Кто установил рефлекторный принцип работы нервной системы установил

Физиология центральной нервной системы (ЦНС).

ЦНС – система, осуществляющая регуляцию практически всех функций в организме. ЦНС осуществляет связь в единое целое всех клеток и органов нашего организма. С ее помощью происходят наиболее адекватные изменения работы различных органов, направленные на обеспечение той или иной его деятельности. Кроме того, ЦНС осуществляет связь организма с внешней средой, путем анализа и синтеза поступающей к ней информации от рецепторов и формирует ответную реакцию, направленную на поддержание гомеостаза.

Строение ЦНС.

Структурной и функциональной единицей нервной системы является нервная клетка (нейрон). Нейрон -специализированная клетка, способная принимать, кодировать, передавать и хранить информацию, организовывать ответные реакции организма на раздражения, устанавливать контакты с другими нейронами.

Нейрон состоит из тела (сомы) и отростков - многочисленных дендритов и одного аксона (рис1).


Рис.1. Строение нейрона.

Дендриты обычно сильно ветвятся и образуют множество синапсов с другими нервными клетками, что определяет их ведущую роль в восприятии нейроном информации. Аксон начинается от тела клетки аксонным холмиком, функцией которого является генерация нервного импульса, который по аксону проводится к другим клеткам. Длина аксона может достигать одного метра и более. Аксон сильно ветвится, образуя множество коллатералей (паралелльных путей) и терминалей. Терминаль – окончание аксона, с помощью которого образуется синапс с другой клеткой. В ЦНС терминали формируют нейро-нейрональные синапсы, на периферии (за пределами ЦНС) аксоны образуют либо нейро-мышечные, либо нейросекреторные синапсы. Окончание аксона чаще называют не терминалью, а синаптической бляжкой (или синаптической пуговкой). Синаптическая бляшка – это концевое (терминальное) утолщение аксона, служащее для депонирования медиатора (смотрите лекции по синапсу). Мембрана окончаний содержит большое число потенциалозависимых кальциевых каналов, через которые ионы кальция поступают внутрь окончания при его возбуждении.

В большинстве центральных нейронов (т.е. нейронов ЦНС) ПД первично возникает в области мембраны аксонного холмика, и отсюда возбуждение распространяется по аксону к синаптической бляшке. Таким образом, уникальными особенностями нейрона являются способность генерировать электрические разряды и передавать информацию с помощью специализированных окончаний – синапсов.

Обработка импульсации (обработка информации, трансформация импульсации) - это наиболее значимая функция нейрона, которая осуществляется на аксонном холмике.

Помимо нейронов в ЦНС имеются глиальные клетки, занимающие половину объема мозга. Периферические аксоны (периферические – значит находящиеся за пределами ЦНС) также окружены оболочкой из глиальных клеток. Они способны к делению в течение всей жизни. Размеры 3-4 раза меньше, чем нейроны. С возрастом их число увеличивается.

Функции клеток глии многообразны:

1) они являются для нейронов опорным, защитным и трофическим аппаратом;

2) поддерживают определенную концентрацию ионов кальция и калия в межклеточном пространстве;

3) активно поглощают нейромедиаторы, ограничивая, таким образом, время их действия.

Классификация нейронов

Зависимости от отделов ЦНС: вегетативные и соматические

По виду медиатора , которая выделяется окончаниями нейрона: адренэргические(НА) и т.д

По влиянию бывают возбуждающие и тормозящие

По специфичности воспринимающей сенсорной информации нейроны высших отделов ЦНС бывают моно и полимодальные

По активности нейронов бывают:фоноактивные, молчащие- которые возбуждаются только в ответ на раздражение.

По источнику или направении передачи информации : афферентные, вставочные, эфферентные

Рефлекторный принцип деятельности ЦНС.

Основным механизмом деятельности ЦНС является рефлекс. Рефлекс - это ответная реакция организма на действия раздражителя, осуществляемая с участием ЦНС. Например, отдергивание руки при уколе, смыкание век при раздражении роговицы – это тоже рефлекс. Отделение желудочного сока при попадании пищи в желудок, дефекация при наполнении прямой кишки, покраснения кожи при тепловом воздействии, коленный, локтевой, Бабинского, Розенталя – это все примеры рефлексов. Количество рефлексов безгранично. Общим для них всех является обязательное участие в их реализации ЦНС.

