Контакт между нервными клетками это


Традиционное определение синапса устарело, синапс устроен и работает более сложно, чем это представлялось ранее. И главное, это то, что хотя передача возбуждения через синапс является односторонней, но влияние контактирующих окончаний друг на друга является двухсторонним .

Синапсы - это специализированные контакты между нервными клетками (нейронами), через которые передаётся нервное возбуждение или торможение.


Но последние открытия показывают, что синапсы работают гораздо более сложным образом и решают гораздо более сложные и разнообразные задачи, чем просто передача возбуждения или торможения.

Поэтому можно сказать, что через синапсы нервные клетки воздействуют друг на друга и на другие свои мишени (мышечные и железистые клетки). Передача возбуждения - это лишь одна из сторон работы синапса.

С передачей возбуждения через синапсы связана одна важная тонкость. Большинство людей считают, что раз через синапсы передаётся возбуждение, то это означает, что через синапс с одного нейрона на другой перескакивает нервный импульс. Но это не так! На пресинаптическое окончание в синапс действительно приходит нервный импульс, но на постсинаптическом окончании возникает лишь ВПСП - возбуждающий постсинаптический потенциал, т.е. локальный потенциал, а вовсе не нервный импульс! И нужно ещё довести такой ВПСП до критического уровня деполяризации, чтобы он превратился в потенциал действия (нервный импульс). Образно можно выразиться так: "Редкий синапс напрямую проводит импульс!" В среднем синапс должен получить подряд не менее 4-5 нервных импульсов на пресинаптическом окончании, чтобы произвести свой нервный импульс на постсинаптическом окончании.

А вот в тормозных синапсах вообще вместо возбуждения формируется торможение. И через эти синапсы возбуждение не передаётся никоим образом!

Итак, через возбуждающие синапсы действительно передаётся возбуждение, но только не в виде нервных импульсов, а в виде локальных возбуждающих потенциалов.

Через тормозные синапсы вообще не происходит ни передачи возбуждения, ни передачи нервных импульсов, а наоборот, возникает торможение в виде локальных тормозных потенциалов, мешающих проведению возбуждения через соседние возбуждающие синапсы.

Более общее и более современное определение синапса будет звучать так:


Синапс - это специализированный контакт между нервной клеткой и её мишенью, через который контактирующие клетки влияют друг на друга. И это влияние не ограничивается возбуждением и торможением, а включает в себя модуляцию обоих контактирующих клеток.

Таким образом, синапсы - это управляющие и управляемые структуры, связывающие нейроны с другими клетками.

Образно можно сказать, что синапс - это взаимный "пульт управления", через который воздействуют друг на друга те две клетки, которые он соединяет.

О произношении

Кстати, о произношении слова синапс. Словари рекомендуют делать ударение на первый слог: синапс. Но физиологи России предпочитают говорить "синапс", ставя ударение на второй слог. Во всяком случае, именно так произносили это слово на XXI съезде Физиологического общества имени И.П. Павлова в 2010 г. К моему удивлению, в своих лекциях англоязычные лекторы тоже произносят этот термин как "синапс", ставя ударение не на первый, а на последний слог.

Активность синап сов в коре больших полушарий головного мозга

Потенциалы покоя в нейронах коры обычно незначительно колеблются, не достигая на 3-10 мВ критического уровня деполяризации (КУД), при переходе которого возникает нервный импульс (потенциал действия). По сравнению с мотонейронами спинного мозга постсинаптические потенциалы на нейронах коры головного мозга обычно длятся более продолжительное время.

В случае возбуждающих постсинаптических потенциалов (ВПСП) их восходящая фаза длится несколько миллисекунд, а нисходящая - 10-30 мс.

Тормозные постсинаптические потенциалы (ТПСП) длятся ещё дольше - 70-150 мс. На одном и том же нейроне возникающие на его мембране ВПСП могут иметь различную крутизну нарастания. Возможно, это объясняется тем, что они возникают в синапсах, расположенных на различных расстояниях от регистрирующего электрода. В условиях покоя при спонтанной (самопроизвольной) активности коры головного мозга ТПСП регистрируются реже, чем ВПСП, и отличаются меньшей амплитудой. А вот после возбуждения сенсорных путей, наоборот, часто регистрируются длительные, высокоамплитудные ТПСП, которые появляются либо самостоятельно, либо вслед за ВПСП.

