Иррадиация в высшей нервной деятельности

Физиологическими основами поведения человека являются два вида нервных процессов: возбуждение и торможение. К чему приводят особенности их возникновения и распространения по отделам нервной системы, прежде всего, в головном и спинном мозге? Рассмотрим это подробнее.


Физиологическая основа распространения нервных импульсов

Возбуждение и торможение обусловливают приспособление органов и систем тела человека к постоянным изменениям внутренней и внешней среды организма. Особенности их протекания в головном мозге изучает физиология. Иррадиация, концентрация, индукция – это виды взаимодействий нервных импульсов, происходящих в центральной нервной системе.

Выдающиеся российские ученые И. П.Павлов и И. М.Сеченов разработали теорию, объясняющую принципы работы высшей нервной деятельности, являющейся базой, на которой возводится надстройка – психические феномены, например, такие, как сознание, память, мышление и речь. Иррадиация – это распространение нервных процессов в центральной нервной системе, обуславливающее проявления высшей нервной деятельности. В данной статье мы выясним ее роль в формировании сложных условных рефлексов и развитии психики человека.

Особенности нервных процессов

Возбуждение и торможение – главные виды нервных импульсов, обуславливающие деятельность головного и спинного мозга, а также всей нервной системы человека. Они не только противоположны, но и взаимосвязаны между собой, функционируя по определенным закономерностям. Охватывая участки в коре больших полушарий, возбуждение и торможение распространяется на другие отделы, происходит их распространение – иррадиация. Это явление, противоположное процессу концентрации, т. е. ограничению очага возбуждения. Физиология высшей нервной деятельности установила, что взаимодействие нервных процессов обеспечивает формирование сложных систем – динамических стереотипов.


Они представляют собой условные рефлексы, приобретенные человеком на протяжении его жизни. Развитие речи, ходьба, игра на музыкальных инструментах и другие виды деятельности, приобретенные в процессе обучения и воспитания – примеры, иллюстрирующие иррадиацию. Это основа образования и сохранения условнорефлекторных актов.

Роль распространения возбуждения в эмоциональных реакциях организма

Если представить себе состояние коры головного мозга бодрствующего человека, то она будет иметь вид мозаики центров возбуждения и торможения, от которых соответствующие нервные процессы иррадиируют на рядом расположенные участки мозга и, далее, по черепно-мозговым или спинномозговым нервам поступают в скелетные мышцы, железы или другие внутренние органы. В момент острого эмоционального аффекта в коре и стволовой части мозга наблюдается появление очагов возбуждения, а также изменение показателей гомеостаза и поведенческих реакций. Например, у человека, попавшего в стрессовую ситуацию, кроме повышения кровяного давления и пульса, регистрируются сильные двигательные реакции: сбивчивость в речи, крик, резкая жестикуляция. Это объясняется тем, что активные очаги в центральной нервной системе распространяют возбуждение к речевым зонам коры и скелетным мышцам.


Распространение болевого синдрома

Негативные ощущения, которые возникают в нашем теле опосредовано и напрямую не связаны с физическим источником, т. е. пораженным органом, – это иррадиация боли. Симптомы боли проявляются как нервные импульсы, возникающие в покровных тканях или внутренних органах, или косвенно – за счет сигнальных молекул, попадающих в кровь вследствие клеточного распада. Места возникновения болезненных ощущений могут находиться далеко от первичного очага патологии. Классическим примером может служить симптоматика при обострении остеохондроза шейного отдела позвоночника. Для него характерна отдающая боль в затылочную и височную часть головы, поражения плечевых суставов и неприятные ощущения под лопаткой. Иррадиация возбуждения – это главная причина болевых симптомов. Она не только истощает физические ресурсы организма, но еще и мешает правильной постановке диагноза, усложняя выработку врачом стратегии лечения.

Релаксация как вид распространения торможения

Как мы выяснили ранее, физиологической основой психики человека являются два взаимосвязанных процесса – возбуждение и торможение, способные иррадиировать по различным отделам нервной системы. Торможение играет важную роль в практиках аутотренинга и упражнениях по релаксации, применяемых в психотерапии. Иррадиация – это форма распространения торможения, возникающая в определенном органе, например, в правой руке под влиянием музыки, аффирмаций или гипноза. Благодаря эффекту генерализации, оно захватывает другие части тела: шею, плечи, ступни ног, приводя весь организм в состояние покоя. Под генерализацией здесь мы понимаем распространение стимула к мышечному расслаблению от двигательных центров головного и спинного мозга.


