Как организм вырабатывает нервные импульсы

Нервный импульс (лат. nervus нерв; лат. impulsus удар, толчок) — волна возбуждения, распространяющаяся по нервному волокну; единица распространяющегося возбуждения.

Нервный импульс обеспечивает передачу информации от рецепторов к нервным центрам и от них к исполнительным органам — скелетной мускулатуре, гладким мышцам внутренних органов и сосудов, железам внутренней и внешней секреции и т. д.

Распространение Нервных импульсов отождествляется с проведением потенциалов действия (см. Биоэлектрические потенциалы). Возникновение возбуждения может быть результатом раздражения (см.), напр, воздействие света на зрительный рецептор, звука на слуховой рецептор, или процессов, протекающих в тканях (спонтанное возникновение Н. и.). В этих случаях Н. и. обеспечивают согласованную работу органов при протекании какого-либо физиологического процесса (напр., в процессе дыхания Н. и. вызывают сокращение скелетных мышц и диафрагмы, результатом чего являются вдох и выдох, и т. д.).

В живых организмах передача информации может осуществляться и гуморальным путем, посредством выброса в русло крови гормонов, медиаторов и т. п. Однако преимущество информации, передаваемой при помощи Н. и., состоит в том, что она более целенаправленна, передается быстро и может быть точнее закодирована, чем сигналы, посылаемые гуморальной системой.

Факт, что нервные стволы являются путем, по к-рому передаются влияния от мозга к мышцам и в обратном направлении, был известен еще в эпоху античности. В средние века и вплоть до середины 17 в. считалось, что по нервам распространяется некая субстанция, подобная жидкости или пламени. Идея о электрической природе Н. и. возникла в 18 в. Первые исследования электрических явлений в живых тканях, связанных с возникновением и распространением возбуждения, были осуществлены Л. Гальвани. Г. Гельмгольц показал, что скорость распространения Н. и., к-рую ранее считали близкой к скорости света, имеет конечное значение и может быть точно измерена. Германн (L. Hermann) ввел в физиологию понятие потенциала действия. Объяснение механизма возникновения и проведения возбуждения стало возможным после создания С. Аррениусом теории электролитической диссоциации. В соответствии с этой теорией Бернштейн (J. Bernstein) предположил, что возникновение и проведение Н. и. обусловлено перемещением ионов между нервным волокном и окружающей средой. Англ. исследователи А. Ходжкин, Б. Катц и Э. Хаксли детально исследовали трансмембранные ионные токи, лежащие в основе развития потенциала действия. Позже стали интенсивно изучаться механизмы работы ионных каналов, по к-рым происходит обмен ионами между аксоном и окружающей средой, и механизмы, обеспечивающие способность нервных волокон проводить ряды Н. и. разного ритма и продолжительности.

Н. и. распространяется за счет местных токов, возникающих между возбужденным и невозбужденным участками нервного волокна. Ток, выходящий из волокна наружу в покоящемся участке, служит раздражителем. Наступающая после возбуждения в данном участке нервного волокна рефрактерность обусловливает поступательное движение Н. и.

Количественно соотношения разных фаз развития потенциала действия можно охарактеризовать, сопоставляя их по амплитуде и длительности во времени. Так, напр., для миелиновых нервных волокон группы А млекопитающих диаметр волокна находится в пределах 1—22 мк, скорость проведения — 5—120 м/сек, длительность и амплитуда высоковольтной части (пика, или спайка) — 0,4—0,5 мсек и 100—120 мв соответственно, следовой негативный потенциал — 12—20 мсек (3—5% от амплитуды спайка), следовой позитивный потенциал — 40—60 мсек (0,2% от амплитуды спайка).

Возможности передачи разнообразной информации расширяются за счет повышения скорости развития потенциала действия, скорости распространения, а также за счет повышения лабильности (см.) — т. е. способности возбудимого образования воспроизводить в единицу времени высокие ритмы возбуждения.

Возникновение Н. и. в нервных клетках (см.) или рецепторах (см.) связано с деполяризацией мембраны, т. е. со снижением величины электрического потенциала на мембране (потенциала покоя, или мембранного потенциала). Если величина мембранного потенциала снижается на 10—20% (пороговый критический уровень), то местный процесс переходит в распространяющийся — возникает потенциал действия (см. Возбуждение).

