечить приспособление организма к постоянно меняющимся условиям среды.

На базе врожденных безусловных реакций в процессе индивидуальной жизни формируются условные рефлексы. Эти рефлексы у высших животных и человека весьма многочисленны и играют огромную роль в приспособлении организмов к условиям существования. Условные рефлексы имеют сигнальное значение. Благодаря условным рефлексам организм заранее как бы предупреждается о приближении чего-то значимого. По запаху гари человек и животное узнают о приближающейся беде, пожаре; животные по запаху, звукам отыскивают добычу или, напротив, спасаются от нападения хищников. На основе многочисленных условных связей, образовавшихся в течение индивидуальной жизни, человек приобретает жизненный опыт, помогающий ему ориентироваться в окружающей среде.

Для того чтобы яснее стало различие между безусловными и условными рефлексами, давайте совершим (мысленно) экскурсию в родильный дом.

В родильном доме есть три главных помещения: палата, где происходят роды, палата новорожденных и комната матерей. После того как ребенок родился, его приносят в палату новорожденных и дают немного отдохнуть (обычно 6-12 ч), а затем везут к матери - кормить. И только мать приложит ребенка к груди, как он хватает ее ртом и начинает сосать. Никто ребенка этому не учил. Сосание - пример безусловного рефлекса.

А вот пример условного рефлекса. Сначала, как только новорожденный проголодается, он начинает кричать. Однако через два-три дня в палате новорожденных наблюдается такая картина: подходит время кормления, и дети один за другим начинают просыпаться и плакать. Медицинская сестра по очереди берет их и пеленает, при необходимости подмывает, а затем укладывает на специальную каталку, чтобы везти к матерям. Очень интересно поведение детей: как только их перепеленали, уложили на каталку и вывезли в коридор, все они, как по команде, замолкают. Выработался условный рефлекс на время кормления, на обстановку перед кормлением.

Для выработки условного рефлекса необходимо подкрепление условного раздражителя безусловным рефлексом и их повторение. Стоило 5-6 раз совпасть пеленанию, подмыванию и укладыванию на каталку с последующим кормлением, которое здесь играет роль безусловного рефлекса, как выработался условный рефлекс: перестать кричать, несмотря на все возрастающий голод, ждать несколько минут, пока кормление начнется. Кстати, если вывезти детей в коридор и запоздать с кормлением, то через несколько минут они начинают кричать.

Рефлексы бывают простые и сложные. Все они находятся во взаимной связи и образуют систему рефлексов.

Выработайте условный мигательный рефлекс у человека. Известно, что при попадании струи воздуха в глаз человек закрывает его. Это защитная, безусловнорефлекторная реакция. Если теперь несколько раз сочетать вдувание воздуха в глаз с каким-нибудь индифферентным раздражителем (стуком метронома, например), то этот индифферентный раздражитель станет сигналом поступления струи воздуха в глаз.

Для вдувания воздуха в глаз возьмите резиновую трубочку, соединенную с грушей для нагнетания воздуха. Рядом поставьте метроном. Метроном, грушу и руки экспериментатора закройте от испытуемого экраном. Включите метроном и через 3 сек нажмите на грушу, вдувая струю воздуха в глаз. Метроном при вдувании воздуха в глаз должен продолжать работу. Выключите метроном, как только наступит мигательная рефлекторная реакция. Через 5-7 мин повторите сочетание звука метронома с вдуванием воздуха в глаз. Опыт продолжайте до тех пор, пока мигание не будет наступать только при звуке метронома, без вдувания воздуха. Вместо метронома можно воспользоваться звонком, колокольчиком и т. п.

Сколько понадобилось сочетаний условного раздражителя с безусловным, чтобы образовался условный мигательный рефлекс?

Рис.5/1.Схема двухнейронной рефлекторной дуги спинномозгового рефлекса.

1 – рецептор; 2 – эффектор (мышца); Р – рецепторный нейрон; М – эффекторный нейрон (мотонейрон).

Рис. 5/2. Схема трехнейронной рефлекторной дуги спинномозгового рефлекса.

Р – рецепторный нейрон; В – вставочный нейрон; М – мотонейрон.

