Как нервная система регулирует работу дыхательной системы

Регуляция дыхания: дыхательный центр, рефлекторная и гуморальная регуляция.

Регуляция дыхания нервной системой

Регуляция дыхания направлена на сохранение газового гомеостаза крови путём изменения паттерна дыхания (соотношение частоты, глубины, времени вдоха и выдоха). Главная цель регуляции дыхания заключается в установлении соответствия легочной вентиляции метаболическим потребностям организма.

Содержание кислорода и особенно углекислого газа в крови поддержи­ваются на относительно постоянном уровне. Нормальное содержание кислорода в организме называется нормоксия, недостаток кислоро­да в организме – гипоксия, снижение концентрации кислорода в крови – гипоксемия. Увеличение напряжения кислорода в крови назы­вается гипероксия. Нормальное содержание углекислого газа крози называется нормокапния, повышение содержания углекислого газа — гиперкапния, а снижение его содержания -гипокапния.

Нормальное дыхание в состоянии покоя называется эйпноэ. Гиперкапния, а также снижение величины рН крови (ацидоз) сопровождаются увеличением вентиляции легких - гиперпноэ,что приво­дит к выделению из организма избытка углекислого газа. Увеличе­ние вентиляции легких происходит за счет увеличения глубины и частоты дыхания.

Регуляцию обеспечивают нервные и гуморальные механизмы. Имеется два контура регуляции: внешний, который функционирует путём изменения паттерна дыхания (глубина и частота дыхания), ивнутренний, включающий сердечно-сосудистую систему, систему крови, кислородную ёмкость крови, органы выделения.

Ритм и глубина дыхания регулируются дыхательным центром, который включает нейроны спинного, продолговатого мозга, моста, гипоталамуса, коры больших полушарий.

Импульсы, поступающие от центральных и периферических хеморецепторов, являются необходимым условием периодической активности нейронов дыхательного центра и соответствия вентиляции легких газовому составу крови. Последний является жесткой константой внутренней среды организма и поддерживается по принципу саморегуляции путем формирования функциональной системы дыхания. Системообразующим фактором являются газо­вые константы крови. Любые их изменения являются стимулами для возбуждения рецепторов, расположенных в альвеолах легких, в со­судах, во внутренних органах и т. д. Информация от рецепторов по­ступает в ЦНС где осуществляется ее анализ и синтез, на основе которых формируются аппараты реакций. Их совокупная деятельность приводит к восстановлению газовых констант крови. В про­цесс восстановления констант включаются не только органы дыхания (особенно ответственные за изменение глубины и частоты дыхания), но и органы кровообращения, выделения и другие, пред­ставляющие в совокупности внутреннее звено саморегуляции. При необходимости включается и внешнее звено в виде определенных поведенческих реакций, направленных на достижение общего полезного результата - восстановление газовых констант крови.

Опытыс перерезкой ствола мозга на различных уровнях показали, что перерезки выше моста сохраняют самопроизвольное ритмичное дыхание при нахождении животного в состоянии физического покоя. Попытка животного встать сопровождается одышкой. При отделении моста от продолговатого мозга дыхание остается ритмичным, однако возрастает глубина и нарушается плавность смены выдоха вдохом. Разрушение структур продолговатого мозга и отделение его от спинного мозга полностью прекращают дыхание и приводят к гибели животных. Пересечение спинного мозга выше уровня С3 – С5 сохраняет диафрагмальное дыхание. Таким образом было установлено, что структуры продолговатого мозга имеют жизненно-важное значение для осуществления дыхания, а варолиевого моста для плавной смены фаз дыхательного цикла.

Ритмичное чередование вдоха и выдоха обусловлено взаимодействием различных групп нервных клеток ствола мозга. Одновременная регистрация активности нейронов и фаз дыхательного ритма позволила установить локализацию нейронов, имеющих отношение к регуляции дыхания. Выделено два основных типа дыхательных нейронов: инспираторные, которые возбуждаются в фазе вдоха, и экспираторные - в фазе выдоха. Скопление инспираторных нейронов образует дорсальную группу вблизи ядра одиночного тракта и вентральную - вблизи обоюдного ядра и в шейных сегментах С1-2. Аксоны инспираторных бульбоспинальных нейронов дорсальной группы направляются в шейные сегменты спинного мозга и образуют синапсы с мотонейронами диафрагмального ядра, они непосредственно управляют сокращениями диафрагмы. Экспираторные нейроны располагаются около обоюдного ядра между обеими зонами инспираторных клеток, а также ростральнее области заднего ядра лицевого нерва.

Нейроны дорсальной дыхательной группы относятся к поздним и полным инспираторным. Они получают афферентную информацию от рецепторов растяжения по волокнам блуждающего нерва, центры которого связаны с отделами дыхательного центра и ЦНС. Эфферентно они связаны с дыхательными нейронами спинного мозга.