Физиологической основой иррадиации торможения и возбуждения является наличие в нервной системе разветвлений дендритов и аксонов нейроцитов, а также вставочных нейронов и ретикулярной формации головного мозга. Все эти структуры играют ведущую роль в образовании сложных условных и безусловных рефлексов.

В нервной системе сосуществуют два процесса — возбуждение и торможение. Они постоянно сменяют друг друга, взаимодействуют друг с другом, принято говорить о динамике нервных процессов. И возбуждение, и торможение могут подвергаться концентрации, т.е. процесс захватывает меньшую площадь и локализуется в каком-то небольшом очаге. Возможен также и обратный процесс — иррадиации как возбуждения, так и торможения, при котором процесс расширяется, захватывает большие площади поверхности коры б.п. Очень сильные либо очень слабые раздражители при длительном воздействии на организм вызывают иррадиацию возбуждения (этот процесс распространяется по значительной площади коры б.п.). Иррадиация возбуждения вызывает значительное повышение тонуса коры головного мозга, в результате чего даже незначительные раздражители вызывают выраженную реакцию. Представления об иррадиации возбуждения были основаны на явлении генерализации, которое наблюдается в процессе выработки условного рефлекса (вторая стадия). На этой стадии выработки условного рефлекса ответную реакцию можно вызвать не только условным сигналом, но и другими, похожими на него раздражителями. Таким образом, предполагается, что при действии условного раздражителя возникает сильное возбуждение, которое распространяется (иррадиирует) к соседним областям коры. В результате эти задействованные в возбуждении области коры участвуют в образовании побочных рефлекторных реакций. Однако поскольку такие реакции не подкрепляются, они со временем угасают, и остается реакция только на один условный сигнал (происходит специализация навыка, третья стадия формирования условного рефлекса). В этой ситуации возбуждение перестает иррадиировать и концентрируется в одной локальной области (зоне проекции условного сигнала). Кроме того, концентрация возбуждения может быть и результатом взаимной индукции процессов возбуждения и торможения. Индукция (в данном случае) это возникновение противоположного по знаку процесса: возбуждение индуцирует торможение и наоборот [1] .

Некоторые явления, связанные с динамикой нервных процессов, получили названия законов индукции. Так, на периферии очага одного процесса всегда возникает процесс с противоположным знаком (рис. 4.1). Если в одном участке коры сконцентрирован процесс возбуждения, то вокруг него индуктивно возникает процесс торможения. Чем интенсивнее очаг возбуждения, гем интенсивнее и шире распространен вокруг него процесс торможения.

Наряду с одновременной индукцией существует последовательная индукция нервных процессов: последовательная смена нервных процессов в одних и тех же участках мозга.

При действии комплексных раздражителей в разных областях коры возникают одновременно процессы возбуждения и торможения. Сначала они иррадиируют, а затем концентрируются в местах первоначального возникновения. Взаимная индукция нервных процессов создает в коре мозаику из возбужденных и заторможенных участков, между которыми устанавливается баланс. Только оптимальное соотношение процессов возбуждения и торможения обеспечивает поведение, адекватное (соответствующее) окружающей среде. Нарушение баланса между этими процессами, преобладание одного из них, вызывает значительные нарушения в психической регуляции поведения.


Рис. 4.1. Законы положительной и отрицательной индукции

ДИНАМИКА ПРОЦЕССОВ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ

Вся сложная и разнообразная деятельность высших отделов нервной системы построена на работе двух основных нервных процессов — возбуждения и торможения. Протекая в подвижных пространственных и временных отношениях друг с другом, эти процессы то разливаются (иррадиируют), то сосредоточиваются (концентрируются), то возбуждение порождает торможение (отрицательная индукция), то торможение дает начало возбуждению (положительная индукция). Непрерывное взаимодействие движущихся и вызывающих друг друга возбудительных и тормозных процессов создает в высших отделах мозга чрезвычайно тонкую мозаику, колеблющийся узор из переплетения возбужденных и заторможенных нейронов. Такие мозаики лежат в основе как различных актов поведения, так и их торможения в явлениях сна.