Конкретные особенности распространения Н. и. связаны со строением нервных волокон (см.). Сердцевина волокна (аксоплазма) обладает низким сопротивлением и, соответственно, хорошей проводимостью, а окружающая аксоплазму плазматическая мембрана — большим сопротивлением. Особенно велико электрическое сопротивление наружного слоя у миелинизированных волокон, у к-рых свободны от толстой миелиновой оболочки только перехваты Ранвье. В безмиелиновых волокнах Н. и. движется непрерывно, а в миелиновых — скачкообразно (сальтаторное проведение).

Различают декрементное и бездекрементное распространение волны возбуждения. Декрементное проведение, т. е. проведение возбуждения с угасанием, наблюдается в безмиелиновых волокнах. В таких волокнах скорость проведения Н. и. невелика и по мере отдаления от места раздражения раздражающее действие местных токов постепенно уменьшается вплоть до полного угасания. Декрементное проведение свойственно волокнам, иннервирующим внутренние органы, обладающие низкой функц, подвижностью. Без декрементное проведение характерно для миелиновых и тех безмиелиновых волокон, к-рые передают сигналы к органам, обладающим высокой реактивностью (напр., сердечной мышце). При бездекрементном проведении Н. и. проходит весь путь от места раздражения до места реализации информации без затухания.

Передача Н. и. с нервного волокна на мышечное или какой-либо другой эффектор осуществляется через синапсы (см.). У позвоночных животных в подавляющем большинстве случаев передача возбуждения на эффектор происходит при помощи выделения ацетилхолина (нервно-мышечные синапсы скелетной мускулатуры, синаптические соединения в сердце и др.). Для таких синапсов характерно строго одностороннее проведение импульса и наличие временной задержки передачи возбуждения.

В синапсах, в синаптической щели которых сопротивление электрическому току благодаря большой площади контактирующих поверхностей мало, происходит электрическая передача возбуждения. В них нет синаптической задержки проведения и возможно двустороннее проведение. Такие синапсы свойственны беспозвоночным животным.

Регистрация Н. и. нашла широкое применение в биол, исследованиях и клин, практике. Для регистрации используют шлейфные и чаще катодные осциллографы (см. Осциллография). При помощи микроэлектродной техники (см. Микроэлектродный метод исследования) регистрируют Н. и. в одиночных возбудимых образованиях — нейронах и аксонах. Возможности исследования механизма возникновения и распространения Н. и. значительно расширились после разработки метода фиксации потенциала. Этим методом были получены основные данные о ионных токах (см. Биоэлектрические потенциалы).

Нарушение проведения Н. и. происходит при повреждении нервных стволов, напр, при механических травмах, сдавливании в результате разрастания опухоли или при воспалительных процессах. Такие нарушения проведения Н. и. зачастую бывают необратимы. Следствием прекращения иннервации могут быть тяжелые функциональные и трофические расстройства (напр., атрофия скелетных мышц конечностей после прекращения поступления Н. и. вследствие необратимой травмы нервного ствола). Обратимое прекращение проведения Н. и. может быть вызвано специально, в терапевтических целях. Напр., с помощью анестезирующих средств блокируют импульсацию, идущую от болевых рецепторов в ц. н. с. Обратимое прекращение проведения Н. и. вызывает и новокаиновая блокада. Временное прекращение передачи Н. и. по нервным проводникам наблюдается и во время общего наркоза.

Библиография: Бpеже М. А. Электрическая активность нервной системы, пер. с англ., М., 1979; Жуков Е. К. Очерки по нервно-мышечной физиологии, Л., 1969; Коннели К. Восстановительные процессы и обмен веществ в нерве, в кн.: Совр, пробл. биофизики, пер. с англ., под ред. Г. М. Франка и А. Г. Пасынского, т. 2, с. 211, М., 1961; Костюк П. Г. Физиология центральной нервной системы, Киев, 1977; Латманизова Л. В. Очерк физиологии возбуждения, М., 1972; Общая физиология нервной системы, под ред. П. Г. Костюка, Л., 1979; Тасаки И. Нервное возбуждение, пер. с англ., М., 1971; Ходжкин А. Нервный импульс, пер. с англ., М., 1965; Ходоров Б. И. Общая физиология возбудимых мембран, М., 1975.

Нервная система человека выступает своеобразным координатором в нашем организме. Она передаёт команды от мозга мускулатуре, органам, тканям и обрабатывает сигналы, идущие от них. В качестве своеобразного носителя данных используется нервный импульс. Что он собой представляет? С какой скоростью работает? На эти, а также на ряд других вопросов можно будет найти ответ в этой статье.

Чем является нервный импульс?