В нейронах коры обычно регистрируется сравнительно низкая частота импульсации даже у бодрствующих животных, её ритм, как правило, меньше 10 Гц, а нередко не достигает и 1 Гц, т.е. 1 импульса в секунду.

Свойства синапсов

1. Одностороннее проведение возбуждения. Это означает, что через синапс возбуждение может передаваться только в одном направлении: от пресинаптического окончания передающего нейрона - на постсинаптическое окончание (или иной постсинаптический участок) воспринимающего нейрона.

2. Задержка в передаче возбуждения (синаптическая задержка). Это означает, что нервное волокно проводит возбуждение значительно быстрее, чем такая же по длине нервная цепь, но включающая в себя синаптические контакты.

3. Повышенная утомляемость. Это означает, что в первую очередь утомление и ухудшение деятельности возникает в синапсах, затем в мышцах и в последнюю очередь - в нервных волокнах (нервах).

4. Чувствительность к условиям среды. Это означает, что работа синапса зависит от температуры, рН, содержания глюкозы, наличия химически и биологически активных веществ.

5. Передача возбуждения в виде локального потенциала, а не потенциала действия. Это означает, что через синапс на воспринимающий нейрон передаётся не нервный импульс, а лишь локальный нераспространяющийся возбуждающий постсинаптический потенциал (ВПСП). На воспринимающем нейроне каждый раз нервный импульс должен порождаться (генерироваться) заново на основе ВПСП.

6. Наведение торможения на воспринимающий нейрон в виде локального тормозного постсинаптического потенциала (ТПСП) в виде гиперполяризации. Торможение также может достигаться за счёт шунтирования, т.е. открытия в тормозном синапсе ионных каналов для хлора или калия, без появления гиперполяризации и ТПСП.

7. Суммация возбуждения, а также торможения. Это означает, что отдельные локальные потенциалы (как ВПСП, так и ТПСП) на постсинаптическом воспринимающем нейроне суммируются в общий локальный потенциал. Этот суммарный локальный потенциал может достичь порогового значения и породить на воспринимающем нейроне потенциал действия и распространяющееся возбуждение - нервный импульс.

Виды суммации
1) Пространственная
2) Временная

8. Пластичность. Это означает, что синапсы могут перестраиваться и изменять свои характеристики, например, увеличивать или уменьшать амплитуду своих ВПСП или ТПСП. Это очень важное свойство синапсов. Этим они отличаются от неживых систем, обеспечивающих контакты и управление в технике.

Пластичность - это способность синапса изменять свои свойства в процессе функционирования.

Именно пластичностью синапсов обеспечивается запоминание, память, научение, формирование условных рефлексов и доминанту.

Агонисты – вещества, способные активировать рецептор.
Медиатор – частный случай агониста.
Антагонисты (блокаторы) – вещества, способные блокировать взаимодействие агониста с рецепторами.
Модуляторы–сенсибилизаторы – вещества, повышающие эффективность активации рецептора агонистом.
Лиганды - вещества, способные взаимодействовать с рецептором (т.е. это агонисты, антагонисты, модуляторы – сенсибилизаторы)
При взаимодействии медиатора с рецептором меняется ионная проницаемость (ионотропные рецепторы) или состояние внутриклеточных эффекторов, например, ионных насосов (метаботропныен рецепторы).
Рецептор постсинаптической мембраны имеет сайт (активный центр) для связывания медиатора (агониста).
Рецептор может иметь сайты для связывания модуляторов или комедиаторов, благодаря чему сродство данного рецептора к медиатору может существенно изменяться.
Так, в сыворотке крови и ликворе имеется эндогенный сенсибилизатор β-адренорецепторов (его функцию выполняют гистидин, триптофан, тирозин), повышающий в 10-100 раз чувствительность этих рецепторов к норадреналину и адреналину.
Для активации большинства рецепторов необходимо более одной молекулы агониста (медиатора). Так, для активации одного холинорецептора нужны две молекулы ацетилхолина. Это объясняется наличием двух симметричных агонист-связывающих альфа-субъединиц в составе холинорецептора.

Видео: Синапсы

Видео: Синапсы детей и взрослых работают по-разному

Видеолекция: Мозг: работа синапсов (Вячеслав Дубынин)

Смотрите также здесь: Синапсы


Нервная система

Раздражимость или чувствительность – характерная черта всех живых организмов, означающая их способность реагировать на сигналы или раздражители.

