Химические процессы в нервной системе

Нервная система подразделяется на центральную и периферическую. Не углубляясь в физиологические аспекты темы, все же отметим, что основными компонентами нервной ткани являются нейроны с их аксонами и дендритами, а также клетки глии, окружающие аксоны, дендриты и нейроны.

Как и любые другие клетки, разные типы нейронов состоят из ядра, цитоплазмы и органелл (митохондрий, рибосом, лизосом и др.) Цитоплазма с органеллами переходит в отростки.

Нервные волокна аксонов и дендритов, как правило, окружены миелиновой оболочкой, которая в мозге образована клетками глии, а на периферии - клетками Шванна. Часть волокон на периферии лишены миелиновой оболочки.

Химический состав нервной ткани имеет некоторые особенности: простые белки часто имеют основной характер (ИЭТ>7,0), велико содержание сложных белков (липопротеиды, протеолипиды, гликопротеиды); в нервной ткани много липидов, особенно гликолипидов и сфингофосфолипидов; некоторые из них имеют специфические названия: цереброзиды, ганглиозиды.

Из углеводов, кроме сложных, в мозге содержится небольшое коли­чество гликогена. Особо следует остановиться на свойствах миелиновой оболочки. Белки миелина в основном гидрофобны и поэтому легко взаимодействуют с липидами мембран нервного волокна. Примерно 1/3 от обшего белка миелина относится к водорастворимому основному белку, который ответственен за миелинизацию волокна; его разрушение приводит к демиелинизации, что, как мы увидим далее, приводит к нейропатии в виде парезов и параличей.

Основная функция нейронов состоит в генерировании нервного импульса в ответ на сигналы с периферии или от соседних нейрнов. Способность генерировать нервные импульсы сохраняет и аксон, который кроме этого обеспечивает и его проведение по волокну. В механизме проведения импульса по нервному волокну участвуют 3 компонента:

а) натриевый насос (К, Na- АТФ-аза)

б) натриевые каналы

в) калиевые каналы

100 мВ - потенциал действия). После этого открываются К -каналы, ионы К покидают клетку, потенциал в это время падает до уровня потенциала покоя ( - 60 мВ). Каналы закрываются, а АТФ - аза выводит Na из клетки и закачивает К в клетку. В миелинизированном волокне потенциал действия передается скачкообразно (перехваты Ранвье) и потому очень быстро (50 м/сек), в немиелинизированном - более медленно (

10 м/сек), т.к. импульс передается плавно.

В процессе передачи нервного импульса важна роль ионов Са 2+ ; недостаток Са 2+ снижает порог возбуждения нерва, вследствие чего при гипокальциемии наблюдаются судороги и другие явления.

Роль дендритов заключается в обеспечении функциональных связей нейрона с соседними нейронами, что позволяет им с помощью химических посредников и нервных импульсов обмениваться информацией и вырабатывать согласованный (интегрированный) ответ на раздражитель.

Значение глиальных клеток, образующих миелиновую оболочку нервов, состоит в изоляции волокон, которая препятствует рассредото­чению потенциала действия и направляет его действие вдоль волокна. По последним данным, глиальные клетки несут и трофическую функцию, снабжая волокно необходимыми веществами. Особенностью этих клеток является также выраженность в них пентозно-фосфатного пути окисления глюкозы, активность которого связывают с высоким уровнем захвата ионов К нервным волокном.

Еще один механизм, который связан с трофикой нервных волокон, состоит в обеспечении так называемого аксонального транспорта веществ. Многие вещества, а также митохондрии, лизосомы и другие образования способны мигрировать по нерву в направлении к нервным окончаниям, снабжая последние необходимыми материалами и информацией. Скорость этого транспорта составляет несколько см/сутки. Для ряда веществ, в том числе и ферментов, характерен и обратный ток по нерву, что вероятно, несет информацию о трофике нервных окончаний в центр нейрона.

