Как мышцы связаны с нервной системой


В целостном едином организме все процессы взаимосвязаны. Так, например, сокращение мышц, которое на первый взгляд кажется изолированным актом, не связанным с другими процессами, на самом деле тесно связано с нервной системой, обменом веществ, кровообращением, дыханием, выделением и другими процессами. Помня о взаимосвязи всех процессов, протекающих в организме, мы все же, изучая их, знакомимся с особенностями строения и функции каждой системы.

ТИПЫ МЫШЦ И ИХ ЗНАЧЕНИЕ В ОРГАНИЗМЕ

Вес мышцы организма делятся на две группы поперечнополосатые и гладкие. Несколько особняком стоит сердечная мышца, которая хотя относится к поперечнополосатым мышцам, но обладает характерными особенностями структуры и функции.

Рис. СТРОЕНИЕ ВОЛОКНА ПОПЕРЕЧНО-ПОЛОСАТОЙ МЫШЦЫ

Поперечнополосатые мышцы. К поперечнополосатым мышцам относятся все скелетные мышцы: конечностей, туловища, дыхательные и др.

Деятельность поперечнополосатой мускулатуры регулируется центральной нервной системой и ее ведущим отделом — корой головного мозга.

Скелетные мышцы, которые осуществляют движения нашего тела, сокращаются быстро и проводят возбуждение с большой скоростью.

Гладкие мышцы

К гладким мышцам относятся мышцы внутренних органов. Ими образован мышечный слой стенок желудка, кишечника, кровеносных сосудов, мочевого пузыря и т. д. По своим физиологическим свойствам гладкая мускулатура отличается от поперечнополосатых мышц. Сокращения гладких мышц более медленны и длительны; они могут долгое время оставаться в сокращенном состоянии. Проведение возбуждения по ним более медленное. Они обладают автоматией и сокращаются под влиянием импульсов, возникающих в нервно-мышечных элементах самих органов.

Поперечнополосатые и гладкие мышцы отличаются друг от друга не только функциональными особенностями, но и строением.

СТРОЕНИЕ МЫШЦ

Мышцы состоят йз большого количества мышечных волокон. Волокна поперечнополосатой мышцы имеют оболочку, внутри которой находится протоплазма с ядрами; внутри же прото-

плазмы от одного конца мышцы к другому проходят тонкие сократительные нити — миофибриллы. Диаметр миофибриллы не превышает 1 µ. Волокна поперечнополосатой мускулатуры имеют длину до 12 см и диаметр 10—150 µ. В каждом волокне находится группа (до 100) миофибрилл.

Миофибриллы поперечнополосатой мышцы имеют поперечную исчерченность. При рассмотрении под микроскопом мышечное волокно оказывается разделенным на чередующиеся темные и светлые диски (рис. ). Ширина их почти одинакова, и светлые диски равны темны м. Внутри мышечного волокна светлые и темные диски отдельных миофибрилл совпадают, образуя как бы темные и светлые полосы. Сокращение мышц обусловлено сокращением темного диска; светлые же диски и остальная часть мышечного волокна следуют за темными дисками.

Гладкие мышцы по микроскопическому строению отличаются от поперечнополосатых мышц тем, что при рассмотрении под микроскопом в их миофибриллах чередующихся темных и светлых дисков не наблюдается. Волокна гладкой мускулатуры сравнительно коротки; их максимальная длина не превышает 500 µ, но встречаются волокна длиной в 15 µ.

Итак, поперечнополосатая мускулатура отличается от гладкой мускулатуры как строением, так и особенностями физиологических процессов.

ОСНОВНЫЕ СВОЙСТВА МЫШЦ

Мышцы, как и любая живая ткань (железа, нерв), обладают возбудимостью, т. е. свойством при раздражении приходить в состояние возбуждения, в деятельное состояние. Возбуждением называется сложный процесс, который возникает в возбудимой ткани под влиянием раздражений. Заключается оно в основном в изменении хода процессов обмена веществ и возникновения биоэлектрических явлений.


Возбуждение вызывает характерную для возбудимой ткани деятельность. В отношении мышцы характерной деятельностью является сокращение. Таким образом, особым свойством мышцы является сократимость.