Иррадиация и концентрация нервных процессов

Возбуждение или торможение, возникшие в какой-либо клетке или группе клеток мозга, не остаются неподвижными, а всегда склонны к распространению. Распространение нервного процесса из очага его возникновения на окружающие нервные клетки называется иррадиацией.

Иррадиация торможения. Иррадиацию условного торможения удобно наблюдать в кожном анализаторе. Широко развернутая кожная поверхность тела является как бы увеличивающим зеркалом, в котором можно ясно видеть, как по последовательно расположенным проекционным полям будет иррадиировать тормозное состояние, например дифференцировочное торможение.

Иррадиацию дифференцировочного торможения обнаружили в следующем опыте.


Рис. 35. Опыт с иррадиацией дифференцировочного торможения по корковым клеткам кожного анализатора:

0 — дифференцировочный раздражитель, 1, 2, 3, 4 — положительные условные раздражители (прикладываются к пунктам кожи ноги на расстоянии от дифференцировочного раздражителя соответственно на 3, 9, 15 и 22 см)

В классических опытах Н.Н. Красногорского и Б.А. Когана условный рефлекс на каждую из положительных касалок составлял 5 капель слюны за 30 с. Но каждый раз, когда дифференцировочная касалка создавала очаг торможения, начинали изменяться и соседние положительные рефлексы. Следовательно, торможение выходит за пределы своего очага и захватывает соседние клетки анализатора, в данном случае те, на которые проецируются кожные пункты положительных касалок. Далее видно, что в одинаковых условиях минутного интервала после троекратного действия дифференцировочной касалки условные рефлексы с положительных касалок изменяются по-разному, в зависимости от расположения последних относительно дифференцировочной. Так, рефлекс с ближайшего пункта (касалка 1) оказался полностью заторможенным. Рефлекс с пункта, расположенного несколько дальше (касалка № 2), был только уменьшен. Рефлексы с остальных пунктов, расположенных еще дальше, не только не испытали торможения, но даже усилились. Следовательно, иррадиирующее торможение оказывает тем более сильное воздействие на клетки анализатора, чем ближе они находятся к тормозному очагу. По своей природе иррадиация торможения — это развитие ТПСП на все большей территории коры, но не истинное движение процесса.

Концентрация торможения. После широкой иррадиации наступает сосредоточение, концентрация торможения в месте своего возникновения. Этот процесс тоже удобно проследить на примере дифференцировочного торможения в кожном анализаторе. Опыты проводили так же, как и при наблюдении иррадиации, но положительные рефлексы с каждого пункта кожи испытывали в различные сроки после окончания действия тормозного раздражителя. При помощи такого приема можно увидеть, как сначала далеко распространившееся тормозное состояние начинает сосредоточиваться, возвращаясь к исходному пункту.

При своем концентрировании торможение проходит в обратной последовательности все те пункты проекционных полей анализаторов, которые оно захватывало в своем поступательном движении.

Что собой представляет процесс концентрации торможения? Здесь не исключены две возможности. Первая заключается в том, что распространившееся торможение рассеивается, затухает на периферии и занимаемая им территория постепенно уменьшается. Вторая возможность — это подъем обратной волны торможения к тому месту, откуда оно распространилось. Последнее более вероятно, как, например, упрочение дифференцировки сопровождается усилением тормозного процесса. Следовательно, концентрация торможения связана не с рассеиванием и ослаблением, а с его сосредоточением и усилением.

Скорость иррадиации и концентрации торможения в коре головного мозга собаки. Скорость иррадиирования тормозного состояния удалось измерить в кожном анализаторе. Для этого определяли время развития вторичного торможения условного рефлекса на раздражение пункта кожи, находящегося в известном удалении от первично угашаемого. Опыты проводили следующим образом. В разных местах тела собаки приклеивали к коже касалки. На все касалки вырабатывали условные пищевые слюнные рефлексы и укрепляли их до одинаковой величины. Затем наносили повторные раздражения какой-либо одной касалкой без подкреплений до тех пор, пока не достигали исчезновения слюноотделения. Как только эта касалка проявляла свое тормозное действие, испытывали состояние рефлекса с другого пункта. На основании ряда таких испытаний в разные сроки после вызова угасательного торможения и при разных расстояниях испытуемых пунктов от его очага определяли время иррадиирования (Б.А. Коган).