Функциональные связи между нейронами, нервными образованиями более сложной структуры (ядра, ганглии) и периферическими тканями осуществляются с помощью синаптической передачи нервного импульса. На постсинаптических мембранах синапсов расположены специфические рецепторы, т.е. высокомолекулярные структуры, активные центры кото­рых специфичны к тем или иным медиаторам. Различают холинорецеп-торы (медиатор ацетилхолин), адренорецепторы (норадреналин), серотониновые, гистаминовые, ГАМК-рецепторы, опиатные, аминокислотные и др. рецепторы. Каждый из этих рецепторов вызывает специфические ответы со стороны клеток, на которые действует нервный импульс. Эффектом может быть сокращение мышц, выделение секретов железами, усиление и ослабление обменных процессов и др. Изучением этих интереснейших процессов занимается самостоятельная отрасль биохимии - рецепторология. Многие заболевания головного мозга и периферических органов связаны с повреждением рецепторного аппарата клеток.

Головной мозг и другие отделы нервной системы характеризуются аэробностью протекающих в них биохимических процессов. Так, 20% потребляемого человеком кислорода используется головным мозгом. В обычных условиях основным субстратом окисления является глюкоза, но при различных нагрузках на организм (включая и различные заболевания) в мозге возрастает доля утилизации кетоновых тел и лактата.

Основным потребителем энергии АТФ в мозге является К, Na - АТФ - аза (Na - насос), о которой речь шла выше. Поддержание потенциала покоя и его восстановление после прохождения нервного импульса - основная характеристика деятельности нейронов, поэтому именно она и обеспечивается энергией в первую очередь.

Обменные процессы в головном мозге протекают очень интенсивно и в первую очередь обмен белков и аминокислот. Среди свободных аминокислот 75% составляют аспарагиновая и глутаминовая кислоты, что указывает на интенсивность реакций переаминирования и окислительного дезаминирования. О последнем свидетельствует значительная продукция аммиака в головном мозге, который в свою очередь связывается с глутами-новой кислотой и в виде глутамина поступает в кровь, а затем - в печень.

Особую роль в функционировании нейронов играют фосфолипиды и холестерин; преобладание фосфолипидов в мембранах мозга повышает его активность и препятствует развитию атеросклероза мозговых сосудов.

Заболевания нервной системы могут быть воспалительного и невоспалительного характера. Воспалительные проявляются в виде энце-фалитов (чаще всего вирусной этиологии), менингитов (менингококки), невритов (неврит лицевого нерва и др.), радикулита (может быть и травматической природы).

Невоспалительные зболевания головного мозга: шизофрения, детский церебральный паралич, паркинсонизм, болезнь Альцгеймера (старческое слабоумие) и др. К невоспалительным относятся также опухоли мозга. Головной мозг может страдать и вторично, поражаясь, например, при атеросклерозе (ишемические состоянии), эмболиях, инсультах и др.

Патология нервной системы периферического звена может иметь центральное происхождение (парезы и параличи при кровоизлияниях в мозг, тромбозах или опухолях) и местное, например, связанное с процессом демиелинизации нервов (отравление трикрезилфосфатом). В последнем случае состояние называется периферической нейропатией и проявляется также парезами и параличами.

Часть патологических состояний развивается при наследственной или приобретенной недостаточности синаптического аппарата передачи нервного импульса с нерва на эффекторный орган или ткань. При этом может быть изменен синтез или выброс того или иного медиатора, а также может наблю­даться несостоятельность тех или иных рецепторов. К этой группе заболеваний относится, например, миастения (gravis), обусловленная патологией холинорецепторов.