Рис. 2 Икроножная мышца лягушки 1- Бедренная кость, 2- седалищный нерв, 3- икроножная мышца, 4- ахиллово сухожилие

Для изучения деятельности мышцы и нерва обычно пользуются изолированной мышцей с нервом — нервно-мышечным препаратом. Для этой цели наиболее удобной оказалась икроножная мышца лягушки, связанная с седалищных нервов (рис. 2). На этом нервно-мышечном препарате ученые в течение столетий изучали и устанавливали основные закономерности деятельности мышцы и нервов.

Такой нервно-мышечный препарат помещают обычно в специальную камеру, в которой поддерживается определенная влажность. Время от времени для предохранения от высыхания как нерв, так и мышцу смачивают физиологическим раствором.

Для исследования обычно пользуются нервно-мышечным препаратом холоднокровных животных, так как сохранить их жизнедеятельность в течение многих часов не представляет больших затруднений.

Использовать мышцы и нервы теплокровных животных значительно сложнее. Для наблюдения и изучения их деятельности требуются более сложные условия, но все же закономерности, обнаруженные на нервно-мышечных препаратах холоднокровных, были проверены и изучены в дальнейшем на мышцах и нервах теплокровных животных.

То обстоятельство, что нервно-мышечный препарат представляет собой мышцу, соединенную с нервом, создает возможность вызвать возбуждение мышцы раздражением

В таком случае возбуждение, возникшее в нерве, поступит в мышцу и вызовет ее сокращение. Это приближает опыт к условиям нормального поступления нервного импульса в мышцу.

Для того чтобы вызвать возбуждение, применяют разные раздражители.

Статья на тему Мышцы человека


Нервная система

Раздражимость или чувствительность – характерная черта всех живых организмов, означающая их способность реагировать на сигналы или раздражители.

Сигнал воспринимается рецептором и передается с помощью нервов и (или) гормонов к эффектору, который осуществляет специфическую реакцию или ответ.

Животные имеют две взаимосвязанные системы координации функций – нервную и гуморальную (см. таблицу).

Нервная регуляция

Гуморальная регуляция

Электрическое и химическое проведение (нервные импульсы и нейромедиаторы в синапсах)

Химическое проведение (гормоны) по КС

Быстрое проведение и ответ

Более медленное проведение и отстроченный ответ (исключение - адреналин)

В основном кратковременные изменения

В основном долговременные изменения

Специфический путь распространения сигнала

Неспецифический путь сигнала (с кровью по всему телу)к специфической мишени

Ответ часто узко локализован (например, один мускул)

Ответ может быть крайне генерализованным (например, рост)

Нервная система состоит из высокоспециализированных клеток со следующими функциями:

- восприятие сигналов – рецепторы;

- преобразование сигналов в электрические импульсы (трансдукция);

- проведение импульсов к другим специализированным клеткам – эффекторам, которые получив сигнал, дают ответ;

Связь между рецепторами и эффекторами осуществляют нейроны .

Нейрон – это структурно – функциональная единица НС.


Нейрон — электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Нейрон имеет сложное строение и узкую специализацию. Нервная клетка содержит ядро, тело клетки и отростки (аксоны и дендриты).

В головном мозге человека насчитывается около 90—95 миллиардов нейронов. Нейроны могут соединяться друг с другом, образуя биологические нейронные сети.

Нейроны разделяют на рецепторные, эффекторные и вставочные.

Тело нейрона: ядро (с большим количеством ядерных пор) и органеллы (ЭПС, рибосомы, аппарат Гольджи, микротрубочки), а также из отростков (дендриты и аксоны).

Нейроглия – совокупность вспомогательных клеток НС; составляет 40% общего объема ЦНС.

  • Аксон – длинный отросток нейрона; проводит импульс от тела клетки; покрыт миелиновой оболочкой (образует белое вещество мозга)
  • Дендриты - короткие и сильно разветвлённые отростки нейрона; проводит импульс к телу клетки; не имеют оболочки


Важно! Нейрон может иметь несколько дендритов и обычно только один аксон.

Важно! Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.

  • чувствительные – передают возбуждение от органов чувств в спинной и головной мозг
  • двигательные – передают возбуждение от головного и спинного мозга к мышцам и внутренним органам
  • вставочные – осуществляют связь между чувствительными и двигательным нейронами, в спинном и головном мозге

Нервные отростки образуют нервные волокна.

Пучки нервных волокон образуют нервы.