Нейроны вентральной дыхательной группы локализованы у обоюдного ядра или ядра блуждающего нерва. Подразделяются на ростральную и каудальную части. Ростральная часть состоит из нейронов ранних, полных, поздних постинспираторных. Ранние постинспираторные нейроны обозначаются как проприобульбарные. Их аксоны контактируют только с другими типами дыхательных нейронов. Часть полных и поздних инспираторных нейронов связана с дыхательными нейронами спинного мозга.

Каудальная часть вентральной дыхательной группы состоит только из экспираторных нейронов, которые связаны с мотонейронами спинного мозга, иннервирующих экспираторные мышцы – внутренние межреберные и мышцы брюшной стенки.

Комплекс Бетцингера содержит экспираторные нейроны, которые связаны только с другими нейронами дыхательного центра, синхронизируют левую и правую половины дыхательного центра.

Респираторно-связанные нейроны иннервируют мышцы верхних дыхательных путей и гортани.

В Варолиевом мосту локализованы медиальное парабрахиальное ядро и ядро Шатра. В первом содержатся инспираторные, экспираторные и фазово-переходные нейроны, во втором – инспираторные.

Дыхательный цикл, задаваемый центральными нервными структурами, состоит из 3-х фаз:

1) Инспирации (вдоха).

2) Постинспирации. По окончании вдоха инспираторные мышцы остаются на некоторое время сокращенными, затем постепенно расслабляются. Объем воздуха, поступивший при вдохе, на какое-то время задерживается, а потом пассивно выдыхается.

3) Последняя фаза дыхательного цикла - активная экспирация, обеспечивается сокращением экспираторных мышц.

Выделены следующие типы дыхательных нейронов:

1) Поздние экспираторные нейроны. Импульсация в них возрастает в фазу экспирации.

2) Постинспираторные нейроны. Частота импульсации быстро увеличивается, затем медленно снижается в фазе постинспирации.

3) Ранние инспираторные нейроны. Частота импульсации быстро возрастает, затем медленно снижается в фазе инспирации.

4) Полные инспираторные нейроны с медленно нарастающей импульсацией в фазе инспирации.

5) Поздние инспираторные нейроны. Дают вспышку импульсации в конце фазы инспирации.

6) Бульбоспинальные инспираторные нейроны. Частота импульсации нарастает в фазе инспирации и снижается в фазе постинспирации.

Существуют также ретикулярные нейроны, в работе которых нет четкой связи с периодами вдоха и выдоха, но они необходимы для обеспечения активности дыхательных нейронов, участвуют в переработке информации, передаваемой от периферии и от центров головного мозга, и согласуют активность дыхательного центра с активностью других нервных центров.

Дыхательные нейроны обладают автоматией, т.е. способностью спонтанно возбуждаться под влиянием процессов, происходящих в них самих. Но эта автоматия имеет свои особенности:

1. Она постоянно поддерживается афферентной импульсацией, которая поступает в ретикулярные нейроны от различных рецепторов.

2. Зависит от взаимодействия нейронов дыхательного центра.

3. Может управляться произвольно.

4. Автоматией обладают только инспираторные нейроны.

Афферентная импульсация от периферических рецепторов и высших центральных структур приводит к тонической активации ретикулярной формации. Под влиянием тонических возбуждений от ретикулярной формации разряжаются полные инспираторные нейроны с медленно нарастающей импульсацией и через бульбоспинальные инспираторные нейроны передают импульсацию на мотонейроны инспираторных мышц. Почти до самого окончания фазы инспирации поздние инспираторные нейроны заторможены ранними инспираторными нейронами. Прекращение этого торможения приводит к запуску следующей фазы дыхательного цикла, при которой возбуждаются постинспираторные нейроны, оказывающие тормозное влияние на все остальные нейроны. При этом дыхательный цикл как бы временно прекращается. Затем возникает разряд поздних экспираторных нейронов, что приводит к активации мотонейронов экспираторных мышц. Когда тормозное влияние экспираторных нейронов ослабевает, начинается следующий дыхательный цикл.

Между центрами вдоха и выдоха существуют реципрокные взаимоотношения, регулируемые пневмотаксическим центром Варолиева моста. При возбуждении инспираторных нейронов возбуждается пневмотаксический центр, который стимулирует экспираторные нейроны, а они, в свою очередь, тормозят инспираторные нейроны (мост оказывает тормозное влияние на нейроны, отвечающие за вдох).

Существует теория смены фаз дыхательного цикла, базирующаяся на представлении о различной возбудимости инспираторных и экспираторных нейронов и о влиянии на их возбудимость импульсации от рецепторов. Нейроны экспираторного и инспираторного отделов дыхательного центра продолговатого мозга обладают различной возбудимостью и лабильностью. Возбудимость инспираторного отдела выше, поэтому его нейроны возбуждаются при действии малой частоты им­пульсов, приходящих от рецепторов легких. Но по мере увеличения размеров альвеол во время вдоха, частота импульсов от рецепторов легких все больше и больше нарастает и на высоте вдоха она настолько велика, что становится пессимальной для нейронов центра вдоха, но оптимальной для нейронов центра выдоха. Поэтому нейроны центра вдоха тормозятся, а нейроны центра выдоха возбуждаются. Таким образом, регуляция смены вдоха и выдоха осуществляется той частотой, которая идет по афферентным нервным волокнам от рецепторов легких к нейронам дыхательного центра. Однако, гипотеза пессимального механизма смены фазы вдоха фазой вы­доха не нашла прямого экспериментального подтверждения в опытах с регистрацией клеточной активности структур дыхательного центра.