Деятельность мозга значительно, а иногда и необратимо страдает при интоксикациях, вызванных этанолом и его суррогатами, многими лекарственными веществами. Не во всех случаях этих интоксикаций медицина может исправить положение. Особенно это касается применения наркотиков наркоманами. Современные мощные наркотики, особенно синтетические, могут вызвать привыкание к ним и соответствующую клинику даже после одной инъекции. Наркотики опиатной природы чрезвычайно тропны к так называемым опиатным рецепторам головного мозга и периферийных органов. Эти рецепторы представлены несколькими типами, а их функция состоит в регулировании эмоциональной сферы (центр удовольствия и проч.). Наркотики первоначально возбуждают эти центры, но затем намертво блокируют опиатные рецепторы. Для того, чтобы снова их возбудить и получить удовольствие (кайф) нужна большая доза наркотика и т.д. до той поры, когда даже доза, близкая к смертельной, уже не вызывает кайфа. Напротив, стойкая блокада опиатных рецепторов наркотиком сопровождается резким угнетением эмоциональной сферы, наркоман теряет качества личности, убивается воля. Поскольку опиатная система регулирует не только эмоции, но и метаболизм (биоэнергетику, окислительно-восстановительный и ионный потенциалы и др.) ее блокада сопряжена с резким нарушением гомеостаза организма и нарушением функций не только головного мозга, но и других органов и систем. Возникает ситуация, которая граничит со смертью (ломка). Наркоман, испытавший ломку, в дальнейшем ее панически боится и тянется к новой дозе наркотика. Кратковременная фаза возбуждения опиатных рецепторов на некоторое время улучшает состояние наркомана, но за этим снова следует блокада рецепторов. В настоящее время нет фармакологических средств, которые могли бы снимать эту блокаду, активные наркоманы просто обречены на мучительную смерть.

Закономерен вопрос: а как же лечит доктор Назаралиев в Бишкеке? Во-первых, он берется лечить только тех, кто хочет избавиться от этой напасти. Во-вторых, рядом с больным в течение очень длительного времени должен находиться кто-то из очень близких людей. В-третьих, лечение и реабилитация занимает несколько лет (не говоря о материальной стороне дела). Само же лечение состоит в возвращении наркоману личности, т.е. человек должен родиться заново. Такова цена любопытства и невежества.

В заключение отметим два момента:

1.В диагностике заболевний головного мозга особым диагностическим значением обладает исследование клинико-биохимических показателей спино-мозговой жидкости: активности ферментов и их изофермеитных спектров, атипичных белков, некоторых метаболитов и др.

2. Успехи в лечении заболеваний головного мозга прежде всего могут быть основаны на детальном знании метаболизма в этом органе. Так, в последние годы на основе знаний по обмену аминокислот в головном мозге достигнуты впечатляющие успехи в лечении детскою церебрального паралича, рассеянного склероза, болезни Альцгеймера с помощью введения больным строго заданного набора аминокислот.

Общие принципы строения нервной системы и её функции. Нейрон как структурная и функциональная единица нервной системы. Синапсы, их строение и значение

Нервная система играет исключительную интегрирующую роль в жизнедеятельности организма, так как объединяет (интегрирует) его в единое целое и "вписывает" (интегрирует) его в окружающую среду. Она обеспечивает согласовнную работу отдельных частей организма (координацию), поддержание равновесного состояния в организме (гомеостаз) и приспособление организма к изменениям внешней и/или внутренней среды (адаптивное состояние и/или адаптивное поведение).

Самое главное, что делает нервная система

Нервная система обеспечивает взаимосвязь и взаимодействие между организмом и внешней средой. И для этого ей требуется не так уж много процессов.

Основные процессы в нервной системе

1. Трансдукция . Превращение раздражения, внешнего по отношению к самой нервной системе, в нервное возбуждение, которым она может оперировать.

2. Трансформация . Переделка, преобразование входящего потока возбуждения в выходящий поток с отличающимися характеристиками.

3. Распределение . Распределение возбуждения и направление его по разным путям, по разным адресам.

4. Моделирование. Построение нервной модели раздражения и/или раздражителя, которая заменяет сам раздражитель. С этой моделью нервная система может работать, она может её хранить, видоизменять и использовать вместо реального раздражителя. Сенсорный образ - один из вариантов нервных моделей раздражения.