ПРОЦЕСС ФИЗИОЛОГИЧЕСКОЙ РЕГУЛЯЦИИ
Организм человека постоянно взаимодействует с окружающей его средой. Эта связь осуществляется при участии нервной системы, деятельность которой связана с рефлексами, врожденными и приобретенными. Рефлекс – это ответная реакция на раздражение при обязательном участии центральной нервной системы. Человек получает информацию из окружающей среды в виде нервных импульсов. С помощью передачи этой информации осуществляется процесс физиологической регуляции, т.е. управления физиологическими функциями, деятельностью клеток и сложными системами, поведением организма и его взаимодействием с окружающей средой, недостаточно переноса регулирующих жизнедеятельность веществ жидкими средами организма. Регуляция различных функций у высокоорганизованных животных и человека осуществляется двумя путями: гуморальным (лат. гумор - жидкость) - через кровь, лимфу и тканевую жидкость и нервным. Возможности гуморальной регуляции функций ограничены тем, что она действует сравнительно медленно и не может обеспечить срочных ответов организма (быстрых движений, мгновенной реакции на экстренные раздражители). Кроме того, гуморальным путем происходит широкое вовлечение различных органов и тканей в реакцию. С помощью нервной системы возможно быстрое и точное управление различными отделами целого организма, доставка сообщений точному адресату. Оба эти механизма тесно связаны при ведущей роли в регуляции функций нервной системы. В регуляции функционального состояния органов и тканей принимают участие особые вещества—нейропептиды, выделяемые гипофизом и нервными клетками спинного и головного мозга. Они не вызывают сами возбуждения клеток, но могут изменять их функциональное состояние: влияют на сон, процессы обучения и памяти, на мышечный тонус, вызывают обездвижение или обширные судороги мышц, обладают обезболивающим и наркотическим эффектом. У спортсменов количество нейропептидов в несколько раз выше, чем у нетренированных лиц. Они способствуют адаптации спортсмена к физическим нагрузкам. Человек – это единственная система по высочайшему саморегулированию. Главным регуляторным механизмом в организме человека является нервная система. Многие физиологические процессы регулируются по принципу обратной связи, положительной и отрицательной. Положительная обратная связъ – когда процесс, возникнув, усиливается и поддерживает сам себя. При отрицательной обратной связи наоборот. Например, при повышении артериального давления в дуге аорты возникают усиленные сигналы. которые поступают в ЦНС; рефлекторно замедляется сердцебиение и расширяются артериолы, артериальное давление восстанавливается до исходного уровня. Итак, при действии раздражителей, которые могут вызвать или вызывают нежелательные отклонения в состоянии организма, включаются механизмы саморегуляции, обеспечивающие приспособление организма к окружающей среде. П.К. Анохин создал учение о функциональной системе как форме приспособительной деятельности организма, поддерживающей в организме нормальные условия метаболизма и постоянство внутренней среды.


Схема функциональной системы Этапы процесса физиологической регуляции
1.Рецепторы 1. Восприятие информации с помощью рецепторов.
2. Проводниковые аппараты, передающие сигналы от рецепторов к нервным центрам. 2. Обработка, хранение и воспроизведение информации.
3. Центральные нейроны и их связи - анализируют сигналы и на основании предшествующего опыта (памяти) создают программу действия; в соответствии с этой программой посылают центробежные импульсы к эффекторам. Одновременно в ЦНС формируется модель будущего результата. Это звено ЦНС названо П.К. Анохиным акцептором результата действия (аппарат предсказания ответной реакции организма). 3. Регуляция и согласование работы исполнительных структур.
4. Эффекторы: скелетные мышцы, внутренние органы, железы. Их функции изменяются под влиянием импульсов из ЦНС в соответствии с программой. 4. Анализ полученных результатов.
5. Афферентные аппараты Рецепторы периферических органов воспринимают изменения функций, и возникает обратная афферентация (обратная связь) – сигналы о результатах посылаются в ЦНС. В акцепторе результатов информация сопоставляется с прогнозом. Если полученный результат ему соответствует, то система прекращает свое существование; в противном случае она изменяется за счет включения других нервных центров и органов, и достигается полезный результат. 5. Коррекция результатов.

Критерии оценки деятельности нервной системы
1. Двигательная функция Положение (поза) тела и его частей, мышечный тонус, тонические, сухожильные, кожно-мышечные рефлексы, равновесие, координация движений
2. Вегетативная функция Адекватность реакции внутренних органов на воздействие, терморегуляция, состояние кожи, потоотделение, кожно-висцеральные и висцеро-моторные рефлексы, ортостатические пробы, зрачковый рефлекс, рефлексы роговицы и слизистых оболочек, состояние актов мочеиспускания и дефекации.
3. Сенсорная функция Температурная, болевая, тактильная, вибрационная чувствительность, мышечно-суставное чувство; острота зрения и слуха, восприятие вкуса, запаха.
4. Психическая функция Внимание, память, мышление, речь, состояние сна и бодрствования.