В этом опыте вторично затормаживаемые пункты испытывали медленно после раздражения, давшего нулевой результат, т.е. без всякого промежутка времени между ними. В этот момент, как видно, торможение из пункта, соответствующего правой стороне груди еще не успело распространиться дальше ближайших участков. До области, например, правой предплюсны оно еще не дошло. Однако постепенно увеличивая промежутки времени от тормозного раздражения до момента испытания рефлекса, можно уловить момент, когда торможение дойдет до пункта, соответствующего правой предплюсне. Оказалось, что процесс иррадиирования торможения по нервным клеткам коры протекает очень медленно. Для прохождения области одного только кожного анализатора торможению требуются минуты.

Продолжая увеличивать промежуток времени между моментом приложения тормозного раздражителя к одному пункту и моментом испытания рефлекса с другого пункта, можно определить и скорость концентрирования угасательного торможения в кожном анализаторе.

Абсолютные величины времени концентрации тормозного процесса, как и времени его иррадиации, сильно зависят от индивидуальных особенностей подопытных животных, однако их соотношение оказалось довольно постоянным у всех испытуемых собак. Как правило, иррадиирование происходит в 4–5 раз быстрее, чем последующее концентрирование.

Иррадиация возбуждения. Опыт, показывающий иррадиацию возбудительного процесса, в некоторых отношениях напоминает описанные выше опыты с иррадиацией торможения.

У собаки вдоль задней ноги от плюсны до таза на примерно одинаковом расстоянии друг от друга приклеивали пять касалок (рис. 36). На действие самой нижней касалки (№ 1) вырабатывали условный рефлекс слюноотделения, подкрепляемый вливанием раствора кислоты в рот собаки. При первом испытании и другие касалки (№ 2, 3, 4 и 5) как сходные раздражители тоже вызывали слюноотделение. Поэтому необходимо было выработать дифференцирование этих касалок, применяя многократно касалку № 1 с подкреплением, а остальные касалки — без подкрепления. Теперь только касалка № 1 вызывала слюноотделение, а остальные превратились в тормозные сигналы.

После такой подготовки приступали к главной части опыта. Включали положительную касалку № 1 на 15 с и сразу после ее выключения действовали отдифференцированной касалкой № 2. Однако ее действие тоже вызывало слюноотделение. Это означало, что пункт кожного анализатора, соответствующий касалке № 2, обычно находящийся в тормозном состоянии, сразу после возникновения очага возбуждения в пункте, соответствующем касалке № 1, тоже оказался в возбужденном состоянии. Иначе говоря, возбуждение из пункта касалки № 1 в это время распространилось на пункт касалки № 2. Если испытать таким образом и какой-либо другой, более удаленный пункт кожного анализатора, то можно судить о районе такой иррадиации. Эти опыты показали, что иррадиирующее возбуждение по мере удаления от очага своего развития постепенно ослабевает.


Рис. 36. Опыт с иррадиацией возбуждения по корковым клеткам кожного анализатора:

1 — положительный условный раздражитель, 2, 3, 4, 5 — дифференцировочные раздражители

В другом варианте опытов под наблюдение была взята более обширная область кожного анализатора. Касалки располагали от конца передней лапы через все туловище до конца задней лапы. Первая касалка на конце передней лапы была положительным сигналом, а все остальные — дифференцировочными. Испытания дифференцировочными касалками показали, что уже через 0,5–1 с по прекращении положительного сигнала возбудительный процесс обнаруживается на соседних пунктах.

Таким образом, иррадиация возбуждения в коре мозга происходит гораздо быстрее, чем иррадиация торможения, и требует менее секунды для распространения по области кожного анализатора.