5. Модуляция . Нервная система под влиянием раздражения изменяет себя и/или свою деятельность.

Виды модуляции
1. Активация (возбуждение). Повышение активности нервной структуры, повышение её возбуждения и/или возбудимости. Доминантное состояние.
2. Угнетение (торможение, ингибиция). Понижение активности нервной структуры, торможение.
3. Пластическая перестройка нервной структуры.
Варианты пластических перестроек:
1) Сенситизация - улучшение передачи возбуждения.
2) Габитуация - ухудшение передачи возбуждения.
3) Временная нервная связь - создание нового пути передачи возбуждения.

6. Активация исполнительного органа для совершения действия. Таким способом нервная система обеспечивает рефлекторную ответную реакцию на раздражение .

Задачи и деятельность нервной системы

1. Произвести рецепцию - уловить изменение во внешней среде или внутренней среде организма в виде раздражения (это осуществляют сенсорные системы с помощью своих сенсорных рецепторов).

2. Произвести трансдукцию - преобразование (кодирование) этого раздражения в нервное возбуждение, т.е. поток нервных импульсов с особыми характеристиками, соответствующими раздражению.

3. Осуществить проведение - доставить по нервным путям возбуждение в необходимые участки нервной системы и к исполнительным органам (эффекторам).

4. Произвести перцепцию - создать нервную модель раздражения, т.е. построить его сенсорный образ.

5. Произвести трансформацию - преобразовать сенсорное возбуждение в эффекторное для осуществления ответной реакции на изменение среды.

6. Оценить результаты своей деятельности с помощью обратных связей и обратной афферентации.

Значение нервной системы :
1. Обеспечивает взаимосвязь между органами, системами органов и между отдельными частями организма. Это её координационная функция. Она координирует (согласовывает) работу отдельных органов в единую систему.
2. Обеспечивает взаимодействие организма с окружающей средой.
3. Обеспечивает мыслительные процессы. К этому относится восприятие информации, усвоение информации, анализ, синтез, сравнение с прошлым опытом, формирование мотивации, планирование, постановка цели, коррекция действия при достижении цели (исправление ошибок), оценка результатов деятельности, переработка информации, формирование суждений, заключений выводов и абстрактных (общих) понятий.
4. Осуществляет контроль за состоянием организма и отдельных его частей.
5. Управляет работой организма и его систем.
6. Обеспечивает активацию и поддержание тонуса, т.е. рабочего состояния органов и систем.
7. Поддерживает жизнедеятельности органов и систем. Кроме сигнальной функции нервная система имеет ещё и трофическую функцию, т.е. выделяемые ей биологически активные вещества способствуют жизнедеятельности иннервируемых органов. Органы, лишённые подобной "подпитки" со стороны нервных клеток, атрофируются, т.е. хиреют и могут отмереть.

Строение нервной системы



Рис. Схема строения ЦНС (центральной нервной системы). Источник: Атлас по физиологии. В двух томах. Том 1: учеб. пособие / А. Г. Камкин, И. С. Киселева - 2010. - 408 с. (http://vmede.org/sait/?page=7&id=Fiziologiya_atlas_kamakin_2010&menu=Fiz. )

Видео: Центральная нервная система

Нервная система в функциональном и структурном отношении делится на периферическую и центральную нервную систему (ЦНС).

Центральная нервная система состоит из головного и спинного мозга.

Головной мозг находится внутри мозгового отдела черепа, а спинной мозг - в позвоночном канале.
Периферическая часть нервная система состоит из нервов, т.е. пучков нервных волокон, которые выходят за пределы головного и спинного мозга и направляются к различным органам тела. К ней относят также нервные узлы, или ганглии - скопления нервных клеток вне спинного и головного мозга.
Нервная система функционирует как единое целое.