Нервы – чувствительные (образованы дендритами), двигательные (образованы аксонами), смешанные (большинство нервов).

Синапс – это специализированный функциональный контакт между двумя возбудимыми клетками, служащий для передачи возбуждения


У нейронов синапс находится между аксоном одной клетки и дендритом другой; при этом физического контакта не происходит – они разделены пространством - синаптической щель.

Нервная система:

  • периферическая (нервы и нервные узлы) – соматическая и автономная
  • центральная (головной и спинной мозг)

В зависимости от характера иннервации НС:

  • Соматическая – управляет деятельностью скелетной мускулатуры, подчиняется воле человека
  • Вегетативная (автономная) – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека

Соматическая нервная система часть нервной системы человека, представляющая собой совокупность чувствительных и двигательных нервных волокон, иннервирующих мышцы (у позвоночных — скелетные), кожу, суставы.

Она представляет часть периферической нервной системы, которая занимается доставкой моторной (двигательной) и сенсорной (чувственной) информации до центральной нервной системы и обратно. Эта система состоит из нервов, прикрепленных к коже, органам чувств и всем мышцам скелета.

  • спинномозговые нервы – 31 пара; связаны со спинным мозгом; содержат как двигательные, так и сенсорные нейроны, поэтому смешанные;
  • черепномозговые нервы – 12 пар; отходят от головного мозга, иннервируют рецепторы головы (за исключением блуждающего нерва – иннервирует сердце, дыхание, пищеварительный тракт); бывают сенсорными, моторными (двигательными) и смешанными

Рефлекс – это быстрый автоматический ответ на раздражитель, осуществляемый без осознанного контроля головного мозга.

Рефлекторная дуга – путь, проходимый нервными импульсами от рецептора до рабочего органа.

  • в ЦНС – по чувствительному пути;
  • от ЦНС – к рабочему органу – по двигательному пути

- рецептор (окончание дендрита чувствительного нейрона) – воспринимает раздражение

- чувствительное (центростремительное) нервное волокно – передает возбуждение от рецептора к ЦНС

- нервный центр – группа вставочных нейронов, расположены на разных уровнях ЦНС; передает нервные импульсы с чувствительных нейронов на двигательные

- двигательное (центробежное) нервное волокно – передает возбуждение от ЦНС к исполнительному органу


Простая рефлекторная дуга: два нейрона – чувствительный и двигательный (пример – коленный рефлекс)

Сложная рефлекторная дуга: три нейрона – чувствительный, вставочный, двигательный (благодаря вставочным нейронам происходит обратная связь между рабочим органом и ЦНС, что позволяет вносить изменения в работу исполнительных органов)

Вегетативная (автономная) нервная система – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека.

Делится на симпатическую и парасимпатическую.


Обе состоят из вегетативных ядер (скопления нейронов, лежащих в спинном и головном мозге), вегетативных узлов (скопления нейронов, нейронов, за пределами НС), нервных окончаний (в стенках рабочих органов)

Путь от центра до иннервируемого органа состоит из двух нейронов (в соматической - один).

Место выхода из ЦНС

От спинного мозга – в шейный, поясничный, грудной отделы

От ствола головного мозга и ствола крестцового отдела спинного мозга

Местоположение нервного узла (ганглия)

По обе стороны спинного мозга, за исключением нервных сплетений (непосредственно в этих сплетениях)

В иннервируемых органах или вблизи них

Медиаторы рефлекторной дуги

В предузловом волокне –

в послеузловом - норадреналин

В обоих волокнах - ацетилхолин

Названия основных узлов или нервов

Солнечное, легочное, сердечное сплетения, брыжеечный узел

Общие эффекты симпатической и парасимпатической НС на органы:

  • Симпатическая НС – расширяет зрачки, угнетает слюноотделение, повышает частоту сокращений, расширяет сосуды сердца, расширяет бронхи, усиливает вентиляцию легких, угнетает перистальтику кишечника, угнетает секрецию пищеварительных соков усиливает потоотделение, удаляет с мочой лишний сахар; общий эффект – возбуждающий, повышает интенсивность обмена, снижает порог чувствительности; активизирует во время опасности, стресса, контролирует реакции на стресс
  • Парасимпатическая НС – сужает зрачки, стимулирует слезотечение, уменьшает частоту сердечных сокращений, поддерживает тонус артериол кишечника, скелетных мышц, снижает кровяное давление, уменьшает вентиляцию легких, усиливает перистальтику кишечника, расширяет артериолы в коже лица, увеличивает выделение с мочой хлоридов; общий эффект – тормозящий, снижает или не влияет на интенсивность обмена, восстанавливает порог чувствительности; доминирует в состоянии покоя, контролирует функции в повседневных условиях