Исследование строения и работы

Впервые прохождение нервного импульса было продемонстрировано немецкими учеными Э. Герингом и Г. Гельмгольцем на примере лягушки. Тогда же и было установлено, что биоэлектрический сигнал распространяется с указанной ранее скоростью. Вообще, такое является возможным благодаря особенному построению нервных волокон. В некотором роде они напоминают электрический кабель. Так, если проводить параллели с ним, то проводниками являются аксоны, а изоляторами – их миелиновые оболочки (они являют собой мембрану шванновской клетки, которая намотана в несколько слоев). Причем скорость нервного импульса зависит в первую очередь от диаметра волокон. Вторым по важности считается качество электрической изоляции. Кстати, в качестве материала организмом используется липопротеид миелин, который обладает свойствами диэлектрика. При прочих равных условиях, чем больше будет его слой, тем быстрее будут проходить нервные импульсы. Даже на данный момент нельзя сказать, что эта система полноценно исследована. Многое, что относится к нервам и импульсам, ещё остаётся загадкой и предметом исследования.

Особенности строения и функционирования


Где они создаются?

Типы клеток


  1. Рецепторные (чувствительные). Ими кодируются и превращаются в нервные импульсы все температурные, химические, звуковые, механические и световые раздражители.
  2. Вставочные (также называются кондукторными или замыкательными). Они служат для того, чтобы перерабатывать и переключать импульсы. Наибольшее их число находится в головном и спинном мозге человека.
  3. Эффекторные (двигательные). Они получают команды от центральной нервной системы на то, чтобы были совершены определённые действия (при ярком солнце закрыть рукой глаза и так далее).

Каждый нейрон имеет тело клетки и отросток. Путь нервного импульса по телу начинается именно с последнего. Отростки бывают двух типов:

  1. Дендриты. На них возложена функция восприятия раздражения расположенных на них рецепторов.
  2. Аксоны. Благодаря им нервные импульсы передаются от клеток к рабочему органу.

Интересный аспект деятельности


О потенциале действия

Как всё работает в мозгу?


Работа нейромедиаторов

Когда они передают нервные импульсы, то существует несколько вариантов, что произойдёт с ними:

  1. Они будут диффундированы.
  2. Подвергнутся химическому расщеплению.
  3. Вернутся назад в свои пузырьки (это называется обратным захватом).

В конце 20-го века сделали поразительное открытие. Ученые узнали, что лекарства, что влияют на нейромедиаторы (а также их выброс и обратный захват), могут изменять психическое состояние человека коренным образом. Так, к примеру, ряд антидепрессантов вроде "Прозака" блокируют обратный захват серотонина. Есть определённые причины считать, что в болезни Паркинсона виноват дефицит в головном мозге нейромедиатора дофамина.

Если кратко, то они могут работать с тысячами нейромедиаторов, которые посылаются их соседями. Детали относительно обработки и интеграции данного типа импульсов нам почти не известны. Хотя над этим работает много исследовательских групп. На данный момент получилось узнать, что все полученные импульсы интегрируются, а нейрон выносит решение – необходимо ли поддерживать потенциал действия и передавать их дальше. На этом фундаментальном процессе базируется функционирование головного мозга человека. Ну что ж, тогда это неудивительно, что мы не знаем ответа на эту загадку.

Некоторые теоретические особенности


Где же создаются нервные импульсы?

Откуда они начинают свой путь? Ответ на этот вопрос может дать любой студент, который прилежно изучал физиологию возбуждения. Есть четыре варианта:

  1. Рецепторное окончание дендрита. Если оно есть (что не факт), то возможным является наличие адекватного раздражителя, что создаст сначала генераторный потенциал, а потом уже и нервный импульс. Подобным образом работают болевые рецепторы.
  2. Мембрана возбуждающего синапса. Как правило, такое возможно только при наличии сильного раздражения или их суммирования.
  3. Триггерная зона дентрида. В этом случае локальные возбуждающие постсинаптические потенциалы формируются как ответ на раздражитель. Если первый перехват Ранвье миелинизирован, то они на нём суммируются. Благодаря наличию там участка мембраны, которая обладает повышенной чувствительностью, здесь возникает нервный импульс.
  4. Аксонный холмик. Так называют место, где начинается аксон. Холмик – это наиболее частый создать импульсов на нейроне. Во всех остальных местах, которые рассматривались ранее, их возникновение гораздо менее вероятное. Это происходит из-за того, что здесь мембрана имеет повышенную чувствительность, а также пониженный критический уровень деполяризации. Поэтому, когда начинается суммирование многочисленных возбуждающих постсинаптических потенциалов, то раньше всего на них реагирует холмик.