Обычно человек не замечает, как он дышит, потому что процесс этот регулируется независимо от его воли. В какой-то мере, однако, дыхание можно регулировать сознательно, о чем мы и поговорим ниже.

Непроизвольную регуляцию дыхания осуществляет дыхательный центр, находящийся в продолговатом мозге (одном из отделов заднего мозга). Вентральная (нижняя) часть дыхательного центра ответственна за стимуляцию вдоха; ее называют центром вдоха (инспнра-торным центром). Стимуляция этого центра увеличивает частоту и глубину вдоха. Дорсальная (верхняя) часть и обе латеральные (боковые) тормозят вдох и стимулируют выдох; они носят собирательное название центра выдоха (экспираторного центра).

Дыхательный центр связан с межреберными мышцами межреберными нервами, а с диафрагмой — диафрагмальными. Бронхиальное дерево (совокупность бронхов и бронхиол) иннервируется блуждающим нервом. Ритмично повторяющиеся нервные импульсы, направляющиеся к диафрагме и межреберным мышцам обеспечивают осуществление вентиляционных движений.

Расширение легких при вдохе стимулирует находящиеся в бронхиальном дереве рецепторы растяжения (проприоцепторы) и они посылают через блуждающий нерв все больше и больше импульсов в экспираторный центр. Это на время подавляет инспираторный центр и вдох. Наружные межреберные мышцы теперь расслабляются, эластично сокращается растянутая легочная ткань — происходит выдох. После выдоха рецепторы растяжения в бронхиальном дереве более уже не подвергаются стимуляции. Поэтому экспираторный центр отключается и вдох может начаться снова.


Механизмы регуляции дыхания

Весь этот цикл непрерывно и ритмично повторяется на протяжении всей жизни организма. Форсированное дыхание осуществляется при участии внутренних межреберных мышц.

Основной ритм дыхания поддерживается дыхательным центром продолговатого мозга, даже если все входящие в него нервы перерезаны. Однако в обычных условиях на этот основной ритм накладываются различные влияния. Главным фактором, регулирующим частоту дыхания, служит не концентрация кислорода в крови, а концентрация С02. Когда уровень С02 повышается (например, при физической нагрузке), имеющиеся в кровеносной системе хеморецепторы каротидных и аортальных телец посылают нервные импульсы в инспираторный центр. В самом продолговатом мозге также имеются хеморецепторы. От инспираторного центра через диафрагмальные и межреберные нервы поступают импульсы в диафрагму и наружные межреберные мышцы, что ведет к их более частому сокращению, а следовательно, к увеличению частоты дыхания. Накапливающийся в организме С02 может причинить большой вред организму.

При соединении С02 с водой образуется кислота, способная вызвать денатурацию ферментов и других белков. Поэтому в процессе эволюции у организмов выработалась очень быстрая реакция на любое повышение концентрации С02. Если концентрация С02 в воздухе увеличивается на 0,25%, то легочная вентиляция удваивается. Чтобы вызвать такой же результат, концентрация кислорода в воздухе должна снизиться с 20% до 5%. Концентрация кислорода тоже влияет на дыхание, однако в обычных условиях кислорода всегда бывает достаточно, и потому его влияние относительно невелико. Хеморецепторы, реагирующие на концентрацию кислорода, располагаются в продолговатом мозге, в каротидных и аортальных тельцах, так же, как и рецепторы С02.

В этом случае импульсы, возникающие в полушариях головного мозга, передаются в дыхательный центр, который и выполняет соответствующие действия.

Регуляция вдоха при помощи рецепторов растяжения и хеморецепторов представляет собой пример отрицательной обратной связи. Произвольная активность полушарий головного мозга способна преодолеть действие этого механизма.

Эволюционно сложилось так, что для жизнедеятельности человека необходим кислород. Как доставить его к органам и тканям? Сегодня говорим о дыхательной системе и особенностях её функционирования.

Как всё устроено?

Дыхательная система представлена целым рядом анатомических образований. Классификационно их подразделяют на дыхательные пути (верхние и нижние) и дыхательные органы. Верхние дыхательные пути - это полость носа, носовая и ротовая часть глотки. Нижние - гортань, трахея и бронхи. К дыхательным органам относят легкие. В обиходе и по факту, говоря об органах дыхания человека, могут подразумеваться отдельные анатомические образования и дыхательных путей. Например, гортань, трахея - это не только часть нижних дыхательных путей, но и самостоятельные органы.