Через некоторое время после положительного сигнала соседние пункты анализатора вновь оказываются в прежнем тормозном состоянии. Это означает, что волна возбуждения успела уже разлиться по коре и вновь сосредоточиться в исходном пункте.

Индукция нервных процессов

Движение основных процессов высшей нервной деятельности определяется не только свойствами иррадиации и концентрации, но и свойствами их взаимной индукции. Индукцией называется свойство каждого из основных нервных процессов вызывать вокруг себя и после себя противоположный процесс.

Положительная индукция из очагов угасательного и дифференцировочного торможения. В опытах с иррадиацией угасательного торможения по кожному анализатору часто наблюдают такое явление: повторение раздражения какой-либо одной касалкой без подкрепления способствует полному угасанию условного рефлекса с раздражаемого пункта кожи. Однако сразу после этого раздражение касалкой с другого отдаленного пункта выявляет этот рефлекс в резко усиленном виде. Возникший в первом пункте очаг сильного торможения индуцировал в отдаленном пункте возбуждение, привел этот пункт в состояние повышенной возбудимости.

Еще более четко явление положительной индукции было выявлено в специальных опытах на примере индукции, развиваемой дифференцировочным торможением. Так, у собаки вырабатывали условный пищевой рефлекс слюноотделения, в котором сигналом служило раздражение касалкой кожи передней лапы. Другая касалка была установлена на задней ноге. Ее применяли без подкреплений, так что скоро она приобрела тормозное значение дифференцировочного раздражителя. На включение дифференцировочной касалки слюноотделения не наступало, однако испробованный сразу после нее положительный раздражитель давал резко усиленный рефлекс (табл. 7).

Измерение силы условного рефлекса количеством слюны обнаруживает, что торможение в пункте задней лапы усилило условное возбуждение в пункте передней лапы почти на 50 %. Следовательно, в данном случае положительная индукция произошла из очага торможения в дальнем пункте анализатора.

Таблица 7. Положительная индукция из очага дифференцировочного торможения в кожном анализаторе (по Д.С. Фурсикову, 1922)


Однако мозг часто дифференцирует раздражители, связанные с одним и тем же пунктом анализатора, но отличающиеся друг от друга по силе или характеру воздействия. Будет ли в таких случаях проявляться положительная индукция? Ответ на этот вопрос дает следующий опыт. У собаки был выработан условный пищевой рефлекс на сильный свет, от него отдифференцировали слабый свет. Затем сильный свет был испробован сразу после слабого. И здесь условный слюнной рефлекс, вызванный сразу после дифференцировочного, увеличился почти на 50 %. Следовательно, в данном случае положительная индукция произошла из очага торможения в том же пункте анализатора.

Таким образом, положительная индукция может проявляться в различных анализаторах и при разных отношениях тормозного очага и положительно индуцируемого рефлекса.

Отрицательная индукция из очага возбуждения в очаг торможения. Явления отрицательной индукции можно продемонстрировать в следующем опыте. У собаки образован условный пищевой рефлекс на метроном 120 ударов/мин. К этому положительному раздражителю выработана дифференцировка метронома 60 ударов/мин. Как известно, дифференцировку очень легко разрушить, если начать сопровождать дифференцировочный раздражитель подкреплением. И действительно, после того как несколько раз метроном 60 ударов/мин применили с подкармливанием, он сам начал вызывать слюноотделение. Это простой и безотказный способ уничтожения тормозного очага.

Однако при помощи некоторых средств можно задержать разрушение дифференцировки, т.е. продлить существование очагов условного торможения. В частности, таким средством оказалось применение положительных сигналов, т.е. создание очагов условного возбуждения. Это видно из следующих опытов.

Например, собаку подкармливают после каждого применения метронома с частотой 60 ударов/мин до тех пор, пока у нее не начнет сильно выделяться слюна (разрушение дифференцировки). Тогда применяют с подкреплением один раз метроном с частотой 120 ударов/мин. В результате используемый вслед за ним метроном 0 ударов/мин, который только что вызывал слюноотделение, сразу теряет свое действие. Дифференцировка при этом восстанавливается, что связано с возникновением рядом очага возбуждения. Этот очаг отрицательно индуцировал, т.е. затормозил клетки пункта метронома с частотой 60 ударов/мин, и индукционное торможение усилило остатки дифференцировочного.