Пример распространяющегося возбуждения


Вспомните сводки из новостей прошлого лета (также это скоро можно будет услышать опять). Пожар распространяется! При этом деревья и кустарники, которые горят, остаются на своих местах. А вот фронт огня идёт всё дальше от места, где был очаг возгорания. Аналогичным образом работает нервная система.

Часто бывает необходимо успокоить начавшееся возбуждение нервной системы. Но это не так легко сделать, как и в случае с огнем. Для этого совершают искусственное вмешательство в работу нейрона (в лечебных целях) или используют различные физиологические средства. Это можно сравнить с заливанием пожара водой.


Кандидат биологических наук Л. Чайлахян, научный сотрудник Института биофизики АН СССР

Мозг человека, без сомнения, высшее достижение природы.

Велика и заманчива цель, но неимоверно сложен объект исследования. Шутка сказать, этот килограмм ткани представляет собой сложнейшую систему связи десятков миллиардов нервных клеток.

Однако первый существенный шаг к познанию работы мозга уже сделан. Может быть, он один из самых легких, но он чрезвычайно важен для всего дальнейшего.

Я имею в виду исследование механизма передачи нервных импульсов — сигналов, бегущих по нервам, как по проводам. Именно эти сигналы являются той азбукой мозга, с помощью которой органы чувств посылают в центральную нервную систему сведения-депеши о событиях во внешнем мире. Нервными импульсами зашифровывает мозг свои приказы мышцам и различным внутренним органам. Наконец, на языке этих сигналов говорят между собой отдельные нервные клетки и нервные центры.

В проблеме изучения механизма нервного импульса и его распространения можно выделить два основных вопроса: природа проведения нервного импульса или возбуждения в пределах одной клетки — по волокну и механизм передачи нервного импульса от клетки к клетке — через синапсы.

Какова природа сигналов, передающихся от клетки к клетка по нервным волокнам?

Этой проблемой человек интересовался уже давно, Декарт предполагал, что распространение сигнала связано с переливанием жидкости по нервам, как по трубкам. Ньютон думал, что это чисто механический процесс. Когда появилась электромагнитная теория, ученые решили, что нервный импульс аналогичен движению тока по проводнику со скоростью, близкой к скорости распространения электромагнитных колебаний. Наконец, с развитием биохимии появилась точка зрения, что движение нервного импульса — это распространение вдоль по нервному волокну особой биохимической реакции.

И всё же ни одно из этих представлений не оправдалось.

В настоящее время природа нервного импульса раскрыта: это удивительно тонкий электрохимический процесс, в основе которого лежит перемещение ионов через оболочку клетки.

Большой вклад в раскрытие этой природы внесли работы трех ученых: Алана Ходжкина, профессора биофизики Кембриджского университета; Эндрью Хаксли, профессора физиологии Лондонского университета, и Джона Экклса, профессора физиологии австралийского университета в Канберре. Им присуждена Нобелевская премия в области медицины за 1963 год,

Впервые предположение об электрохимической природе нервного импульса высказал известный немецкий физиолог Бернштейн в начале нашего столетия.

К началу двадцатого века было довольно многое известно о нервном возбуждении. Ученые уже знали, что нервное волокно можно возбудить электрическим током, причем возбуждение всегда возникает под катодом — под минусом. Было известно, что возбужденная область нерва заряжается отрицательно по отношению к невозбужденному участку. Было установлено, что нервный импульс в каждой точке длится всего 0,001—0,002 секунды, что величина возбуждения не зависит от силы раздражения, как громкость звонка в нашей квартире не зависит от того, как сильно мы нажимаем на кнопку. Наконец, ученые установили, что носителями электрического тока в живых тканях являются ионы; причем внутри клетки основной электролит — соли калия, а в тканевой жидкости — соли натрия. Внутри большинства клеток концентрация ионов калия в 30—50 раз больше, чем в крови и в межклеточной жидкости, омывающей клетки.

И вот на основании всех этих данных Бернштейн предположил, что оболочка нервных и мышечных клеток представляет собой особую полупроницаемую мембрану. Она проницаема только для ионов К + ; для всех остальных ионов, в том числе и для находящихся внутри клетки отрицательно заряженных анионов, путь закрыт. Ясно, что калий по законам диффузии будет стремиться выйти из клетки, в клетке возникает избыток анионов, и по обе стороны мембраны появится разность потенциалов: снаружи — плюс (избыток катионов), внутри — минус (избыток анионов). Эта разность потенциалов получила название потенциала покоя. Таким образом, в покое, в невозбужденном состоянии внутренняя часть клетки всегда заряжена отрицательно по сравнению с наружным раствором.