Функции нервной системы :
1) формирование возбуждения;
2) передача возбуждения;
3) торможение (прекращение возбуждения, уменьшение его интенсивности, угнетение, ограничение распространения возбуждения);
4) интеграция (объединения различных потоков возбуждения и изменения этих потоков);
5) восприятие раздражения из внешней и внутренней среды организма с помощью специальных нервных клеток - рецепторов;

6) кодирование, т.е. преобразование химического, физического раздражения в нервные импульсы;
7) трофическая, или питательная, функция - образование биологически активных веществ (БАВ).

Нейрон - основная структурная и функциональная единица нервной системы.

Нейрон


Определение понятия

Нейрон - основная структурная и функциональная единица нервной системы.

Нейрон - это сложно устроенная возбудимая секретирующая высокодифференцированная нервная клетка с отростками, которая воспринимает нервное возбуждение, перерабатывает его и передаёт другим клеткам. Кроме возбуждающего воздействия нейрон может оказывать на свои клетки-мишени также тормозное или модулирующее воздействие.


Функционально нейрон можно рас­сматривать как один из уровней организации нервной системы, который связывает друг с другом сразу несколько других уровней: с одной стороны, молекулярный, синаптический и субклеточный уровни и, с другой стороны, надклеточные уровни: локальных нейронных сетей, нервных центров и крупных фун­кциональных систем мозга, организующих поведение.


Сложность функции нейрона обусловливает особенности его строения. В нём различают тело клетки (сома), один длинный, маловетвящийся отросток - аксон и несколько коротких ветвящихся отростков - дендритов.
Аксон отличается большой длиной: от нескольких сантиметров до 1-1,5 м. Конец аксона сильно ветвится, так что один аксон может образовывать контакты с многими сотнями клеток.
Дендриты - обычно короткие, сильно ветвящиеся отростки. От одной клетки может отходить от 1 до 1000 дендритов. По дендритам возбуждение распространяется от рецепторов или контактирующих с этими дендритами нейронов к телу клетки, а по аксону нервные импульсы передаются к другим нейронам или к эффекторным (рабочим)клеткам . На дендритах имеются микроскопических размеров выросты (шипики), которые значительно увеличивают поверхность соприкосновения с другими нейронами. Особого развития шипики достигают на клетках больших полушарий головного мозга. На каждом шипике может быть до 8 синапсов (межклеточных контактов).

Тело нейрона в различных отделах нервной системы имеет различную величину и форму. Тело покрыто мембраной и содержит, как и любая клетка, цитоплазму, ядро с одним или несколькими ядрышками, митохондрии, рибосомы, аппарат Гольджи, эндоплазматическую сеть. По отношению к отросткам тело клетки выполняют трофическую функцию, т.е. регулирует в них уровень обмена веществ. Вот почему отделение аксона от тела нервной клетки или гибель сомы приводят к гибели аксона. Но тело нейрона, лишённое аксона, может вырастить вместо него новый аксон. На рисунке слева вокруг крупного нейрона виды мелкие глиальные клетки (G). Это вспомогательные клетки нервной ткани.

Как работает нейрон и что он делает?

Возбуждение, возникшее в виде нервного импульса на каком-либо участке мембраны нейрона, пробегает по всей его мембране и по всем его отросткам: как по аксону, так и по дендритам. Но вот передаётся возбуждение от одной нервной клетки к другой обычно только в одном направлении - с аксона передающего нейрона на воспринимающий нейрон через синапсы, находящиеся на его дендритах, теле или аксоне.

Обратите внимание на то, что одностороннюю передачу возбуждения обеспечивают синапсы (контакты нейронов). Нервное волокно (отросток нейрона) может передавать нервные импульсы в обоих направлениях, а односторонняя передача возбуждения появляется только в нервных цепях, состоящих из нескольких нейронов, соединённых синапсами. Именно синапсы обеспечивают одностороннюю передачу возбуждения.