Другим определением рефлекса, также подчеркивающим роль ЦНС, является следующее: рефлекс–это центробежный ответ на центростремительное раздражение. (В приведенных примерах самостоятельно определите, что является центробежным ответом, а что раздражением. Раздражение всегда центростремительное, т.е. действующий на рецепторы раздражитель вызывает импульсацию, которая поступает в ЦНС).

Структурной основой рефлекса, его материальным субстратом является рефлекторная дуга (рис.2).


Рис. 2.Рефлекторная дуга

Рефлекторная дуга состоит из 5 звеньев:

2) афферентного (чувствительного, центростремительного) звена;

3) вставочного звена (центрального);

4) эфферентного (двигательного, центробежного) звена;

5) эффектора (рабочего органа).

Участок тела, содержащий рецепторы, при раздражении которых возникает определенный рефлекс, называется рецептивным полем рефлекса.

Рефлекс может осуществляться только тогда, когда сохранена целостность всех звеньев рефлекторной дуги.

Нервный центр.

Нервный центр (центр ЦНС или ядро) – это совокупность нейронов, принимающих участие в осуществлении конкретного рефлекса. Т.е. каждый рефлекс имеет свой центр: существует центр коленного рефлекса, свой центр у локтевого рефлекса, свой - у мигательного, есть сердечно-сосудистый, дыхательный, пищевой центры, центры сна и бодрствования, голода и жажды и т.д. В целом организме при формировании сложных адаптивных процессов происходит функциональное объединение нейронов, расположенных на различных уровнях ЦНС, т.е. сложное объединение большого количества центров.

Объединение нервных центров (ядер) между собой осуществляется проводящими путями ЦНС с помощью нейро-нейрональных (межнейронных) синапсов. Существует 3 типа соединения нейронов: последовательное, дивергентное и конвергентное.

Нервные центры обладают рядом характерных функциональных свойств, которые во многом обусловлены этими тремя типами нейронных сетей, а также свойствами межнейронных синапсов.

Основные свойства нервных центров:

1. Конвергенция (схождение) (рис.3). В ЦНС к одному нейрону могут сходиться возбуждения от различных источников. Эта способность возбуждений сходиться к одним и тем же промежуточным и конечным нейронам получила название конвергенции возбуждений


Рис.3. Конвергенция возбуждения.

2. Дивергенция (расхождение) - расхождение импульсаций от одного нейрона сразу на многие нейроны. На основе дивергенции происходит иррадиация возбуждения и становится возможным быстрое вовлечение в ответную реакцию многих центров, расположенных на разных уровнях ЦНС.


Рис.4. Дивергенция возбуждения.

3. Возбуждение в нервных центрах распространяется односторонне - от рецептора к эффектору, что обусловливается свойством химических синапсов односторонне проводить возбуждение от пресинаптической мембраны к постсинаптической.

4. Возбуждение в нервных центрах проводится медленнее, чем по нервному волокну. Это обусловлено замедленным проведением возбуждения через синапсы (синаптическая задержка), которых в ядре много.

5. В нервных центрах осуществляется суммация возбуждений. Суммация – сложение допороговых импульсов. Различают два вида суммации.

Временная или последовательная, если импульсы возбуждения приходят к нейрону по одному и тему же пути через один синапс с интервалом меньше, чем время полной реполяризации постсинаптической мембраны. В этих условиях локальные токи на постсинаптической мембране воспринимающего нейрона суммируются и доводят ее деполяризацию до уровня Ек, достаточного для генерации нейроном потенциала действия. Временной данная суммация называется, потому что на нейрон в течение некоторого промежутка времени приходит серия импульсов (раздражений). Последовательной она называется, потому что реализуется в последовательном соединении нейронов.

Пространственная или одновременная - наблюдается в том случае, когда импульсы возбуждения поступают к нейрону одновременно через разные синапсы. Пространственной данная суммация называется, потому что раздражитель действует на некоторое пространство рецептивного поля, т.е. несколько (минимум 2) рецепторов разных участков рецептивного поля. (Тогда как временная суммация может реализоваться при действии серии раздражителей на один и тот же рецептор). Одновременной она называется, потому что информация к нейрону приходят одновременно по нескольким (минимум 2) каналам связи, т.е. одновременная суммация, реализуется конвергентным соединением нейронов.

6.Трансформация ритма возбуждения - изменение количества импульсов возбуждения, выходящих из нервного центра, по сравнению с числом импульсов, приходящих к нему. Различают два вида трансформации:

1) понижающая трансформация, в основе которой, лежит явление суммации возбуждений, когда в ответ на несколько пришедших допороговых возбуждений к нервной клетке, в нейроне возникает только одно пороговое возбуждение;

2) повышающая трансформация, в ее основе лежат механизмы умножения (мультипликации), способные резко увеличить количество импульсов возбуждения на выходе.