Бернштейн предположил, что в момент возбуждения нервного волокна происходят структурные изменения поверхностной мембраны, ее поры как бы увеличиваются, и она становится проницаемой для всех ионов. При этом, естественно, разность потенциалов исчезает. Это и вызывает нервный сигнал.

Мембранная теория Бернштейма быстро завоевала признание и просуществовала свыше 40 лет, вплоть до середины нашего столетия.

Но уже в конце 30-х годов теория Бернштейна встретилась с непреодолимыми противоречиями. Сильный удар ей был нанесен в 1939 году тонкими экспериментами Ходжкина и Хаксли. Эти ученые впервые измерили абсолютные величины мембранного потенциала нервного волокна в покое и при возбуждении. Оказалось, что при возбуждении мембранный потенциал не просто уменьшался до нуля, а переходил через ноль на несколько десятков милливольт. То есть внутренняя часть волокна из отрицательной становилась положительной.

Но мало ниспровергнуть теорию, надо заменить ее другой: наука не терпит вакуума. И Ходжкин, Хаксли, Катц в 1949—1953 годах предлагают новую теорию. Она получает название натриевой.

Здесь читатель вправе удивиться: до сих пор о натрии не было речи. В этом все и дело. Ученые установили с помощью меченых атомов, что в передаче нервного импульса замешаны не только ионы калия и анионы, но и ионы натрия и хлора.

В организме достаточно ионов натрия и хлора, все знают, что кровь соленая на вкус. Причем натрия в межклеточной жидкости в 5—10 раз больше, чем внутри нервного волокна.

Что же это может означать? Ученые предположили, что при возбуждении в первый момент резко увеличивается проницаемость мембраны только для натрия. Проницаемость становится в десятки раз больше, чем для ионов калия. А так как натрия снаружи в 5—10 рез больше, чем внутри, то он будет стремиться войти в нервное волокно. И тогда внутренняя часть волокна станет положительной.

А через какое-то время — после возбуждения — равновесие восстанавливается: мембрана начинает пропускать и ионы калия. И они выходят наружу. Тем самым они компенсируют тот положительный заряд, который был внесен внутрь волокна ионами натрия.

Совсем нелегко было прийти к таким представлениям. И вот почему: диаметр иона натрия в растворе раза в полтора больше диаметра ионов калия и хлора. И совершенно непонятно, каким образом больший по размеру ион проходит там, где не может пройти меньший.

Нужно было решительно изменить взгляд на механизм перехода ионов через мембраны. Ясно, что только рассуждениями о порах в мембране здесь не обойтись. И тогда была высказана идея, что ионы могут пересекать мембрану совершенно другим способом, с помощью тайных до поры до времени союзников — особых органических молекул-переносчиков, спрятанных в самой мембране. С помощью такой молекулы ионы могут пересекать мембрану в любом месте, а не только через поры. Причем эти молекулы-такси хорошо различают своих пассажиров, они не путают ионы натрия с ионами калия.

Интересно, что нервные волокна тратят на свою основную работу — проведение нервных импульсов — всего около 15 минут в сутки. Однако готовы к этому волокна в любую секунду: все элементы нервного волокна работают без перерыва — 24 часа в сутки. Нервные волокна в этом смысле подобны самолетам-перехватчикам, у которых непрерывно работают моторы для мгновенного вылета, однако сам вылет может состояться лишь раз в несколько месяцев.

Мы познакомились сейчас с первой половиной таинственного акта прохождения нервного импульса — вдоль одного волокна. А как же передается возбуждение от клетки к клетке, через места стыков — синапсы. Этот вопрос был исследован в блестящих опытах третьего нобелевского лауреата, Джона Экклса.

Возбуждение не может непосредственно перейти с нервных окончаний одной клетки на тело или дендриты другой клетки. Практически весь ток вытекает через синаптическую щель в наружную жидкость, и в соседнюю клетку через синапс попадает ничтожная его доля, неспособная вызвать возбуждение. Таким образом, в области синапсов электрическая непрерывность в распространении нервного импульса нарушается. Здесь, на стыке двух клеток, в силу вступает совершенно другой механизм.

Когда возбуждение подходит к окончанию клетки, к месту синапса, в межклеточную жидкость выделяются физиологически активные вещества — медиаторы, или посредники. Они становятся связующим звеном в передаче информации от клетки к клетке. Медиатор химически взаимодействует со второй нервной клеткой, изменяет ионную проницаемость ее мембраны — как бы пробивает брешь, в которую устремляются многие ионы, в том числе и ионы натрия.