Сигнал воспринимается рецептором и передается с помощью нервов и (или) гормонов к эффектору, который осуществляет специфическую реакцию или ответ.

Животные имеют две взаимосвязанные системы координации функций – нервную и гуморальную (см. таблицу).

Нервная регуляция

Гуморальная регуляция

Электрическое и химическое проведение (нервные импульсы и нейромедиаторы в синапсах)

Химическое проведение (гормоны) по КС

Быстрое проведение и ответ

Более медленное проведение и отстроченный ответ (исключение - адреналин)

В основном кратковременные изменения

В основном долговременные изменения

Специфический путь распространения сигнала

Неспецифический путь сигнала (с кровью по всему телу)к специфической мишени

Ответ часто узко локализован (например, один мускул)

Ответ может быть крайне генерализованным (например, рост)

Нервная система состоит из высокоспециализированных клеток со следующими функциями:

- восприятие сигналов – рецепторы;

- преобразование сигналов в электрические импульсы (трансдукция);

- проведение импульсов к другим специализированным клеткам – эффекторам, которые получив сигнал, дают ответ;

Связь между рецепторами и эффекторами осуществляют нейроны .

Нейрон – это структурно – функциональная единица НС.


Нейрон — электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Нейрон имеет сложное строение и узкую специализацию. Нервная клетка содержит ядро, тело клетки и отростки (аксоны и дендриты).

В головном мозге человека насчитывается около 90—95 миллиардов нейронов. Нейроны могут соединяться друг с другом, образуя биологические нейронные сети.

Нейроны разделяют на рецепторные, эффекторные и вставочные.

Тело нейрона: ядро (с большим количеством ядерных пор) и органеллы (ЭПС, рибосомы, аппарат Гольджи, микротрубочки), а также из отростков (дендриты и аксоны).

Нейроглия – совокупность вспомогательных клеток НС; составляет 40% общего объема ЦНС.

  • Аксон – длинный отросток нейрона; проводит импульс от тела клетки; покрыт миелиновой оболочкой (образует белое вещество мозга)
  • Дендриты - короткие и сильно разветвлённые отростки нейрона; проводит импульс к телу клетки; не имеют оболочки


Важно! Нейрон может иметь несколько дендритов и обычно только один аксон.

Важно! Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.

  • чувствительные – передают возбуждение от органов чувств в спинной и головной мозг
  • двигательные – передают возбуждение от головного и спинного мозга к мышцам и внутренним органам
  • вставочные – осуществляют связь между чувствительными и двигательным нейронами, в спинном и головном мозге

Нервные отростки образуют нервные волокна.

Пучки нервных волокон образуют нервы.

Нервы – чувствительные (образованы дендритами), двигательные (образованы аксонами), смешанные (большинство нервов).

Синапс – это специализированный функциональный контакт между двумя возбудимыми клетками, служащий для передачи возбуждения


У нейронов синапс находится между аксоном одной клетки и дендритом другой; при этом физического контакта не происходит – они разделены пространством - синаптической щель.

Нервная система:

  • периферическая (нервы и нервные узлы) – соматическая и автономная
  • центральная (головной и спинной мозг)

В зависимости от характера иннервации НС:

  • Соматическая – управляет деятельностью скелетной мускулатуры, подчиняется воле человека
  • Вегетативная (автономная) – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека

Соматическая нервная система часть нервной системы человека, представляющая собой совокупность чувствительных и двигательных нервных волокон, иннервирующих мышцы (у позвоночных — скелетные), кожу, суставы.

Она представляет часть периферической нервной системы, которая занимается доставкой моторной (двигательной) и сенсорной (чувственной) информации до центральной нервной системы и обратно. Эта система состоит из нервов, прикрепленных к коже, органам чувств и всем мышцам скелета.

  • спинномозговые нервы – 31 пара; связаны со спинным мозгом; содержат как двигательные, так и сенсорные нейроны, поэтому смешанные;
  • черепномозговые нервы – 12 пар; отходят от головного мозга, иннервируют рецепторы головы (за исключением блуждающего нерва – иннервирует сердце, дыхание, пищеварительный тракт); бывают сенсорными, моторными (двигательными) и смешанными

Рефлекс – это быстрый автоматический ответ на раздражитель, осуществляемый без осознанного контроля головного мозга.