ОБЩИЕ ПРИНЦИПЫ СТРОЕНИЯ ЦЕНТРАЛЬНОЙ И ПЕРИФЕРИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ
ЦНС состоит из серого и белого вещества
Серое вещество Белое вещество
Тела нейронов вместе с ближайшими разветвлениями их отростков, сосредоточенные в больших полушариях головного мозга, подкорковых образованиях, в мозжечке, мозговом стволе и спинном мозге. Нервные волокна, покрытые миелиновой оболочкой и связывающие отдельные центры между собой, т. е. проводящие пути, находящиеся в головном и спинном мозге.
Помимо нервных клеток в ЦНС имеется нейроглия, окружающая нейроны.

Виды нейронов
По функции По локализации
1 Чувствительные, воспринимающие или рецепторные (аффекторные) - осуществляют функцию восприятия и передачи в центральную нервную систему информации о внешнем мире или внутреннем состоянии организма 1. Чувствительные – вне центральной нервной системы в нервных ганглиях (узлах) периферической нервной системы. Один отросток воспринимающего нейрона проводит возбуждение от воспринимающих раздражение нервных окончаний или клеток к центральной нервной системе (афферентные, или центростремительные волокна), а другой – в спинной и головной мозг в составе задних корешков спинномозговых или черепных нервов.
2Эффекторные нейроны –двигательные или секреторные - по своим идущим на периферию отросткам - афферентным, или центробежным, волокнам - передают импульсы, изме­няющие состояние и деятельность различных органов. 2. Тела эффекторных нейронов – в ЦНС или на периферии – в симпатических и парасимпатических узлах. Их аксоны идут к рабочим органам (скелетным мышцам, гладким мышцам, железам)
3 Контактные или промежуточные (вставочные) нейроныосуществляют связь между различными нейронами. Они производят переключение нервных импульсов от афферентных нейронов на эфферентные. Лежат в пределах ЦНС.
Структуры периферической нервной системы
Черепные нервы Спинномозговые нервы Чувствительные узлы черепных и спинномозговых нервов Ганглии и нервы вегетативной нервной системы Рецепторы и ффекторы, воспринимающие внешние и внутренние раздражители

Нервы Связь центральной нервной системы с кожей, мышцами и внутренними органами осуществляется посредством периферической нервной системы (Рис. 5.3 Б), к которой относятся все нервы и их разветвления. Она находится вне центральной нервной системы: головного и спинного мозга. Нервы образованы отростками нейронов, тела которых расположены в головном и спинном мозге, а также в нервных узлах периферической нервной системы. Нервы – это пучки нервных волокон, покрытые соединительнотканной оболочкой – эпиневрием. Выросты эпиневрия внутрь нерва делят пучки волокон на более мелкие и называются периневрием, а каждое нервное волокно покрыто эндоневрием Нервные волокна, несущие импульсы от периферии в ЦНС, называются центростремительными, а от ЦНС к иннервируемому органу – центробежными или эфферентными. Эфферентные волокна выполняют двигательную функцию, иннервируя мышцы, секреторную (железы), трофическую (обеспечивают обмен веществ в тканях). Нервы, связывающие ЦНС с внутренними органами, железами и сосудами, относятся к вегетативной нервной системе, - с кожей, мышцами и сухожилиями – к соматической нервной системе.
Виды нервов
1 Соматические – связывают ЦНС с кожей, мышцами и сухожилиями. 2 Вегетативные – с внутренними органами, сосудами, эндокринными железами. 1 Чувствительные- отростки нейронов спинномозговых узлов и черепных нервов, содержат центростремительные волокна 2 Двигательные отростки нейронов ядер передних рогов спинного мозга и двигательных ядер черепных нервов, содержатцентробежные волокна 3 Смешанные оба вида волокон

Нервный центр
С анатомической точки зрения нервным центром называют совокупность нервных клеток, расположенных в определенном отделе центральной нервной системы, необходимых для осуществления какой-либо функции. Например, за счет нервных центров в поясничном отделе спинного мозга осуществляется простой коленный рефлекс. С физиологической точки зрения нервный центр – это комплекс нервных центров, расположенных на разных уровнях центральной нервной системы и обусловливающих сложные рефлекторные акты. Эти центры ер, зах вопределенном отделе центральной нервной системы дельные центры между собой, т. ение, выделение, размножение.муску отвечают соответствующими рефлекторными реакциями на внешнее раздражение, поступившее от связанных с ними рецепторов. Клетки нервных центров реагируют и на непосредственное их раздражение веществами, находящимися в протекающей через них крови (гуморальные влияния). В целостном организме имеется строгое согласование — координация их деятельности. При отсутствии раздражений, т. е. в состоянии покоя из нервных центров в соответствующие органы и ткани поступают редкие импульсы, которые обуславливают тонус (умеренное напряжение) скелетных мышц, сосудов и гладкой мускулатуры кишечника. В соответствии с функцией различают чувствительные центры, двигательные, центры вегетативных функций, психических функций и др.