Центральная нервная система (ЦНС) – обеспечивает взаимосвязь всех частей НС и их координированную работу

У позвоночных ЦНС развивается из эктодермы (наружного зародышевого листка)

ЦНС – 3 оболочки:

- твердая мозговая (dura mater) - снаружи;

- мягкая мозговая оболочка (pia mater) – прилегает непосредственно к мозгу.

Головной мозг расположен в мозговом отделе черепа; содержит

- белое вещество - проводящие пути между головным мозгом и спинным, между отделами головного мозга

- серое вещество - в виде ядер внутри белого вещества; кора покрывающая большие полушария и мозжечок

Масса головного мозга – 1400-1600 грамм.


5 отделов:

  • продолговатый мозг– продолжение спинного мозга; центры пищеварения, дыхания, сердечной деятельности, рвота, кашель, чихание, глотание, слюноотделение, проводящая функция
  • задний мозг – состоит из варолиевого моста и мозжечка; варолиев мост связывает мозжечок и продолговатый мозг с большими полушариями; мозжечок регулирует двигательные акты (равновесие, координация движений, поддержание позы)
  • промежуточный мозг– регуляция сложных двигательных рефлексов; координация работы внутренних органов; осуществление гуморальной регуляции;
  • средний мозг – поддержание тонуса мыщц, ориентировочные, сторожевые, оборонительные рефлексы на зрительные и звуковые раздражители;
  • передний мозг (большие полушария) – осуществление психической деятельности (память, речь, мышление).

Промежуточный мозг включает таламус, гипоталамус, эпиталамус

Таламус – подкорковый центр всех видов чувствительности (кроме обонятельного), регулирует внешнее проявление эмоций (мимика, жесты, изменение пульса, дыхания)

Гипоталамус – центры вегетативной НС, обеспечивают постоянство внутренней среды, регулируют обмен веществ, температуру тела, чувство жажды, голода, насыщения, сна, бодрствования; гипоталамус контролирует работу гипофиза

Эпиталамус – участие в работе обонятельного анализатора

Передний мозг имеет два больших полушария: левое и правое

  • Серое вещество (кора) находится сверху полушарий, белое – внутри
  • Белое вещество – это проводящие пути полушарий; среди него – ядра серого вещества (подкорковые структуры)

Кора больших полушарий – слой серого вещества, 2-4 мм в толщину; имеет многочисленные складки, извилины

Каждое полушарие разделено бороздами на доли:

- лобная – вкусовая, обонятельная, двигательная, кожно- мускульная зоны;

- теменная – двигательная, кожно- мускульная зоны;

- височная – слуховая зона;

- затылочная – зрительная зона.

Важно! Каждое полушарие отвечает за противоположную сторону тела.

  • Левое полушарие – аналитическое; отвечает за абстрактное мышление, письменную и устную речь;
  • Правое полушарие – синтетическое; отвечает за образное мышление.

Спинной мозг расположен в костном позвоночном канале; имеет вид белого шнура, длина 1м; на передней и задней сторонах есть глубокие продольные борозды

В самом центре спинного мозга – центральный канал, заполненный спинномозговой жидкостью.

Канал окружен серым веществом (имеет вид бабочки), который окружен белым веществом.

  • В белом веществе – восходящие (аксоны нейронов спинного мозга) и нисходящие пути (аксоны нейронов головного мозга)
  • Серое вещество напоминает контур бабочки, имеет три вида рогов.

- передние рога – в них расположены двигательные нейроны (мотонейроны) – их аксоны иннервируют скелетные мышцы

- задние рога – содержат вставочные нейроны – связывают чувствительные и двигательные нейроны

- боковые рога – содержат вегетативные нейроны – их аксоны идут на периферию к вегетативным узлам

Спинной мозг – 31 сегмент; от каждого сегмента отходит 1 пара смешанных спинномозговых нервов, имеющих по паре корешков:

- передний (аксоны двигательных нейронов);

- задний (аксоны чувствительных нейронов.