Рефлекторная дуга – путь, проходимый нервными импульсами от рецептора до рабочего органа.

  • в ЦНС – по чувствительному пути;
  • от ЦНС – к рабочему органу – по двигательному пути

- рецептор (окончание дендрита чувствительного нейрона) – воспринимает раздражение

- чувствительное (центростремительное) нервное волокно – передает возбуждение от рецептора к ЦНС

- нервный центр – группа вставочных нейронов, расположены на разных уровнях ЦНС; передает нервные импульсы с чувствительных нейронов на двигательные

- двигательное (центробежное) нервное волокно – передает возбуждение от ЦНС к исполнительному органу


Простая рефлекторная дуга: два нейрона – чувствительный и двигательный (пример – коленный рефлекс)

Сложная рефлекторная дуга: три нейрона – чувствительный, вставочный, двигательный (благодаря вставочным нейронам происходит обратная связь между рабочим органом и ЦНС, что позволяет вносить изменения в работу исполнительных органов)

Вегетативная (автономная) нервная система – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека.

Делится на симпатическую и парасимпатическую.


Обе состоят из вегетативных ядер (скопления нейронов, лежащих в спинном и головном мозге), вегетативных узлов (скопления нейронов, нейронов, за пределами НС), нервных окончаний (в стенках рабочих органов)

Путь от центра до иннервируемого органа состоит из двух нейронов (в соматической - один).

Место выхода из ЦНС

От спинного мозга – в шейный, поясничный, грудной отделы

От ствола головного мозга и ствола крестцового отдела спинного мозга

Местоположение нервного узла (ганглия)

По обе стороны спинного мозга, за исключением нервных сплетений (непосредственно в этих сплетениях)

В иннервируемых органах или вблизи них

Медиаторы рефлекторной дуги

В предузловом волокне –

в послеузловом - норадреналин

В обоих волокнах - ацетилхолин

Названия основных узлов или нервов

Солнечное, легочное, сердечное сплетения, брыжеечный узел

Общие эффекты симпатической и парасимпатической НС на органы:

  • Симпатическая НС – расширяет зрачки, угнетает слюноотделение, повышает частоту сокращений, расширяет сосуды сердца, расширяет бронхи, усиливает вентиляцию легких, угнетает перистальтику кишечника, угнетает секрецию пищеварительных соков усиливает потоотделение, удаляет с мочой лишний сахар; общий эффект – возбуждающий, повышает интенсивность обмена, снижает порог чувствительности; активизирует во время опасности, стресса, контролирует реакции на стресс
  • Парасимпатическая НС – сужает зрачки, стимулирует слезотечение, уменьшает частоту сердечных сокращений, поддерживает тонус артериол кишечника, скелетных мышц, снижает кровяное давление, уменьшает вентиляцию легких, усиливает перистальтику кишечника, расширяет артериолы в коже лица, увеличивает выделение с мочой хлоридов; общий эффект – тормозящий, снижает или не влияет на интенсивность обмена, восстанавливает порог чувствительности; доминирует в состоянии покоя, контролирует функции в повседневных условиях

Центральная нервная система (ЦНС) – обеспечивает взаимосвязь всех частей НС и их координированную работу

У позвоночных ЦНС развивается из эктодермы (наружного зародышевого листка)

ЦНС – 3 оболочки:

- твердая мозговая (dura mater) - снаружи;

- мягкая мозговая оболочка (pia mater) – прилегает непосредственно к мозгу.

Головной мозг расположен в мозговом отделе черепа; содержит

- белое вещество - проводящие пути между головным мозгом и спинным, между отделами головного мозга

- серое вещество - в виде ядер внутри белого вещества; кора покрывающая большие полушария и мозжечок

Масса головного мозга – 1400-1600 грамм.


5 отделов:

  • продолговатый мозг– продолжение спинного мозга; центры пищеварения, дыхания, сердечной деятельности, рвота, кашель, чихание, глотание, слюноотделение, проводящая функция
  • задний мозг – состоит из варолиевого моста и мозжечка; варолиев мост связывает мозжечок и продолговатый мозг с большими полушариями; мозжечок регулирует двигательные акты (равновесие, координация движений, поддержание позы)
  • промежуточный мозг– регуляция сложных двигательных рефлексов; координация работы внутренних органов; осуществление гуморальной регуляции;
  • средний мозг – поддержание тонуса мыщц, ориентировочные, сторожевые, оборонительные рефлексы на зрительные и звуковые раздражители;
  • передний мозг (большие полушария) – осуществление психической деятельности (память, речь, мышление).