7. Рефлекторное последействие - заключается в том, что рефлекторная реакция заканчивается позже прекращения действия раздражителя. Это явление обусловлено двумя причинами:

1) длительной следовой деполяризацией мембраны нейрона, на фоне прихода мощной афферентации (сильной чувствительной импульсации), вызывающей выделение большого количества (квантов) медиатора, что обеспечивает возникновение нескольких потенциалов действия на постсинаптической мембране и, соответственно, кратковременное рефлекторное последействие;

2) пролонгированием выхода возбуждения к эффектору в результате циркуляции (реверберации) возбуждения в нейронной сети типа "нейронной ловушки". Возбуждение, попадая в такую сеть, может длительное время циркулировать в ней, обеспечивая длительное рефлекторное последействие. Возбуждение в такой цепочке может циркулировать до тех пор, пока какое-либо внешнее воздействие затормозит этот процесс или в ней наступит утомление. Примером последействия может служить хорошо всем известная жизненная ситуация, когда даже после прекращения действия сильного эмоционального раздражителя (после прекращения ссоры) еще какое-то более или менее продолжительное время продолжается общее возбуждение, артериальное давление остается повышенным, сохраняется гиперемия лица, тремор кистей.

8. Нервные центры обладают высокой чувствительностью к недостатку кислорода.Нервные клетки отличаются интенсивным потреблением О2. Мозг человека поглощает около 40-70 мл О2 в минуту, что составляет 1/4-1/8 часть всего количества О2, потребляемого организмом. Потребляя большое количество О2, нервные клетки высокочувствительны к его недостатку. Частичное прекращение кровообращения центра ведет к тяжелым расстройствам деятельности его нейронов, а полное прекращение - к гибели в течение 5-6 мин.

9. Нервные центры, как и синапсы, обладают высокой чувствительностью к действию различных химических веществ, особенно ядов. На одном нейроне могут располагаться синапсы, обладающие различной чувствительностью к различным химическим веществам. Поэтому можно подобрать такие химические вещества, которые избирательно будут блокировать одни синапсы, оставляя другие в рабочем состоянии. Это делает возможным корректировать состояния и реакции как здорового, так и больного организма.

10. Нервные центры, как и синапсы, обладают быстрой утомляемостью в отличие от нервных волокон, которые считаются практически неутомляемыми. Это обусловлено резким уменьшением запасов медиатора, уменьшением чувствительности к медиатору постсинаптической мембраны, уменьшением ее энергетических запасов, что наблюдается при длительной работе и является основной причиной развития утомления.

11. Нервные центры, как и синапсы, обладают низкой лабильностью,основной причиной которой является синаптическая задержка. Суммарная синаптическая задержка, наблюдающаяся во всех нейро-нейрональных синапсах при проведении импульсации по ЦНС, или в нервном центре называется центральной задержкой.

12. Нервные центры обладают тонусом, который выражается в том, что даже при отсутствии специальных раздражений, они постоянно посылают импульсы к рабочим органам.

13. Нервные центры обладают пластичностью - способностью изменять собственное функциональное назначение и расширять свои функциональные возможности. Так же пластичность можно определить, как способность одних нейронов брать на себя функцию пораженных нейронов того же центра. Именно, с явлением пластичности связана способность восстанавливать двигательную активность конечностей, например, ног, утраченную в результате травм спинного мозга. Однако это возможно только при поражении части нейронов данного центра или при сохранении целостными части проводящих путей ЦНС. При полном разрыве спинного мозга восстановление двигательной активности оказывается невозможным. Кроме того, нейроны одного центра, например, сгибателей не могут брать на себя функцию нейронов другого центра - разгибателей. Т.е. явление пластичности центров ЦНС ограничено.

14. Окклюзия (запирание) (рис.5) - это сложение пороговой импульсации. Окклюзия осуществляется (так же как и пространственная суммация) в конвергирующей системе соединения нейронов. Одновременной активации нескольких (минимум двух) рецепторов сильным или сверхсильным раздражителями к одному нейрону будут конвергировать несколько пороговых или сверхпороговых импульса. На этом нейроне будет происходить окклюзия, т.е. эти два раздражителя он ответит с той же максимальной силой, что и на каждый из них отдельности. Феномен окклюзии состоит в том, что количество возбужденных нейронов при одновременном раздражении афферентных входов обоих нервных центров оказывается меньше, чем арифметическая сумма возбужденных нейронов при отдельном раздражении каждого афферентного входа в отдельности.