Нервные клетки воспринимают и перерабатывают поступающую к ним информацию. Эта информация приходит к ним, как правило, вовсе не в виде прямых электрический воздействий, а в виде управляющих химических веществ: нейротрансмиттеров. Она может быть в виде возбуждающих или тормозных химических сигналов, а также в виде модулирующих сигналов, т.е. таких, которые изменяют состояние или работу нейрона, но не передают на него возбуждение.

Свойства нейрона

Процесс в основе

Афферентный нейрон

Вставочный нейрон

Э фферентный нейрон

Восприятие возбуждения

Локальный потенциал

Проведение возбуждения

Нервный импульс

Передача возбуждения

Химический выброс

Пластичность синапсов

Изменение силы синапсов

Более подробно смотрите здесь: 3_1 Работа нервных клеток

Синапсы - там даётся определение синапса.
Аксоны (выносящие возбуждение отростки) у большинства нейронов подходя к другим нервным клеткам ветвятся и образуют многочисленные окончания на этих клетках и их отростках (дендритах и аксонах). Такие места контактов называют синапсами. Аксоны также образуют синаптические окончания и на мышечных волокнах, и на клетках желёз. А аксоны нейронов гипоталамуса могут образовывать контакты также на кровеносных капиллярах, для того чтобы выделять свои химические управляющие вещества (нейротрансмиттеры) в кровь.

Строение синапса



Синапс имеет сложное строение. Так как его образуют две разные клетки, то в его состав входят две мембраны - пресинаптическая (от передающего возбуждение нейрона) и постсинаптическая (от воспринимающего возбуждение нейрона). Между ними есть синаптическая щель с межклеточной жидкостью. Пресинаптическая часть синапса принадлежит аксону. Её можно отличить от постсинаптической части синапса по наличию пузырьков-везикул, заполненных нейротрансмиттером - химическим управляющим веществом, влияющим на постсинаптическое окончание. Постсинаптическая часть синапса отличается уплотнённой постсинаптической мембраной, которую иногда называют также "субсинаптической мембраной". На ней расположены молекулярные рецепторы, с которыми соединяется нейротрансмиттер, выделяющийся из пресинаптического окончания. Нервные окончания в ЦНС имеют вид пуговок или бляшек. Постсинаптическая мембрана находится на теле или дендритах нейрона, на который передаётся нервный импульс. Но существуют также и "аксо-аксональные синапсы", образованные двумя аксонами.

Работа возбуждающего синапса

Работу возбуждающего синапса можно объяснить очень кратко.

Когда нервный импульс доходит до места соединения одного нейрона с другим, то передающий нейрон выбрасывает в пространство между их примыкающими отростками молекулы нейромедиатора. Этот нейромедиатор улавливается окончанием воспринимающего нейрона, после чего воспринимающий нейрон порождает (генерирует) уже свой нервный импульс и отправляет его дальше по цепи нейронов.

Если вы кликните на замечательную картинку синапса слева, то увидите в динамике, как химическим путём передаётся возбуждение (или наводится торможение) с одного нейрона на другой. Слева - аксон передающего нейрона образует пресинаптическое окончание. Справа - дендрит воспринимающего нейрона образует постсинаптическое окончание.

Бегущая в виде колечка волна возбуждения (она же - нервный импульс, она же - деполяризация) открывает на своём пути натриевые ионные каналы. Ионы Na+ входят в клетку и обеспечивают деполяризацию следующего участка на пути движения волны возбуждения. Так волна мембранных изменений продвигается вдоль аксона к его окончанию (пресинаптическому окончанию).

Но на пресинаптическом окончании открываются уже другие ионные каналы - кальциевые.

Это очень важно понять и запомнить: на пресинаптическом окончании открываются не только натриевые каналы, но и кальциевые!

В наш рисунок необходимо внести уточнение: последние исследования показали, что кальциевые каналы расположены на самой верхушке пресинаптического окончания - именно там, где будут сливаться с мембраной синаптические пузырьки, а не сбоку, как это показано на рисунке. Через раскрывшиеся кальциевые каналы более крупные ионы Ca2+ входят в это окончание и побуждают пузырьки с нейротрансмиттером переместиться к синаптической щели и выбросить в неё своё содержимое. Выброшенный из окончания наружу нейротрансмиттер (медиатор или модулятор) движется через щель к постсинаптическому окончанию и садится там на его молекулярные рецепторы.