Функции спинного мозга:

- рефлекторная – осуществление простых рефлексов (сосудодвигательных, дыхательных, дефекации, мочеиспускания, половых);

- проводниковая – проводит нервные импульсы от и к головному мозгу.


Повреждение спинного мозга приводит к нарушению проводниковых функций, вследствие чего – паралич.

Физические упражнения, особенно силовые тренировки, важны для здорового функционирования мозга и нервной системы. Ряд исследований связывают силу мышц ног, в частности, с различными когнитивными преимуществами. Исследования показывают, что всякий раз, когда вы не можете выполнять упражнения с нагрузкой, вы не только теряете мышечную массу, но на химический состав вашего тела производится воздействие таким образом, что состояние нервной системы и мозга также ухудшается.


Хотя тренировки в первую очередь ценятся за их влияние на физическое здоровье, силу и подвижность, имеются многочисленные свидетельства того, что упражнения, особенно силовые, так же важны для здорового функционирования мозга и нервной системы. Ряд исследований, о которых я расскажу ниже, связывают мышечную силу и, в частности, силу ног, с различными когнитивными преимуществами.

Важность упражнений на ноги для здоровья мозга и нервной системы

Эта захватывающая связь была вновь продемонстрирована в недавнем исследовании, опубликованном в Frontiers in Neuroscience, которое показывает, что здоровье нервной системы зависит как от сигналов от ваших крупных мышц ног, так и от сигналов от мозга к мышцам. Другими словами, это палка о двух концах, и оба из них одинаково важны.

Другими словами, когда вы не в состоянии выполнять упражнения с нагрузкой, вы не только теряете массу из-за мышечной атрофии, это влияет на химию вашего тела таким образом, что работа нервной системы и мозга также начинает ухудшаться.

Чтобы прийти к такому выводу, исследователи не позволяли мышам использовать задние лапы в течение 28 дней. Однако животные все еще могли использовать передние лапы и нормально питаться и умываться, не испытывая стресса.

По прошествии 28 дней была исследована субвентрикулярная зона мозга животных. Это область, ответственная за здоровье нервных клеток. Примечательно, что количество недифференцированных нейронных стволовых клеток, которые могут развиваться как в нейроны, так и в другие клетки головного мозга, уменьшилось на 70 процентов у животных, которые не использовали свои задние лапы, по сравнению с контрольной группой, которой не создавались препятствия.

Нейроны и олигодендроциты (глиальные клетки, которые изолируют нервные клетки) также не смогли полностью созреть в группе воздействия.

Более того, при отсутствии использования мышц ног, на два гена было оказано неблагоприятное воздействие. Один из них, известный как CDK5Rap1, играет важную роль в здоровье и работе митохондрий, что является еще одной причиной для выполнения упражнений с нагрузкой.

Как вы, возможно, уже знаете, здоровые, хорошо функционирующие митохондрии имеют решающее значение для оптимального здоровья, а митохондриальная дисфункция является основной причиной практически всех хронических заболеваний, включая нейродегенерацию, поскольку вашему мозгу требуется больше энергии, чем любому другому органу - около 20 процентов энергии, вырабатываемой во всем теле.

Действительно, подъем веса в противовес силе тяжести является важнейшим компонентом жизни, который позволяет человеческому телу и мозгу функционировать оптимально.

Предыдущие исследования показали, что физические упражнения являются ключевым способом защиты, поддержания и укрепления здоровья мозга и оптимизации когнитивных способностей. Они даже помогают бороться с деменцией.

За связью тела с мозгом стоит множество различных механизмов. Одним, возможно, ключевым фактором является то, как физические упражнения влияют на нейротрофический фактор мозга (BDNF), присутствующий как в вашем мозге, так и в мышцах.

Упражнения изначально стимулируют выработку белка под названием FNDC5. Этот белок, в свою очередь, запускает производство BDNF, который замечательно омолаживает мозг и мышцы. BDNF помогает сохранить существующие клетки головного мозга, активировать стволовые клетки для преобразования в новые нейроны (нейрогенез) и способствует фактическому росту мозга, особенно в области гиппокампа, связанной с памятью.