Но как кислороду дойти до конечных целей - органов? Снаружи альвеола покрыта сетью мелких кровеносных сосудов, по которым непрерывно течет кровь. Одна из разновидностей клеток крови - эритроциты, заполненные веществом гемоглобином. Именно он и осуществляет перенос газов в организме.

Определенную роль в процессе дыхания играет отрицательное внутриплевральное давление.

Процесс дыхания человека сложен и регулируется различными способами. Рассмотрим некоторые из них.

За дыхание отвечает дыхательный центр - скопление нервных клеток в продолговатом мозге.

Поток нервных импульсов идет к мышцам, отвечающим за вдох, задавая им определенный размах движений. У дыхательного центра имеется автоматия: приблизительно раз в четыре секунды здесь возникает возбуждение, стимулирующее мышцы, обеспечивающие вдох. Затем оно сменяется торможением, мышцы вдоха расслабляются - происходит выдох. Ритмичная смена этих состояний - врожденное свойство.

Частота и глубина дыхания зависит от интенсивности процессов окисления, происходящих в организме. Физическая нагрузка приводит к увеличению поглощения кислорода и повышению концентрации в тканях и крови углекислого газа. Последний через кровь активирует работу дыхательного центра, и, как следствие, усиливается сокращение дыхательных мышц. Это позволяет быстрее удалить избыток углекислого газа и восполнить недостаток кислорода.

Не на пользу телу: что вредит нашей дыхательной системе?

Человек сформировался в условиях с определенным содержанием кислорода. Однако для оптимального процесса дыхания необходимо не только само его наличие, но и определенные характеристики вдыхаемого воздуха. Их обеспечивают наши дыхательные пути, поэтому к легким - в норме - поступает очищенный, увлажненный и согретый воздух.

На любой из этих параметров могут воздействовать изменения окружающей среды.

Чистота. Пыль различного происхождения, выхлопные газы автомобилей, выбросы вредных веществ в атмосферу, табачный дым, шерсть животных, пыльца растений. Список можно было бы продолжить.

Увлажненность. Наверняка многим знакомо чувство сухости и першения в горле в помещениях в зимнее время года, особенно поутру. Причина до банальности проста: отопление в квартирах и домах пересушивает воздух, который затем сушит слизистые оболочки дыхательных путей. В результате повышается восприимчивость их к инфекции.

Читайте материал по теме: Чем отличаются ОРВИ и ОРЗ?

Низкая температура. Дышать через нос, а не через рот, советуют не просто так: помимо очищения и увлажнения, слизистая носовой полости согревает проходящий транзитом воздух.

Среди других факторов, способных нанести вред нашим органам дыхания - многочисленные инфекции. ОРВИ, бактерии, грибки - все эти представители микромира способны вызывать различные заболевания.

Когда дышать тяжело. Что говорит статистика?

Пневмония, острый ларингит, трахеит и бронхит. По данным министерства здравоохранения РФ наиболее распространенные заболевания среди взрослых связаны с дыхательной системой.

Сохраняют актуальность бронхиальная астма, хроническая обструктивная болезнь легких (ХОБЛ), рак и туберкулез легких.

А над нами - километры воды, а над нами бьют хвостами киты…

Сколько воздуха в день вдыхает человек?

Давайте посчитаем. В норме в покое объем воздуха, вдыхаемого или выдыхаемого взрослым человеком при одном дыхательном цикле, составляет 500 мл, а частота дыхания у него - от 16 до 20 (во время сна - до 12). Таким образом, в покое в минуту человек вдыхает от 8 литров воздуха, а в течение суток - около 11 500 литров (с поправками на частоту дыхания во время сна - соответственно меньше).

Сколько человек может не дышать?

Ответ на этот вопрос зависит от многих факторов. Находится ли человек в покое или двигается? Какова температура окружающей среды? И т.д.

Итак, сколько может не дышать человек? Диапазон колебаний составляет от менее чем 1 минуты до нескольких минут. Один из мировых рекордов принадлежит датскому ныряльщику Стигу Северинсену - 22 минуты. Правда, перед своей попыткой он почти 20 минут активно дышал чистым кислородом. Ткани организма обогатились этим газом и одновременно снизилось содержание углекислоты.

Критичен не только дефицит кислорода, но и избыток углекислого газа. При невозможности организма избавиться от углекислоты через легкие, начинает увеличиваться ее содержание в крови. Возможно нарушение ориентации, спазмы в мышцах, учащенное сердцебиение, потеря сознания и смерть.

Что будет, если часто задерживать дыхание?

Исходя из описанного выше, в зависимости от частоты и длительности задержек в организме может постепенно накапливаться углекислый газ. При выходе его за границы нормы и сравнительно длительном сохранении этого состояния возможны пагубные влияния на здоровье.

Обычно после ощутимой задержки дыхания и закономерном повышении уровня углекислоты отмечается углубление дыхания: организм удаляет ее избыток и стремится получить кислород.