Рис.6. Явление окклюзии в ЦНС.

Явление окклюзии приводит к снижению силы ответной реакции. Окклюзия имеет охранительное значение, предотвращая перенапряжение нейронов при действии сверхсильных раздражителей.



Основной принцип работы нервной системы – рефлекторный. Это означает, что главной формой нервной деятельности является рефлекс. Рефлексом называется реакция организма в ответ на раздражение чувствительных образований – рецепторов, выполняемая с участием нервной системы. Рефлекторный принцип нервной деятельности был открыт великим русским философом, физиком и математиком Рене Декартом в XVII веке. При всех рефлексах происходит раздражение рецепторов, т.е. окончаний чувствительных (или центростремительных) нервов. Возникшее в них возбуждение по центростремительному нерву передается в центральную нервную систему. Центростремительные нервные волокна являются длинными отростками чувствительных нервных клеток, находящихся вне спинного мозга - в особых нервных узлах, помещающихся в межпозвоночных отверстиях. Другой, более короткий, отросток этих клеток входит в спинной мозг, где и происходит передача возбуждения на другой нейрон. Возбуждение передается двигательным нервным клеткам, находящимся в спинном мозге, и по двигательным (или центробежным) нервам поступает к мышцам, вызывая их сокращение или расслабление, или к другим органам, приводя их в деятельное состояние. Путь, по которому идет возбуждение при осуществлении рефлексов, называется рефлекторной дугой.

Простая рефлекторная дуга состоит из двух нейронов - центростремительного (чувствительного) и центробежного (двигательного). Примерами могут служить спинальные рефлексы (коленный, оборонительный) или сужение зрачка на неожиданный яркий свет, при которых участие коры головного мозга не обязательно. Более сложные рефлексы, когда человек, подумав, совершает определенное действие. В таком случае формируется сложная рефлекторная дуга, в которой участвует, как минимум, три нейрона: между двумя нейронами - центростремительным и центробежным - включается еще один нейрон - вставочный (контактный, или промежуточный). При этом центростремительные нейроны не контактируют непосредственно с центробежными нервными клетками, а оканчиваются на вставочных нейронах, и уже только вставочные нейроны контактируют с центробежными нервными клетками. От рецепторов импульсы передаются на центростремительный нейрон, он передает возбуждение на вставочный нейрон (их может быть несколько), который находится в пределах центральной нервной системы. Вставочный нейрон передает возбуждение в высшие отделы головного мозга, а оттуда ответный импульс передается по центробежным нервным волокнам тому или иному органу. Так устроена сложная рефлекторная дуга. Следовательно, в рефлекторную дугу входят центростремительные, центробежные и вставочные нейроны. Для проведения возбуждения и осуществления рефлекса необходима целостность рефлекторной дуги. Приведенная схема двух- или трехнейронной дуги весьма упрощенная. На самом деле любой рефлекс представляет собой сложный акт, и в его осуществлении принимают участие не два или три нейрона, а значительно больше.

Итак, в любой рефлекторной дуге выделяют пять звеньев:

  1. рецептор;
  2. чувствительное волокно, проводящее нервный импульс к центральной части нервной системы (чувствительный или центростремительный путь);
  3. нервный центр, в котором происходит переключение возбуждения с чувствительных клеток на двигательные;
  4. двигательное волокно, передающие нервные импульсы на периферию (двигательный путь);
  5. действующий орган – мышца или железа.

Во время ответной реакции возбуждаются рецепторы рабочего органа и от них в ЦНС поступают импульсы – информация о достигнутом результате. Живой организм, как любая саморегулирующаяся система, работает по принципу обратной связи. Афферентные импульсы, осуществляющие обратную связь, либо усиливаются и уточняют реакцию, если она не достигла цели, либо прекращают ее. Таким образом, рефлекс заканчивается по достижении результата. Например, изучение функций спинного мозга проводят на опытах со спинномозговой лягушкой (искусственно отделяют ее спинной мозг от головного). Такая лягушка не может плавать, не реагирует на звуки, свет, внешнюю обстановку. Но при нанесении ей сильного раздражения (пинцетом или кислотой, помещенной на кожу) наблюдается движения всех конечностей. Это проявление оборонительного рефлекса. Если на кожу брюшка лягушки положить бумажку, смоченную кислотой, то она согласованными движениями сбрасывает раздражитель с поверхности тела. Это объясняется наличием обратной связи: раздражение кислотой вызывает реакцию лапок до тех пор, пока от рецепторов кожи не будут в спинной мозг посланы сигналы о том, что раздражение прекратилось.