Таким образом, положительный сигнал благодаря отрицательной индукции укрепляет свое дифференцирование от близких отрицательных сигналов.

Мозаика возбуждения и торможения в высших отделах нервной системы. Взаимодействие иррадиирующих и индуцированных нервных процессов создает необычно сложное и меняющееся от момента к моменту их уравновешивание и территориальное разграничение. В результате возбуждение и торможение образуют дробный рисунок подвижной мозаики, непрерывно меняющей свои очертания.

В свое время И.П. Павлов говорил о том, какую замечательную картину вспыхивающих и затухающих, непрерывно перемежающихся мерцаний мы увидели бы на поверхности мозга, если бы его возбужденные пункты светились.


Рис. 37. Перераспределение очагов активности в коре мозга кролика при выработке условного двигательного рефлекса на зрительное раздражение (по М.Н. Ливанову):

кадры киносъемки из опыта с сочетаниями вспышек света и изоритмических электрокожных раздражений лапы, яркость каждой точки на экране топоскопа отражает величину электрической активности этого пункта в данный момент (обратить внимание на постепенную концентрацию активности в районе двигательного и зрительного анализаторов)

Возбуждение и торможение (задерживание) обладают особы­ми свойствами, закономерно возникающими при осуществлении этих процессов. Иррадиация — способность возбуждения или торможения распространяться, растекаться по коре больших по­лушарий. Концентрация — противоположное свойство, т.е. спо­собность нервных процессов собираться, концентрироваться в каком-либо одном пункте. Характер иррадиации и концентра­ции зависит от силы раздражителя. И.П. Павлов указывал, что при слабом раздражении происходит иррадиация как раздражи­тельного, так и тормозного процесса, при раздражителях сред­ней силы — концентрация, а при сильных — опять иррадиация.

Под взаимной индукцией нервных процессов подразумева­ется теснейшая связь этих процессов между собой. Они посто­янно взаимодействуют, обусловливая друг друга. Подчерки­вая эту связь, Павлов образно говорил, что возбуждение родит торможение, а торможение — возбуждение.- Различают поло­жительную и отрицательную индукцию.

Указанные свойства основных нервных процессов отлича­ются определенным постоянством действия, почему получили название законов высшей нервной деятельности. Что дают эти законы, установленные на животных, для понимания физио­логической деятельности человеческого мозга? И.П. Павлов указывал, что едва ли можно оспаривать, что самые общие ос­новы высшей нервной деятельности, приуроченные к боль­шим полушариям, одни и те же как у высших животных, так и у людей, а потому элементарные явления этой деятельности должны быть одинаковыми у тех и у других. Несомненно, при­менение этих законов с поправкой на ту особую специфичес­кую надстройку, которая свойственна только человеку, а именно на вторую сигнальную систему, поможет в дальней-

шем лучше понять основные физиологические закономернос­ти, действующие и в коре больших полушарий человека.

Кора больших полушарий целостно участвует в тех или иных нервных актах. Однако степень интенсивности этого участия в тех или иных отделах коры неодинакова и зависит от того, с каким анализатором преимущественно связана актив­ная деятельность человека в данный отрезок времени. Так, на­пример, если эта деятельность на данный период по своему ха­рактеру преимущественно связана со зрительным анализато­рам, то ведущий очаг (рабочее поле) будет локализоваться в об­ласти мозгового конца зрительного анализатора. Однако это не значит, что в данный период будет работать только зритель­ный центр, а все остальные области коры будут выключены из деятельности. Повседневные жизненные наблюдения доказы­вают, что если человек занят деятельностью, преимуществен­но связанной со зрительным процессом, например чтением, то он одновременно слышит доносящиеся до него звуки, разговор окружающих и т.п. Однако эта другая деятельность — назовем ее побочной — осуществляется неактивно, как бы на заднем плане. Области коры, которые связаны с побочной деятельнос­тью, как бы покрыты "дымкой торможения", образование но­вых условных рефлексов там на какое-то время ограничено. При переходе к деятельности, связанной с другим анализато­ром (например, прослушивание радиопередачи), в коре боль­ших полушарий происходит перемещение активного поля, господствующего очага, из зрительного анализатора в слухо­вой и т.д. Чаще в коре одновременно образуется несколько ак­тивных очагов, вызванных различными по характеру внешни­ми и внутренними раздражителями. При этом эти очаги всту­пают между собой во взаимодействие, которое может устанав­ливаться не сразу ("борьба центров"). Вступившие во взаимо­действие активные центры образуют так называемое "созвез­дие центров" или функционально-динамическую систему, ко­торая на определенный период будет являться господствую­щей системой (доминантой, по Ухтомскому). При изменении деятельности данная система затормаживается, а в других об­ластях коры активизируется другая система, которая и зани­мает положение доминанты, чтобы вновь уступить место при­шедшим на смену другим функционально-динамическим об­разованиям, связанным опять-таки с новой деятельностью, обусловленной поступлением в кору новых раздражений из внешней и внутренней среды.