Лечебное дыхание

На пользу стройности

Существуют методики для похудения, основанные на различных способах дыхания - например бодифлекс, оксисайз.

Мнения ученых по поводу снижения веса с помощью только дыхательных упражнения противоречивы. Кроме того, необходимо помнить, что слишком глубокие вдохи и выдохи могут нарушить равновесие между кислородом и углекислым газом. Это может вызвать головокружение, а у кого-то и обморок.

Поэтому перед началом такой практики необходимо посоветоваться с врачом, в том числе и особенно если имеются какие-то проблемы со здоровьем.

Вдох, выдох, покой

Схема работает примерно так. Когда организм эмоционально возбуждается, обнаруженные клетки передают сигналы на нейроны, учащающие дыхание. Однако, как оказалось, работает система и в обратном направлении. Иными словами, если начать дышать чаще, то мозг может возбуждаться. Отсюда напрашивается вывод, почему глубокое замедленное дыхание может успокаивать.

Как дышать, чтобы быстро уснуть?

- поместите кончик языка на слизистую оболочку сразу за верхними передними зубами (с внутренней стороны) и держите его там на протяжении всего упражнения;

- полностью выдохните через рот со свистящим звуком;

- закройте рот и спокойно вдохните через нос, досчитав про себя до четырех;

- задержите дыхание, посчитав мысленно до семи;

- полностью выдохните через рот, издавая свистящий звук, посчитав до восьми.

Это одно дыхание. Теперь повторите цикл еще три раза.

Если вам сложно задерживать дыхание, вы можете ускорить упражнение, но придерживайтесь соотношения 4:7:8 для трех фаз. Выполняйте упражнение дважды в день.

Метод относится к альтернативным методам лечения и, возможно, не проверялся с точки зрения принципов доказательной медицины.

Сохраняем здоровье

Как же сохранить здоровье дыхательной системы? С учетом неблагоприятных факторов, которые могут влиять на ее состояние, целесообразны достаточная физическая активность - в идеале на свежем воздухе; регулярное проветривание помещений; увлажнение воздуха; избавление от вредных привычек (курение); использование во время работы, связанной с профессиональными вредностями, индивидуальных средств защиты (маски, респираторы).

Важна профилактика респираторных инфекций, а также своевременное лечение любых заболеваний органов дыхания.

Необходимо обязательно проходить плановые диспансеризации и профосмотры с выполнением флюорографии с частотой, предусмотренной ими.

Текст: Энвер Алиев

Д ыхательная система человека выполняет жизненно важную функцию газообмена, доставки в организм кислорода и выведения углекислого газа.


Она состоит из полости носа, глотки, гортани, трахеи и бронхов.

В районе глотки происходит соединение ротовой и носовой полостей. Функции глотки: продвижение пищи из полости рта в пищевод и проведение воздуха из полости носа (или рта) в гортань. В глотке пересекаются дыхательные и пищеварительные пути.

Гортань соединяет глотку с трахеей и содержит голосовой аппарат.

Трахея – хрящевая трубка длиной около 10-15 см. Для того чтобы пища не попадала в трахею при ее входе располагается так называемая небная завеса. Ее назначение перекрывать путь в трахею каждый раз при проглатывании пищи.

Легкие состоят из бронхов, бронхиол и альвеол, окруженных плевральным мешком.

Каким образом происходит газообмен?

Во время вдоха воздух втягивается в нос, в полости носа воздух очищается и увлажняется, далее идет вниз через гортань в трахею. Трахея разделяется на две трубочки – бронхи. По ним воздух попадает в правое и левое легкие. Бронхи разветвляются на множество мельчайших бронхиол, которые заканчиваются альвеолами. Через тонкие стенки альвеол кислород попадает в кровеносные сосуды. Здесь начинается малый круг кровообращения. Кислород подхватывает гемоглобин, который содержится в эритроцитах и насыщенная кислородом кровь отправляется из легких в левую часть сердца. Сердце выталкивает кровь в кровеносные сосуды, начинается большой круг кровообращения, откуда по артериям кислород распределяется по телу. Как только кислород из крови израсходуется, кровь по венам поступает в правую часть сердца, заканчивается большой круг кровообращения, и оттуда – обратно в легкие, заканчивается малый круг кровообращения. При выдохе углекислый газ удаляется из организма.

С каждым вдохом в легкие попадает не только кислород, но и пыль, микробы и другие инородные объекты. На стенках бронхов располагаются крохотные ворсинки, которые задерживают пыль и микробы. В стенках дыхательных путей специальные клетки производят слизь, которая помогает очищать и смазывать эти ворсинки. Загрязненная слизь выводится через бронхи наружу и откашливается.

Пищеварительная система.


Основные отделы пищеварительного канала: ротовая полость, глотка, пищевод, желудок, тонкая кишка и толстая кишка, печень и поджелудочная железа.