Итак, благодаря работам Ходжкина, Хаксли и Экклса важнейшие состояния нервной клетки — возбуждение и торможение — можно описать в терминах ионных процессов, в терминах структурно-химических перестроек поверхностных мембран. На основании этих работ уже можно делать предположения о возможных механизмах кратковременной и долговременной памяти, о пластических свойствах нервной ткани. Однако это разговор о механизмах в пределах одной или нескольких клеток. Это лишь, азбука мозга. По-видимому, следующий этап, возможно, гораздо более трудный, — вскрытие законов, по которым строится координирующая деятельность тысяч нервных клеток, распознание языка, на котором говорят между собой нервные центры.

Мы сейчас в познании работы мозга находимся на уровне ребенка, который узнал буквы алфавита, но не умеет связывать их в слова. Однако недалеко время, когда ученые с помощью кода — элементарных биохимических актов, происходящих в нервной клетке, прочтут увлекательнейший диалог между нервными центрами мозга.

Детальное описание иллюстраций

Нервный импульс проходит через отростки нейронов как электрический разряд, однако, как выяснили ученые в шестидесятые, одного электричества в ряде случаев оказывается недостаточно. Между концами отростков есть зазор, и только тогда, когда в синапсе, то есть месте, где встречаются концы отростков, выделяются определенные химические вещества, два нейрона могут пропускать нервные импульсы. Эти вещества очень специфичны — их довольно много и каждое отвечает за свой определенный набор функций. Они же, к слову, передают нервные импульсы от нейронов к мышечной ткани. Именно эти вещества называются нейромедиаторами.

Дофамин — еще один популярный нейромедиатор. Прославился он как ответственный за производство чувства удовольствия, а если точнее — как фактор внутреннего подкрепления. Поведение, позволяющее выжить и размножиться, сопровождается у представителей нашего вида приятными ощущениями — чтобы выбор в его пользу был очевидным. А дофамин — это та самая сладкая морковка, подаренная эволюцией. Максимальный уровень дофамина достигается, кстати, во время еды и секса. При этом достаточно даже подумать о предстоящем удовольствии — дофамин тут как тут. Этот механизм очень похож на рефлекс собаки Павлова.

Предполагается, что дофамин вырабатывается также в процессе принятия решения — он связан с чувством награды, способствующим принятию решения еще на уровне бессознательного обдумывания. Люди же с нарушением производства дофамина испытывают и проблемы с принятием решений.

Окситоцин — нейромедиатор и гормон, о котором наверняка слышали женщины, имеющие детей: от него зависит частота сокращения матки (это его свойство используют, вводя окситоцин роженицам), выработка грудного молока, а отдельные ученые склонны думать, что косвенным образом он же управляет и эрекцией у мужчин.

Что же касается психофизиологической роли окситоцина, то в организме он отвечает за доверительные и теплые отношения между людьми. Проведенные исследования показали, что люди, получившие окситоцин, охотнее доверяют окружающим, в том числе незнакомцам. Сам же нейромедиатор вырабатывается при близком контакте с человеком, при прикосновениях и поглаживаниях. Особенно много его выделяется во время секса.

Отношениями матери и ребенка также, кстати, управляет окситоцин — при контакте с матерью у ребенка снижается чувство тревожности, возникает ощущение счастья и комфорта. Урчащий на руках котенок — отличный пример действия окситоцина.

Используя эти свойства, окситоцин применяют для лечения аутистов — он позволяет им проявлять больше эмоций при взаимодействии с окружающими.

Фенилэтиламин, строго говоря, не является нейромедиатором — он лишь запускает выработку дофамина и норадреналина — медиатора бодрствования (он повышает давление и сужает сосуды). Кстати, в числе производных воспроизведенного в лаборатории фенилэтиламина — амфетамин и некоторые психоделики.

Гипотеза Либовица про связь влюбленности и фенилэтиламина все еще не доказана, а вот часть про шоколад опровергнута полностью — дело в том, что фенилэтиламин разрушается в организме за считанные минуты, поэтому не успевает оказать никакого действия. Хотя эффекта плацебо, конечно, никто не отменял.

Эндорфины (эндогенные, то есть внутренние, морфины) получили свое название за схожесть их действия с опиатами, производимыми в лаборатории — в первую очередь с морфием. Они были открыты в 70-х годах, в процессе изучения механизмов работы иглоукалывания. Было обнаружено, что при введении в организм блокаторов наркотических обезболивающих, обезболивающий эффект самого иглоукалывания также сходит на нет. Ученые предположили, что организм самостоятельно вырабатывает вещества, близкие по структуре к морфинам.