Промежуточный мозг включает таламус, гипоталамус, эпиталамус

Таламус – подкорковый центр всех видов чувствительности (кроме обонятельного), регулирует внешнее проявление эмоций (мимика, жесты, изменение пульса, дыхания)

Гипоталамус – центры вегетативной НС, обеспечивают постоянство внутренней среды, регулируют обмен веществ, температуру тела, чувство жажды, голода, насыщения, сна, бодрствования; гипоталамус контролирует работу гипофиза

Эпиталамус – участие в работе обонятельного анализатора

Передний мозг имеет два больших полушария: левое и правое

  • Серое вещество (кора) находится сверху полушарий, белое – внутри
  • Белое вещество – это проводящие пути полушарий; среди него – ядра серого вещества (подкорковые структуры)

Кора больших полушарий – слой серого вещества, 2-4 мм в толщину; имеет многочисленные складки, извилины

Каждое полушарие разделено бороздами на доли:

- лобная – вкусовая, обонятельная, двигательная, кожно- мускульная зоны;

- теменная – двигательная, кожно- мускульная зоны;

- височная – слуховая зона;

- затылочная – зрительная зона.

Важно! Каждое полушарие отвечает за противоположную сторону тела.

  • Левое полушарие – аналитическое; отвечает за абстрактное мышление, письменную и устную речь;
  • Правое полушарие – синтетическое; отвечает за образное мышление.

Спинной мозг расположен в костном позвоночном канале; имеет вид белого шнура, длина 1м; на передней и задней сторонах есть глубокие продольные борозды

В самом центре спинного мозга – центральный канал, заполненный спинномозговой жидкостью.

Канал окружен серым веществом (имеет вид бабочки), который окружен белым веществом.

  • В белом веществе – восходящие (аксоны нейронов спинного мозга) и нисходящие пути (аксоны нейронов головного мозга)
  • Серое вещество напоминает контур бабочки, имеет три вида рогов.

- передние рога – в них расположены двигательные нейроны (мотонейроны) – их аксоны иннервируют скелетные мышцы

- задние рога – содержат вставочные нейроны – связывают чувствительные и двигательные нейроны

- боковые рога – содержат вегетативные нейроны – их аксоны идут на периферию к вегетативным узлам

Спинной мозг – 31 сегмент; от каждого сегмента отходит 1 пара смешанных спинномозговых нервов, имеющих по паре корешков:

- передний (аксоны двигательных нейронов);

- задний (аксоны чувствительных нейронов.

Функции спинного мозга:

- рефлекторная – осуществление простых рефлексов (сосудодвигательных, дыхательных, дефекации, мочеиспускания, половых);

- проводниковая – проводит нервные импульсы от и к головному мозгу.


Повреждение спинного мозга приводит к нарушению проводниковых функций, вследствие чего – паралич.

§ 9. Синаптические контакты нервных клеток

Каждый нейрон способен воспринимать и передавать информацию. Он осуществляет это в специальных участках мембраны (см. рис. I-12). От тела нейрона обычно отходят одиночные аксоны, по которым нейрон передаёт потенциалы действия или градуальные сигналы. Кроме них, нейрон образует древовидные дендриты, которые являются основной зоной получения входящих сигналов. Однако и по дендритам нейрон может передавать сигналы другим клеткам. Как входящие, так и передаваемые нейроном сигналы проходят по специализированным участкам клеточной мембраны — синапсам. Количество синапсов существенно варьирует как у отдельных нейронов, так и у разных видов. Обычно синапсов бывает не менее 5000, а максимальное количество контактов может превышать 100 000. Синапсы различают по строению, типу передачи сигналов, используемому медиатору и физиологическому действию. В самом общем виде выделяют электрические и химические синапсы.

Электрические синапсы считаются наиболее простыми и несущими линейную информацию. Они позволяют клеткам непосредственно влиять друг на друга без участия посредников или специальных механизмов. Передача сигнала происходит просто через щелевой контакт — специальное место в мембране (см. рис. I- 12). В этой зоне белковые молекулы образуют специальные цилиндры, пересекающие межклеточное пространство и позволяющие сигналу переходить от клетки к клетке. Передача сигнала осуществляется очень быстро, но иногда только в одном направлении. Эти сигналы эффективны для согласования однозначных действий эффекторных органов и высокоскоростной работы нервной сети, которая начинает функционировать, как одна гигантская клетка.