В нервно-мышечной системе BDNF защищает от деградации нейромотор, критический элемент в мышцах. Без нейромотора ваши мышцы похожи на двигатель без зажигания. Нейромоторная деградация является частью процесса, объясняющего возрастную атрофию мышц.

Еще один механизм связан с веществом, называемым β-гидроксибутират, который вырабатывается печенью, когда метаболизм оптимизирован для сжигания жира в качестве основного топлива. Когда уровень сахара в крови снижается, β-гидроксибутират служит альтернативным источником энергии. β-гидроксибутират также является ингибитором гистондеацетилазы, которая ограничивает выработку BDNF.

Итак, ваше тело, по-видимому, разработано для улучшения выработки BDNF с помощью ряда различных путей в ответ на физические нагрузки, а перекрестная связь BDNF между мышцами и мозгом помогает объяснить, почему физическая тренировка может оказать такое благоприятное воздействие на мышцы и мозговую ткань.

Это в буквальном смысле помогает предотвратить и даже обратить вспять процесс распада мозга, а также предотвратить и обратить вспять процесс распада мышц при старении. Упражнения также помогают защитить и улучшить работу вашего мозга:

  • Улучшая и увеличивая приток крови (оксигенацию) к вашему мозгу
  • Увеличивая производства защищающих нервные клетки соединений
  • Уменьшая количество вредных бляшек в мозге


Вот несколько исследований, демонстрирующих захватывающую связь между мышцами и мозгом:

Исследование 2016 года в журнале Gerontology показало, что работа мышц ног помогает поддерживать когнитивные функции по мере старения. По мнению авторов, простое увеличение продолжительности ходьбы может сохранить работу мозга в пожилом возрасте. В исследовании приняли участие 324 двойняшки женского пола в возрасте от 43 до 73 лет. Когнитивные функции, такие как обучение и память, были проверены в самом начале и в конце исследования.

Интересно, что сила ног оказалась лучшим показателем здоровья мозга, чем любой другой фактор образа жизни, который они рассмотрели. Соответственно, близнец с наибольшей силой ног поддерживал более высокое когнитивное функционирование с течением времени по сравнению с более слабым близнецом. Более сильный близнец из пары также испытывал меньше возрастных изменений мозга с течением времени.

Исследование, проведенное в штате Джорджия, показало, что 20-минутные силовые тренировки улучшают долговременную память примерно на 10 процентов. В этом эксперименте 46 добровольцев были случайным образом распределены в одну из двух групп - одну активную и одну пассивную. Изначально все участники просмотрели серию из 90 изображений. После этого их попросили вспомнить как можно больше из них.Затем активной группе было предложено сделать 50 разгибаний ног при максимальном усилии с помощью тренажера сопротивления. Пассивных участников попросили позволить машине двигать ногой, не прикладывая никаких усилий. Через два дня участники вернулись в лабораторию, где им показали 90 оригинальных фотографий и 90 новых.

Другое исследование, опубликованное в 2016 году, также обнаружило связь между физическими упражнениями и улучшенным сохранением долговременной памяти. Здесь они обнаружили, что тренировки через четыре часа после изучения чего-то нового помогают запомнить то, что вы только что изучили в долгосрочной перспективе. Любопытно, что этот эффект не был обнаружен, когда упражнения выполнялись сразу после обучения.

Почему эта четырехчасовая задержка способствует сохранению памяти, до сих пор неясно, но, похоже, это как-то связано с выделением катехоламинов, естественных химических веществ в вашем организме, которые, как известно, улучшают консолидацию памяти. К ним относятся дофамин и норадреналин. Одним из способов повысить уровень катехоламинов является физическая нагрузка, и отсроченная тренировка является частью уравнения.

Исследования на животных также показали, что физические упражнения активируют и стимулируют рост нейронов в гиппокампе, который принадлежит к древней части вашего мозга, известной как лимбическая система, и играет важную роль в консолидации информации из краткосрочной в долговременную память, а также в пространственной навигации.

В одном из таких исследований у тренирующихся мышей выросло в среднем 6000 новых клеток головного мозга гиппокампа на каждый кубический миллиметр пробы ткани. Как и ожидалось, мыши также показали значительное улучшение вспоминания. Похожим образом исследование, проведенное в 2010 году, показало, что упражнения помогли обезьянам освоить новые задачи в два раза быстрее, чем не тренирующимся обезьянам.