Пищеварительная система выполняет функции механической и химической обработки пищи, всасывания переваренных белков, жиров и углеводов в кровь и лимфу и выделения непереваренных веществ из организма.

Можно описать этот процесс по-другому: пищеварение - это потребление энергии содержащейся в продуктах с целью увеличения или скорее поддержание своей собственной постоянно уменьшающейся энергии на определенном уровне. Освобождение энергии из продуктов происходит в процессе расщепления пищи. Вспоминаем лекции Марвы Вагаршаковны Оганян, понятие фитокалорий, в каких продуктах содержится энергия, в каких отсутствует.

Вернемся к биологическому процессу. В ротовой полости пища размельчается, смачивается слюной, и затем поступает в глотку. Через глотку и пищевод, который проходит через грудную клетку и диафрагму измельченная пища попадает в желудок.

В желудке пища смешивается с желудочным соком, активными компонентами которого является соляная кислота и пищеварительные ферменты. Пептин расщепляет белки до аминокислот, которые сразу через стенки желудка всасываются в кровь. В желудке пища находится 1,5-2 часа, где под действием кислой среды размягчается и растворяется.

Следующий этап: частично переваренная пища попадает в отдел тонкого кишечника – двенадцатиперстную кишку. Здесь, напротив среда щелочная, пригодная для переваривания и расщепления углеводов. В двенадцатиперстную кишку проходит проток от поджелудочной железы, которая выбрасывает панкреатический сок, и проток от печени, которая выбрасывает желчь. Именно в этом отделе пищеварительной системы под воздействием панкреатического сока и желчи происходит переваривание пищи, а не в желудке как многие думают. В тонкой кишке происходит основной объём всасывания питательных веществ через кишечную стенку в кровь и в лимфу.

Печень. Барьерная функция печени очищать кровь из тонкого кишечника, так вместе с полезными для организма веществами всасываются и не полезные, такие как: алкоголь, лекарственные препараты, токсины, аллергены и т.д., или более опасные: вирусы, бактерии, микробы.

Нервная система


К нервной системе относятся головной и спинной мозг, а также нервы, нервные узлы, сплетения. Все выше перечисленное преимущественно состоит из нервной ткани, которая:

Головной мозг - часть центральной системы, находящаяся внутри черепа. Состоит из ряда органов: большого мозга, мозжечка, ствола и продолговатого мозга. У каждого отдела мозга свои функции.

Спинной мозг – образует распределительную сеть центральной нервной системы. Лежит внутри позвоночного столба, и от него отходят все нервы, образующие периферическую нервную систему.

Периферические нервы - представляют собой пучки, или группы волокон, передающих нервные импульсы. Они могут быть восходящими, т.е. передают ощущения от всего тела в центральную нервную систему, и нисходящими, или двигательными, т.е. доводят команды нервных центров до всех участков организма.

Некоторые компоненты периферической системы имеют отдаленные связи с центральной нервной системой; они функционируют при весьма ограниченном контроле со стороны ЦНС. Эти компоненты работают самостоятельно и составляют автономную, или вегетативную нервную систему. Она управляет работой сердца, легких, кровеносных сосудов и других внутренних органов. Пищеварительный тракт имеет свою собственную внутреннюю вегетативную систему.

Анатомической и функциональной единицей нервной системы является нервная клетка - нейрон. Нейроны имеют отростки, с помощью которых соединяются между собой и с иннервируемыми образованиями (мышечными волокнами, кровеносными сосудами, железами). Отростки нервной клетки имеют разное функциональное значение: некоторые из них проводят раздражение к телу нейрона – это дендриты, и только один отросток – аксон - от тела нервной клетки к другим нейронам или органам. Отростки нейронов окружены оболочками и объединены в пучки, которые и образуют нервы. Оболочки изолируют отростки разных нейронов друг от друга и способствуют проведению возбуждения.

Раздражение воспринимается нервной системой через органы чувств: глаза, уши, органы обоняния и вкуса, и специальные чувствительные нервные окончания - рецепторы, расположенные в коже, внутренних органах, сосудах, скелетных мышцах и суставах. Они передают сигналы через нервную систему в головной мозг. Головной мозг анализирует передаваемые сигналы и формирует ответную реакцию.

Регуляция дыхания - это согласованное нервное управление дыхательными мышцами, последовательно осуществляющими дыхательные циклы, состоящие из вдоха и выдоха.

Дыхательный центр - это сложное многоуровневое структурно-функциональное образование мозга, осуществляющее автоматическую и произвольную регуляцию дыхания.

Дыхание - процесс автоматический, но он поддается произвольной регуляции. Без такой регуляции невозможна была бы речь. Вместе с тем, управление дыханием построено на рефлекторных принципах: как безусловно-рефлекторных, так и условно-рефлекторных.

Регуляция дыхания построена на общих принципах автоматической регуляции, которые используются в организме.

Пейсмейкерные нейроны (нейроны - "создатели ритма") обеспечивают автоматическое возникновение возбуждения в дыхательном центре даже в том случае, если не будут раздражаться дыхательные рецепторы.