Эндорфины обладают обезболивающим и антистрессовым действием, снижают аппетит, нормализуют давление и частоту дыхания, ускоряют процессы регенерации в организме. Кроме того, уровень эндорфина в крови повышается в стрессовых ситуациях — он позволяет мобилизовать внутренние ресурсы и не чувствовать боль.

Организм людей – это уникальная по своему развитию и контролю система, в которой каждой клетке отведено свое место и роль. В процессе эволюции она непрерывно усложнялась, чтобы добиться преимуществ над остальными представителями природы. Так, гуморальная регуляция – с помощью жидких сред, уже не справлялась со своими обязанностями. Возникла нервная регуляция – с множеством промежуточных нейронов и отдаленных центров контроля. Однако, обе они тесно взаимодействуют для достижения жизненных целей – обеспечения постоянства и безопасности внутренней среды.

Особенности гуморальной регуляции

Механизм гуморальной регуляции функций организма осуществляется с помощью специфических химических соединений – биологических веществ. Они поступают в жидкие среды – кровь, а также лимфу, затем перемещаются к тканям и внутренним структурам. Ведущая роль при этом, безусловно, принадлежит гормонам.


Их вырабатывают особые структурные единицы – железы внутренней секреции. Как правило, они локализуют вдали от контролируемого органа. При этом благодаря гуморальной регуляции осуществляется воздействие сразу на несколько зон организма. К примеру, половое созревание, пищеварение, рост.

Тем не менее, возможности гуморальной регуляции в организме человека ограничены. Ведь она воздействует сравнительно медленно – требуется выработка химических соединений, их поступление в русло крови и достижение подконтрольной области. Действие гормона продолжительное, оно не прекращается даже при значительном снижении его концентрации. В этом основная особенность эндокринной регуляции, что актуально для сохранения постоянства внутренней среды.

В чем же суть гуморальной регуляции, можно понять на примере роста человека. По мере развития плода и формирования внутренних желез секреции, начинается выработка биологических веществ для правильного телосложения. Если гормонов в крови много – вырастет гигант, тогда как при их низкой концентрации – карлик. Приемлемый рост обеспечивается тщательно выверенным самой природой соотношением количества гормона.

То же самое можно отнести к каждой функциональной деятельности – для пищеварения это инсулин, для движения и скорости реакции – адреналин и норадреналин, для репродуктивной деятельности – половые гормоны. Все, даже самые мелкие и, на первый взгляд, незначительные изменения в организме людей, находятся под строгим гуморальным контролем.

Особенности нервной регуляции

В процессе эволюции нервная регуляция сформировалась позже – к этому были необходимы предпосылки. Так, по мнению специалистов, живым единицам уже стало не хватать только гуморальных связей между клетками. Ведь требовалось быстрее передавать получаемую информацию и реагировать на внешние и внутренние угрозы.

У людей все этапы нервной регуляции осуществляются с помощью центральных структур – головного мозга с подкорковыми ядрами, а также периферических образований – нервных сплетений. К примеру, человек опаздывает на работу и видит приближение подходящей ему электрички. Его мозг просчитывает, какое время необходимо для достижения платформы и отдает команды дыхательной, сердечнососудистой системе, а также мышцам конечностей. В итоге опаздывающий человек успевает добежать и впрыгнуть в вагон электрички.

Только нервной регуляцией, конечно, не обойтись. Она отличается нейрогуморальной направленностью. Ведь, требуется и выработка гормонов, и их влияние на функциональные возможности людей.

Взаимодействие систем

Все разнообразие механизмов регуляции функциональной активности человеческого организма специалисты традиционно классифицируют на нервные, а также гуморальные процессы. Тогда как они практически неотделимы и составляют единую систему. Ее задача – обеспечение постоянства внутренней среды организма. Благодаря этому люди приспосабливаются к изменениям извне, и вид получает возможность сохраняться в природе.


И нервный, и гуморальный механизм имеют разнообразные связи на всех уровнях функционирования мозговых центров, а также при передаче сигнальной информации к контролируемым структурам. Так, регуляция функций в организме осуществляется в большинстве случаев с помощью рефлекторной дуги, в которой взаимосвязь между сигнальными молекулами осуществляется посредством гуморальных факторов. В таком качестве выступают нейромедиаторы – особые химические соединения. Именно они корректируют восприимчивость рецепторов и их функциональные возможности.

Однако, гуморальная регуляция организма находится под контролем головного мозга. Он может запускать или замедлять выделение гормонов. Как правило, эти процессы между кровью и мозгом осуществляются на бессознательном уровне. Особенно в дыхательной, пищеварительной, сердечнососудистой системах. В ряде ситуаций требуется сознательный контроль – к примеру, быстро добежать на работу, чтобы не опоздать. Именно в том, как взаимодействуют нервная и гуморальная регуляции, и заключается их единство и эффективность.