Химические синапсы имеют намного более сложную природу. Они проигрывают электрическим синапсам в скорости, но выигрывают в информационном содержании. При прохождении через химический синапс сигнал, как правило, изменяется. Это свойство заложено в самом устройстве синапса. Часть синапса, принадлежащая передающей клетке, выглядит, как луковичное вздутие мембраны. Оно может находиться в любом месте клетки. Однако чаще всего химические синапсы образуются между окончаниями волокон. В синапс передающей клетки поступают секреторные гранулы, транспортирующиеся из тела клетки. Они содержат синтезированные нейромедиаторы или нейромодуляторы. Секреторные гранулы собираются в концевой части луковичного расширения и скапливаются у пресинаптической мембраны (см. рис. I-12). Снаружи от синаптической мембраны расположена синаптическая щель, изолированная от внешней среды, а за ней — постсинаптическая мембрана воспринимающей сигнал клетки. При достижении электрической перезарядки мембраны уровня химического синапса происходит освобождение содержимого мембранных пузырьков передающей клетки в синаптическую щель. Пузырьки сливаются с пресинаптической мембраной, а их содержимое взаимодействует с белковыми рецепторными молекулами постсинаптической мембраны воспринимающей клетки. Начинается активизация молекулы-рецептора, которая несколько миллисекунд действует, как селективный ионный канал.

Далее события могут развиваться по-разному. Могут активизироваться вторичные посредники внутри воспринимающей клетки или просто открываться определённые ионные каналы. Самое главное, что сигнал изменяется. Он может усиливаться в десятки раз или, наоборот, затормаживаться. Ответ клетки, воспринимающей сигнал, состоит в деполяризации или гиперполяризации участка постсинаптической мембраны. Если используемые в синапсах медиаторы вызывают деполяризацию постсинаптической мембраны, то возникает возбуждающий постсинаптический потенциал, и клетка генерирует изменённый потенциал действия. При гиперполяризации (приводящей к удержанию мембранного потенциала на уровне покоя или немного увеличивающей разницу мембранных потенциалов) происходит подавление деполяризации постсинаптической мембраны. Отсутствие деполяризации мембраны по существу сходно с градуальным сигналом и тормозит передачу нервных импульсов. Такие потенциалы называют тормозными постсинаптическими потенциалами, а синапсы — тормозными.

При синаптической передаче огромную роль играют состояние клетки и используемые медиаторы. В синаптических пузырьках может находиться не один медиатор, а несколько. Они могут одновременно оказывать альтернативное действие на постсинаптическую мембрану. Этим достигается тончайшая модуляция информации, передаваемой от клетки к клетке. Надо отметить, что в одной клетке может одновременно сосуществовать множество модификаций синаптических каналов химической природы. Учитывая общее количество медиаторов и модуляторов, используемых в контактах, можно сказать, что на уровне передачи сигнала мы сталкиваемся с почти неисчерпаемым разнообразием индивидуализации сигналов, проходящих через химический синапс нервной клетки.

Уровни организации нервной ткани

Существует традиционное представление, что нервная система сложная или очень сложная. Однако сложная нервная система не столь недоступна для изучения, поскольку в её основе лежат те же принципы, что и в основе простой. Элементарным звеном нервной системы является нейрон, о котором уже говорилось. Нейрон

СТРУКТУРА НЕРВНОЙ КЛЕТКИ
7 фактов об устройстве и взаимодействии нейронов

Наш мозг является одной из самых сложноорганизованных систем в организме. В нем содержится множество разных типов клеток. Каждая из этих клеток может образовывать несколько тысяч контактов с другими клетками. Для того, чтобы понять, как клетки обмениваются информацией, как работа этих контактов влияет на то, что мы называем памятью, обучением, воспоминаниями, целесообразно рассмотреть устройство клетки и морфологию контактов между нервными клетками, так называемых синаптических контактов.