Работа тормозного синапса

Тормозный синапс на своей постсинаптической мембране имеет рецепторы к тормозному медиатору - гамма-аминомасляной кислоте (ГАМК или GABA). В отличие от возбуждающего синапса в тормозном синапсе на постсинаптической мембране ГАМК открывает ионные каналы не для натрия, а для хлора. Ионы хлора приносят в клетку не положительный заряд, а отрицательный, поэтому противодействуют взбуждению, т.к. нейтрализуют положительные заряды ионов натрия, возбуждающих клетку.

Видео: Работа ГАМК-рецептора и тормозного синапса

Итак, возбуждение через синапсы передаётся химическим путём с помощью особых управляющих веществ, находящихся в синаптических пузырьках, расположенных в пресинаптической бляшке . Общее название этих веществ - нейротрансмиттеры, т.е. "нейропередатчики". Их разделяют на медиаторы ( посредники), которые передают возбуждение или торможение, и модуляторы, которые изменяют состояние постсинаптического нейрона, но возбуждение или торможение сами не передают.


То есть, когда организм реагирует на некоторый раздражитель, запускаются реакции, которые в конечном счете приводят к проявлению эмоций. Но те же самые реакции могут быть запущены и иными способами, например химическими веществами или другими процессами организма, которые затрагивают похожие пути обмена веществ.

Разбираем, что стоит за нашими эмоциями и какие внутренние и внешние факторы могут на них повлиять.


Внутренние процессы: гормоны и нейромедиаторы

Совет. Следите за тем, чтобы ваш сон был комфортным. Снижайте искусственное освещение в вечерние часы перед сном и минимизируйте световой шум в ночное время. Если вас беспокоит внешний свет ночью, позаботьтесь о плотных шторах или перестановке в спальне.


  • Гормоны и менструация. Другой гормональный цикл связан с менструальным циклом в женском организме. Те гормоны, которые каждый месяц готовят тело женщины репродуктивного возраста к зачатию, также действуют на психику. Однако их влияние на эмоции зачастую переоценено. Гормоны, которые работают в течение цикла — эстрогены, лютеинизирующий и фолликулостимулирующий гормоны и другие, — не являются нейромедиаторами и не могут напрямую вызывать эмоции. Изрядная часть негативных чувств во время самой менструации появляется по косвенным причинам: из-за постоянной боли, дурноты и общей слабости. Мозг получает похожие сигналы при болезни и угнетает любое возбуждение. А причины, по которым возникает сильно выраженный предменструальный синдром, до сих пор точно не известны. Совет. Если вы знаете, что в определенные дни будете испытывать перепады настроения, постарайтесь создать наиболее комфортную обстановку для организма и психики. Избегайте дополнительного стресса извне: циклические изменения в теле — сами по себе нагрузка.
  • Гормональные изменения. Гормональная активность меняется в течение жизни. Изменения происходят и в мужском, и в женском организме, но у женщин они выражаются активнее в виде наступления менопаузы. Это естественный процесс, связанный с прекращением выделения эстрогенов. Как и в случае с менструальным циклом, наступление менопаузы может переноситься по-разному — от совершенно бессимптомного протекания до значительных изменений в организме и сильных перепадов настроения. Совет. Заместительная гормональная терапия эффективно борется с негативными симптомами менопаузы. Она предполагает прием небольших доз гормонов — эстрогенов, прогестинов и иногда андрогенов: их соотношение и дозировку назначает врач по результатам биохимического анализа.


Внешняя химия: питание и обоняние

На наши чувства влияют не только гормоны, производимые нашим собственным организмом, но и некоторые вещества, которые мы получаем извне.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.