Тормозные нейроны обеспечивают автоматическое подавление этого возбуждения через определённое время.

В дыхательном центре используется принцип реципрокного (т.е. взаимоисключающего) взаимодействия двух центров: вдоха и выдоха. Их возбуждение находится в обратно пропорциональной зависимости. Это означает, что возбуждение одного центра (например, центра вдоха) тормозит связанный с ним второй центр (центр выдоха).

Функции дыхательного центра
- Обеспечение вдоха.
- Обеспечение выдоха.
- Обеспечение автоматии дыхания.
- Обеспечение приспособления параметров дыхания к условиям внешней среды и деятельности организма.
Например, при повышении температуры (как в окружающей среде, так и в организме) дыхание учащается.

Уровни дыхательного центра

1. Спинальный (в спинном мозге). В спинном мозге расположены центры, координирующие деятельность диафрагмы и дыхательных мышц - L-мотонейроны в передних рогах спинного мозга. Диафрагмальные нейроны - в шейных сегментах, межреберные - в грудных. При перерезке проводящих путей между спинным и головным мозгом дыхание нарушается, т.к. спинальные центры не обладают автономностью (т.е. самостоятельностью) и не поддерживают автоматию дыхания.

2. Бульбарный (в продолговатом мозге) - основной отдел дыхательного центра. В продолговатом мозге и варолиевом мосту располагаются 2 основных вида нейронов дыхательного центра - инспираторные (вдыхательные) и экспираторные (выдыхательные).

Инспираторные (вдыхательные) - возбуждаются за 0,01-0,02 с до начала активного вдоха. Во время вдоха у них увеличивается частота импульсов, а затем мгновенно прекращается. Подразделяются на несколько видов.

Виды инспираторных нейронов

По влиянию на другие нейроны:
- тормозные (прекращают вдох)
- облегчающие (стимулируют вдох).
По времени возбуждения:
- ранние (за несколько сотых долей секунды до вдоха)
- поздние (активны в процессе всего вдоха).
По связям с экспираторными нейронами:
- в бульбарном дыхательном центре
- в ретикулярной формации продолговатого мозга.
В дорсальном ядре 95% - инспираторные нейроны, в вентральном - 50%. Нейроны дорсального ядра связаны с диафрагмой, а вентрального - с межрёберными мышцами.

Экспираторные (выдыхательные) - возбуждение возникает за несколько сотых долей секунды до начала выдоха.

Различают:
- ранние,
- поздние,
- экспираторно-инспираторные.
В дорсальном ядре 5% нейронов являются экспираторными, а в вентральном - 50%. В целом экспираторных нейронов значительно меньше, чем инспираторных. Получается, что вдох важнее выдоха.

Автоматию дыхания обеспечивают комплексы из 4-х нейронов с обязательным присутствием тормозных.

Взаимодействие с другими центрами мозга

Дыхательные инспираторные и экспираторные нейроны имеют выход не только на дыхательные мышцы, но и на другие ядра продолговатого мозга. Например, при возбуждении дыхательного центра реципрокно тормозится центр глотания и в то же время, наоборот, возбуждается сосудо-двигательный центр регуляции сердечной деятельности.

На бульбарном уровне (т.е. в продолговатом мозге) можно выделить пневмотаксический центр, расположенный на уровне варолиева моста, выше инспираторных и экспираторных нейронов. Этот центр регулирует их активность и обеспечивает смену вдоха и выдоха. Инспираторные нейроны обеспечивают вдох и одновременно от них возбуждение поступает в пневмотаксический центр. Оттуда возбуждение бежит к экспираторным нейронам, которые возбуждаются и обеспечивают выдох. Если перерезать пути между продолговатым мозгом и варолиевым мостом, то уменьшится частота дыхательных движений, засчёт того, что уменьшается активирующее действие ПТДЦ (пневмотаксического дыхательного центра) на инспираторные и экспираторные нейроны. Это также приводит к удлинению вдоха засчёт длительного сохранения тормозного влияния экспираторных нейронов на инспираторные.

3. Супрапонтиальный (т.е. "надмостовый") - включает в себя несколько областей промежуточного мозга:
Гипоталамическая область - при раздражении вызывает гиперпноэ - увеличение частоты дыхательных движений и глубины дыхания. Задняя группа ядер гипоталамуса вызывает гиперпноэ, передняя группа действует противоположным образом. Именно засчёт дыхательного центра гипоталамуса дыхание реагирует на температуру окружающей среды.
Гипоталамус совместно с таламусом обеспечивает изменение дыхания при эмоциональных реакциях.
Таламус - обеспечивает изменение дыхания при болевых ощущениях.
Мозжечок - приспосабливает дыхание к мышечной активности.