1. Нервная клетка имеет определенную, достаточно четко выраженную структуру. Имеется несколько частей клетки, так называемых компартментов: это тело самой клетки, самая крупная, самая заметная часть. Там содержится ядро клетки, в ядре содержится ДНК, то есть вся генетическая информация о том, чем она была, что она есть, и как ей работать. Кроме того у нейронов есть два типа отростков: аксоны и дендриты. Аксон у нейрона один, дендритов может быть много. Информацию клетка получает через дендриты и выдает через аксоны. Информация в нервной системе — это, по сути, электрические импульсы.

2. Каждая нервная клетка имеет мембранный потенциал. Для разных клеток он может немного отличаться. Когда нервная клетка живет, когда она активна, происходит постоянное колебание мембранного потенциала. Это могут быть небольшие колебания и сильные, резкие колебания. Небольшие колебания возникают, как правило, из-за того, что клетка получает информацию от других нервных клеток, это — вызванные постсинаптические потенциалы. И бывает резкое изменение мембранного потенциала — потенциал действия. Возникновение потенциала действия в нервной клетке приводит к тому, что она сама передает информацию. То есть это приводит к тому, что она выбрасывает нейромедиатор из терминалей аксона.

3. На конце аксона есть утолщения, которые называются аксонными терминалями. Эти аксонные терминали являются пресинаптической частью межнейронных контактов. Межклеточный контакт между двумя нервными клетками называется синапсом. Соответственно, синапс состоит из:
— пресинаптической части,
— постсинаптической части,
— синаптической щели.
Сейчас активно исследуется так называемый внеклеточный матрикс, который, как полагают, тоже является очень важной функциональной частью синапса, как и все молекулярные каскады, которые действуют в пресинапсе, и как и все молекулярные каскады, которые действуют в постсинапсе.

4. Когда в нервной клетке возникает потенциал действия, из пресинаптического окончания выбрасывается нейромедиатор. Нейромедиатор выбрасывается в синаптическую щель и достигает постсинаптической мембраны. В пресинаптическом окончании содержится много различающихся по размеру синаптических пузырьков, содержащих нейромедиатор. Когда потенциал действия приходит в пресинаптическое окончание, эти пузырьки сливаются с пресинаптической мембраной и выбрасывают свое содержимое наружу в синаптическую щель. В синаптической щели нейромедиатор мигрирует от пресинаптической мембраны к постсинаптической и взаимодействует с рецепторами. На постсинаптической мембране существует большое количество разных рецепторов. Например, наиболее интенсивно изучаемыми являются рецепторы глутамата. Глутамат – основной возбуждающий нейропередатчик в нервной системе млекопитающих.

5. Когда нейропередатчик достигает рецептора на постсинаптической мембране, происходит открытие связанных с рецепторами ионных каналов. Дело в том, что мембранный потенциал нервной клетки сформирован благодаря разнице в концентрации нескольких ионов внутри или снаружи клетки. Когда открываются ионные каналы, ионы снаружи могут попасть внутрь клетки, что приводит к изменению мембранного потенциала, и, как следствие, может привести к возникновению потенциала действия уже в постсинаптической клетке. По сути, этот процесс и есть процесс передачи информации между нервными клетками.

6. Описанная схема является очень общей, работающей для практически всех типов нервных клеток. На данный момент активно изучаются конкретные связи между конкретными типами клеток в конкретных структурах мозга. Для того, чтобы впоследствии сопоставить работу определенных синапсов с конкретными формами поведения или конкретными формами обучения. Например, в Шотландии существует лаборатория Андрея Розова, который исследует связи между принципиальными нейронами гиппокампа и интернейронами в гиппокампе. Гиппокамп — это одна из наиболее интенсивно изучаемых структур мозга, связанная с обучением и памятью. В данной лаборатории происходит изучение тормозной нейропередачи от интернейрона на принципиальный нейрон, на возбуждающий нейрон гиппокампа. Эта связь зависит от активации другого типа рецепторов — рецепторов к гамма-аминомасляной кислоте. В отличие от глутамата, этот нейромедиатор является основным тормозным медиатором в системе.

7. Изучение этой связи принципиально важно для понимания того, как в нервной системе происходит активация одних клеток при одновременном торможении активности других клеток. Такого рода исследования необходимы для того, чтобы понять, как в принципе работает мозг, почему мы можем сосредоточиться на какой-то одной мысли, или как мы выполняем какое-то одно конкретное действие, и какие группы клеток, какие структуры мозга в этом участвуют.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.