Такое чередование пунктов возбуждения и торможения, обусловленное механизмом взаимной индукции, сопровожда­ется формированием многочисленных цепей условных рефлек­сов и представляет основные механизмы физиологии мозга. Господствующий очаг, доминанта, является физиологическим механизмом нашего сознания. Однако этот пункт не остается на одном месте, а перемещается по коре больших полушарий в зависимости от характера деятельности человека, опосредство­ванной влиянием внешних и внутренних раздражителей.

Системность в коре больших полушарий (динамический стереотип)

Действующие на кору различные раздражения многообраз­ны по характеру своего влияния: некоторые имеют лишь ори­ентировочное значение, другие образуют нервные связи, кото­рые вначале находятся в несколько хаотическом состоянии, потом уравновешиваются тормозным процессом, уточняются и образуют определенные функционально-динамические сис­темы. Стойкость этих систем зависит от определенных усло­вий их формирования. Если комплекс действующих раздра­жений приобретает какую-то периодичность и раздражения поступают в определенном порядке в течение определенного времени, то вырабатываемая система условных рефлексов от­личается большей стойкостью. И.П. Павлов назвал эту систе­му динамическим стереотипом.

Таким образом, динамический стереотип -я- это выработан­ная уравновешенная система условных рефлексов, выполняю­щих специализированные функции. Выработка стереотипа всегда связана с определенным нервным трудом. Однако после сформирования определенной динамической системы выпол­нение функций значительно облегчено.

Значение выработанной функционально-динамической сис­темы (стереотипа) хороню известно в практике жизни. Все на­ши привычки, навыки, иногда определенные формы поведе­ния обусловлены выработанной системой нервных связей. Всякое изменение, нарушение стереотипа всегда болезненно. Каждый знает из жизни, как трудно иногда воспринимается перемена образа жизни, привычных форм поведения (ломка стереотипа), особенно пожилыми людьми.

Использование системности корковых функций исключи­тельно важно в деле воспитания и обучения детей. Разумное,

но неуклонное и систематическое предъявление ребенку ряда определенных требований обусловливает прочное формирова­ние ряда общекультурных, санитарно-гигиенических и трудо­вых навыков.

Вопрос о прочности знаний — иногда больной вопрос для школы. Знание педагогом условий, при которых формируется более стойкая система условных рефлексов, обеспечивает и прочные знания учащихся.

Нередко приходится наблюдать, как неопытный педагог, не учитывая тех возможностей, которыми обладает высшая нерв­ная деятельность учеников, особенно специальных школ, ве­дет урок неправильно. Формируя какой-либо школьный на­вык, он дает слишком много новых раздражений, причем хао­тично, без нужной последовательности, не дозируя материал и не делая необходимых повторений.

Так, например, объясняя детям правила деления много­значных чисел, такой педагог в момент объяснения вдруг от­влекается и вспоминает, что та или иная ученица не принесла справку о бодезни. Такие неуместные слова по своему характе­ру являются своеобразными экстрараздражителями: они ме­шают правильному формированию специализированных сис­тем связей, которые потом оказываются нестойкими и быстро стираются временем.

| следующая лекция ==>
Возбуждение и торможение нервных процессов | Динамическая локализация функций в коре больших полушарий

Дата добавления: 2019-07-26 ; просмотров: 494 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.