Синапс (от греч. контакт) Это структура, которая связывает нейроны друг с другом (и с эффекторными образованиями) и обеспечивает передачу нервного импульса. Синапсы образованы концевыми разветвлениями нейрона на теле или отростках другого нейрона. Чем больше синапсов в нервной клетке, тем больше она воспринимает различных раздражений и, следовательно, шире возможность участия в реакциях организма. Особенно много синапсов в высших отделах нервной системы у нейронов с наиболее сложными функциями.
Структура синапса (3 элемента)
I Пресинаптическая мембрана образована утолщением мембраны конечной веточки аксона II Синаптическая щель между пре- и постсинаптической мембранами III Постсинаптическая мембрана утолщение прилегающей поверхности следующего нейрона.
Виды синапсов
I По виду контакта
1. Аксосоматические. 2. Аксодентрические. 3. Аксоаксонные. 4. Дендродендритические. 5. Сомато-дендритические. 6 Дендросоматические.
II По расположению
1. Нервно-мышечные. 2. Межнейронные. 3. Нейрокапиллярные (нейросекреторные– нейросекрет поступает в капилляры)).
III По функции
1. Возбуждающие.Возбуждающий медиатор (ацетилхолин, норадреналин, серотонин) повышает проницаемость постсинаптической мембраны для ионов натрия, вызывая деполяризацию и потенциал действия: возбуждающий постсинаптический потенциал (ВПСП). 2. Тормозные. Тормозные медиаторы (например, гамма-аминомасляная кислота) вызывают усиление выхода ионов калия или хлора из клетки через постсинаптическую мембрану и увеличение поляризации мембраны – гиперполяризацию, которая препятствует дальнейшему распространению возбуждения - тормозящий постсинаптический потенциал (ТПСП). В результате нервная клетка оказывается заторможенной. Возбудить ее труднее, чем в исходном состоянии. Для этого необходимо более сильное раздражение, чтобы достичь критического уровня деполяризации.
IY По механизму передачи сигналов
1. Электрические (ВПСП; ТПСП; потенциал действия). Потенциал действия, поступивший в постсинаптическое окончание, поступает через белковые межклеточные каналы в постсинаптическую мембрану без угасания и вызывает ее деполяризацию. Это возможно при низком сопротивлении участка, связывающего обе клетки, то есть при наличии узкой синаптической щели. Таким образом, в электрическом синапсе генератор ВПСП находится в пресинаптической мембране. Такие синапсы встречаются редко: в гладкой мускулатуре, эпителии и железистых тканях. 2. Химические (медиаторы). В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем. В пресинаптической части контакта имеются синаптические пузырьки, которые содержат специальные вещества — медиаторы или посредники. Ими могут быть ацетилхолин (в некоторых клетках спинного мозга, в вегетативных узлах), норадреналин (в окончаниях симпатических нервных волокон, в гипоталамусе), некоторые аминокислоты и др. Приходящие в окончания аксона нервные импульсы вызывают опорожнение синаптических пузырьков и выведение медиатора в синаптическую щель. Медиаторы воздействуют на специфические рецепторы постсинаптической мембраны, изменяют ее ионную проницаемость и вызывают падение напряжения на ней – постсинаптический потенциал.
Y По нейрохимическому принципу
1. Холинэргические(медиатор ацетилхолин) 2. Адренергические(медиатор норадреналин)

Вопросы для самоконтроля

1.Какими путями осуществляется регуляция функций организма человека?

2.Назовите этапы процесса физиологической регуляции.

3.Что такое функциональная система?

4.Перечислите критерии оценки деятельности нервной системы.

5.Классификация нервной системы.

6. Из каких веществ состоит центральная нервная система?

7. Назовите структуры периферической нервной системы.

8.Назовите виды нейронов по функции, по локализации.

9.Какие функции выполняют нервы? Виды нервов.

10. Понятие нервный центр с физиологической и анатомической точек зрения.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.