4. Моторная и премоторная зона коры больших полушарий головного мозга. Обеспечивает условно-рефлекторную регуляцию дыхания. Всего за 10-15 сочетаний можно выработать дыхательный условный рефлекс. Засчёт этого механизма, например, у спортсменов перед стартом возникает гиперпноэ.
Асратян Э.А. в своих опытах удалял у животных эти области коры. При физической нагрузке у них быстро возникала одышка - диспноэ, т.к. им не хватало этого уровня регуляции дыхания.
Дыхательные центры коры дают возможность произвольного изменения дыхания.

Регуляция деятельности дыхательного центра
Бульбарный отдел дыхательного центра является главным, он обеспечивает автоматию дыхания, но его деятельность может изменяться под действием гуморальных и рефлекторных влияний.

Гуморальные влияния на дыхательный центр
Опыт Фредерика (1890). Он сделал перекрестное кровообращение у двух собак - голова каждой собаки получила кровь от туловища другой собаки. У одной собаки зажимали трахею, следовательно, возрастал уровень углекислого газа и понижался уровень кислорода в крови. После этого другая собака начинала часто дышать. Возникало гиперпноэ. В следствие этого в крови уменьшался уровень СО2 и возрастал уровень О2. Эта кровь поступала к голове первой собаки и тормозила ее дыхательный центр. Гуморальное торможение дыхательного центра могло довести эту первую собаку до апноэ, т.е. остановки дыхания.
Факторы, гуморально влияющие на дыхательный центр:
Избыток СО2 - гиперкарбия, вызывает активацию дыхательного центра.
Недостаток О2 - гипоксилия, вызывает активацию дыхательного центра.
Ацидоз - накопление ионов водорода (закисление), активирует дыхательный центр.
Недостаток СО2 - торможение дыхательного центра.
Избыток О2 - торможение дыхательного центра.
Алколоз - +++торможение дыхательного центра
Сами нейроны продолговатого мозга засчет высокой активности вырабатывают много СО2 и локально воздействуют на самих себя. Положительная обратная связь (сами себя усиливают).
Кроме прямого действия СО2 на нейроны продолговатого мозга существует рефлекторное действие через рефлексогенные зоны сердечно-сосудистой системы (рефлексы Рейманса). При гиперкарбии возбуждаются хеморецепторы и от них возбуждение поступает к хемочувствительным нейронам ретикулярной формации и к хемочувствительным нейронам коры головного мозга.
Рефлекторное влияние на дыхательный центр.
1. Постоянное влияние.
Рефлекс Гелинга-Брейера. Механорецепторы в тканях легких и дыхательных путей возбуждаются при растяжении и спадении легких. Они чувствительны к растяжению. От них импульсы по вакусу (блуждающий нерв) идет в продолговатый мозг к инспираторным L-мотонейронам. Вдох прекращается и начинается пассивный выдох. Этот рефлекс обеспечивает смену вдоха и выдоха и поддерживает активность нейронов дыхательного центра.
При перегрузке вакуса и перерезке рефлекс отменяется: снижается частота дыхательных движений, смена вдоха и выдоха осуществляется резко.
Другие рефлексы:
растяжение легочной ткани тормозит последующий вдох (экспираторно-облегчающий рефлекс).
Растяжение легочной ткани при вдохе сверх нормального уровня вызывает дополнительный вздох (парадоксальный рефлекс Хеда).
Рефлекс Гейманса - возникает от хеморецепторов сердечно-сосудистой системы на концентрацию СО2 и О2.
Рефлекторное влияние с пропреорецепторов дыхательных мышц - при сокращении дыхательных мышц возникает поток импульсов от пропреорецепторов к ЦНС. По принципу обратной связи изменяется активность инспираторных и экспираторных нейронов. При недостаточном сокращении инспираторных мышц возникает респираторно-облегчающий эффект и вдох усиливается.
2. Непостоянные
Ирритантные - расположены в дыхательных путях под эпителием. Являются одновременно механо- и хеморецепторами. Имеют очень высокий порог раздражения, поэтому работают в экстраординарных случаях. Например, при понижении легочной вентиляции объем легких уменьшается, возбуждаются ирритантные рецепторы и вызывают рефлекс форсированного вдоха. В качестве хеморецепторов эти же рецепторы возбуждаются биологически активными веществами - никотин, гистамин, простогландин. Возникает чувство жжения, першения и в ответ - защитный кашлевой рефлекс. В случае патологии ирритантные рецепторы могут вызвать спазм дыхательных путей.
в альвеолах рецепторы юкста-альвеолярные и юкста-капиллярные реагируют на объем легких и биологически активные вещества в капиллярах. Повышают частоту дыхания и сокращают бронхи.
На слизистых оболочках дыхательных путей - экстерорецепторы. Кашель, чихание, задержка дыхания.
На коже - тепловые и холодовые рецепторы. Задержка дыхания и активация дыхания.
Болевые рецепторы - кратковременная задержка дыхания, затем усиление.
Энтерорецепторы - с желудка.
Пропреорецепторы - со скелетных мышц.
Механорецепторы - с сердечно-сосудистой системы.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.