В ряде других исследований также изучалось влияние физических упражнений на работу мозга и IQ у студентов и сотрудников.

Главные моменты исследования включают в себя вывод о том, что 40 минут ежедневных упражнений повышают IQ в среднем почти на 4 балла среди учащихся начальной школы; среди шестиклассников наиболее тренированные учащиеся набрали на 30% больше, чем средние по показателям, а менее тренированные - на 20% ниже; среди старшеклассников те, кто занимался энергичными видами спорта, имели 20-процентное улучшение оценок по математике, естественным наукам, английскому языку и социологии; ученики, которые тренировались до занятий, улучшили результаты теста на 17%, а те, кто тренировался в течение 40 минут, улучшили оценку на целый балл.

Работники, которые регулярно тренируются, также на 15 процентов более эффективны, чем те, кто этого не делает, а это значит, что работнику с хорошей физической подготовкой нужно работать всего 42,5 часа в неделю, чтобы выполнять ту же работу, которую средний работник делает за 50.

  • Нормализация уровня инсулина и профилактика инсулинорезистентности

Физические упражнения являются одним из наиболее эффективных способов нормализации уровня инсулина и снижения риска инсулинорезистентности. Это не только снижает риск развития диабета, но и помогает защитить когнитивное здоровье, поскольку диабет связан с повышением риска развития болезни Альцгеймера на 65 процентов. На самом деле инсулин играет важную роль в передаче сигналов головного мозга, и когда она нарушается, возникает деменция.

  • Улучшение притока крови и кислорода к мозгу

Вашему мозгу необходим значительный запас кислорода для правильной работы, что помогает объяснить, почему то, что полезно для вашего сердца и сердечно-сосудистой системы, также полезно для вашего мозга. Усиленный кровоток, возникающий в результате упражнений, позволяет вашему мозгу почти сразу же начать работать лучше. В результате вы, как правило, чувствуете себя более сосредоточенным после тренировки, что может повысить вашу производительность.

  • Уменьшение образования бляшек

В одном исследовании на животных у тренирующихся мышей было обнаружено значительно меньше повреждающих бляшек и кусочков бета-амилоидных пептидов, связанных с болезнью Альцгеймера, и, изменяя способ, которым повреждающие белки находятся внутри вашего мозга, физические упражнения могут помочь замедлить нейродегенерацию.

  • Уменьшение костного морфогенетического белка (BMP)

BMP замедляет создание новых нейронов, тем самым снижая нейрогенез. Если у вас высокий уровень BMP, ваш мозг становится все более вялым. Упражнения уменьшают воздействие BMP, тем самым позволяя взрослым стволовым клеткам выполнять свои жизненно важные функции поддержания гибкости мозга. В исследованиях на животных мыши с доступом к колесу для бега снизили BMP в своем мозге вдвое за одну неделю.

Повышение уровня белка noggin — Упражнения также приводят к заметному увеличению уровня другого белка мозга, называемого noggin, антагониста BMP. Таким образом, физические упражнения не только уменьшают пагубные последствия BMP, но и одновременно усиливают и более полезный noggin. Это сложное взаимодействие между BMP и noggin, по-видимому, является мощным фактором, который помогает обеспечить пролиферацию и молодость нейронов.

  • Уменьшение воспаления

Упражнения снижают уровень воспалительных цитокинов, связанных с хроническим воспалением и ожирением, которые могут негативно повлиять на работу вашего мозга.
Увеличение количества повышающих настроение нейромедиаторов — Упражнения также способствуют увеличению уровня гормонов естественного улучшения настроения и нейротрансмиттеров, связанных с контролем настроения, включая эндорфины, серотонин, дофамин, глутамат и ГАМК.

  • Метаболизация стрессовых химических веществ

Исследователи также выяснили механизм, с помощью которого физические упражнения помогают снизить стресс и связанную с этим депрессию, которые являются факторами риска развития деменции и болезни Альцгеймера. Хорошо тренированные мышцы имеют более высокий уровень фермента, который помогает метаболизировать стрессовое химическое вещество, называемое кинуренин. Результаты показывают, что тренировка мышц помогает избавить организм от вредных химических веществ, вызывающих стресс.опубликовано econet.ru.

Автор Джозеф Меркола

Понравилась статья? Напишите свое мнение в комментариях.
Подпишитесь на наш ФБ:

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.