Различия

Несмотря на явную взаимосвязь механизмов нервной, а также гуморальной регуляции, на уровне биологической и морфофункциональной единицы они имеют различия. В большинстве своем их разделяют по свойствам:

  • нервная регуляция в отличие, от гуморальной, целенаправленная – импульс перемещается в строго предназначенную зону;
  • гуморальный сигнал – с током крови распространяется по всему организму, а реакция тканей зависит от присутствия молекулярных рецепторов;
  • скорость сигналов выше по нервному волокну, а не в жидких средах организма;
  • время сохранения сигнала в нервной системе короткое, поэтому и реакция контролируемого органа быстрая, тогда как концентрация гормонов сохраняется продолжительный период;
  • изученность нервной регуляции лучше, поскольку она поддается регистрации инструментальными аппаратами, а исследование гуморальных функций затрудненно обширностью подчиненных тканей.

Результатом, как отличий, так и сходства гуморальных и нервных механизмов контроля деятельности внутренних органов является целостность человека, как биологической единицы. Преимущества одной системы компенсируют возможные недочеты другой, однако, ведущая роль принадлежит, все же высшей нервной регуляции.

Гуморальные железы

Внутренние органы, которые выделяют гормональные вещества, локализуются у людей в разных частях тела. Благодаря этому они прицельнее осуществляют гуморальную регуляцию. Так, в основании полушарий головного мозга расположен гипофиз. Сам по себе небольшого размера, он выделяет крайне важные для человека биологически активные соединения. К примеру, гормон роста.


Тогда как контроль концентрации в русле крови возложен на инсулин. Его выделяют особые клетки в ткани поджелудочной железы. При его малом количестве формируется тяжелое своими осложнениями заболевание – диабет.

Двойственное влияние оказывают на организм человека гормоны щитовидной железы. При их чрезмерном выделении развивается гипертиреоз, а при дефиците гипотиреоз. Оба расстройства негативно отражаются на деятельности остальных внутренних органов, а у детей – на интеллектуальном и физическом развитии.

Другими железами гуморальной регуляции являются – паращитовидные клетки, надпочечники, вилочковое образование, а также половые структуры – яичники и яички. Все они тесно взаимодействуют между собой и с центральной нервной системой. Это позволяет человеку адаптироваться и к внутренним изменениям – в периоды полового созревания/угасания, и к внешним факторам – плохая экология, неправильное питание, интоксикации. При сбое в работе гуморальных механизмов, будет наблюдаться усиление работы нервных клеток. При исчерпании компенсаторных возможностей – возникнут различные болезни.

Патологии

Влияние тесной взаимосвязи нервной регуляции с гуморальным контролем человек ощущает на себе лучше всего в непривычных для него условиях – когда требуется приложить больше усилий для выполнения поставленных задач. К примеру, в случае пожара при высокой загазованности воздуха, нагрузка возрастает на дыхательную, а также сердечнососудистую системы. Организм при возрастании концентрации углекислого газа, старается его компенсировать. Если же это не удается, появляются такие заболевания, как бронхит, астма, фарингит хронического течения.

Патологические состояния в сердечной мышце – это часто результат сбоя в выделении гормонов надпочечников, адреналина с норадреналином. При их колебаниях в кровяном русле возникают различные сердечные аритмии, тахикардии, а затем и сердечная недостаточность. Нервная регуляция далеко не всегда справляется с защитной функцией, ведь гормоны длительное время могут сохранять свое влияние на сердце.

Хорошо изучены патологии щитовидной железы. Они приводят к изменениям в обменных процессах. От их концентрации напрямую зависит потребление тканями кислорода. Если их много, то температура тела повышается, усвоение питательных веществ ускоряется, рост тела усиливается. Все эти симптомы характерны для гипертиреоза. Тогда как при замедлении поступления гормонов возникает микседема – повышение массы, тела, апатия, снижение обменных процессов и температуры.

Тяжело протекают патологии репродуктивной системы, если в основе лежат сбои гормонального фона. К примеру, изменяется характер волосяного покрова, телосложения, модуляции голоса, способность к размножению.

Прогноз при заболеваниях гуморального характера во многом будет определен своевременностью обращения человека за медицинской помощью и грамотностью подбора гормональной терапии. В большинстве случаев врачам удается достичь положительных результатов в борьбе за восстановление адекватной регуляции внутренних органов.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.