Иван Сеченов

Сеченов Иван Михайлович (01/13.08.1829, с. Тёплый Стан – 02/15.11.1905, Москва), русский естествоиспытатель-материалист, основоположник отечественной физиологической школы и естественно-научных направлений в психологии, почётный академик Петербургской АН (1904; член-корреспондент 1869).

Различают следующие виды рефлексов:

  1. По биологическому значениюрефлексы подразделяются на пищевые, оборонительные, ориентировочные, половые.
  2. По роду рецепторов рефлексы делятся на экстероцептивные, возникающие с рецепторов, воспринимающих раздражения из внешней среды (световые, звуковые, вкусовые, тактильные), интероцептивные, возникающие с рецепторов внутренних органов (механо-, термо-, осмо-, хеморецепторов) и проприоцептивные – с рецепторов мышц, сухожилий и связок
  3. В зависимости от рабочего органа, участвующего в ответной реакции, рецепторы подразделяются на двигательные, секреторные, сосудистые.
  4. По нахождению главного нервного центра рефлекса – спинальные: мочеиспускание, дефекация; бульбарные (продолговатый мозг): кашель, чихание, рвота; мезэнцефальные (средний мозг): выпрямление тела, ходьба; диэнцефальные (промежуточный мозг): терморегуляция; корковые: условные рефлексы.
  5. В зависимости от продолжительности различают фазные (короткие движения) и тонические (продолжаются часами: позные рефлексы)
  6. По сложности – простые и сложные. Расширение зрачка в ответ на затемнение глаза, разгибание ноги в ответ на легкий удар по сухожилию – примеры простых рефлексов. Примером сложных рефлексов может служить процесс пищеварения. В случае сложного рефлекса окончание одного рефлекса может быть началом для другого. Возникает цепной механизм.
  7. По принципу эффекторной иннервации рефлексы можно разделить на скелетно-моторные (соматические), обеспечивающие двигательные акты скелетной мускулатуры, и вегетативные, регулирующие функции внутренних органов.
  8. В зависимости от того, являются ли рефлексы врожденными или приобретенными в процессе индивидуальной жизни, И. П. Павлов подразделял их на безусловные и условные.

Описание некоторых безусловных рефлексов:


Каждый рефлекс имеет свою локализацию в ЦНС, т.е. тот участок, который необходим для его осуществления. Например, центр мочеиспускания находится в крестцовом отделе спинного мозга, центр коленного рефлекса – в поясничном, центр расширения зрачка – в верхнем грудном сегменте спинного мозга. При разрушении соответствующего участка рефлекс отсутствует. Однако выяснилось, что для регуляции рефлекса, его точности недостаточно первичного или главного центра, а необходимо участие и высших отделов ЦНС (головной мозг, включая и кору). Так, если у животного удалить кору больших полушарий большого мозга, то дыхание сохраняется, т.к. первичный дыхательный центр находится в продолговатом мозге. Однако во время его работы не будет точного соответствия вентиляции легких потребностям организма в кислороде. И наоборот, у безмозжечковой собаки наблюдаются двигательные расстройства, которые со временем сглаживаются. Компенсация функций мозжечка происходит благодаря коре больших полушарий.

Общий план строения нервной системы

Значение нервной системы. Нервная система играет важнейшую роль в регуляции функций организма. Она обеспечивает согласованную работу клеток, тканей, органов и их систем. При этом организм функционирует как единое целое. Благодаря нервной системе осуществляется связь организма с внешней средой.

Деятельность нервной системы лежит в основе чувств, обучения, памяти, речи и мышления - психических процессов, с помощью которых человек не только познает окружающую среду, но и может активно ее изменять.

Нервная ткань. Нервная система образована нервной тканью, которая состоит из нейронов и мелких клеток-спутников. Нейроны - главные клетки нервной ткани: они обеспечивают функции нервной системы. Клетки-спутники окружают нейроны, выполняя питательную, опорную и защитную функции. Клеток-спутников примерно в 10 раз больше, чем нейронов.


Нейрон состоит из тела и отростков. Различают два типа отростков: дендриты и аксоны. Отростки могут быть длинными и короткими.

Большинство дендритов (греч. дендрон - дерево) - короткие, сильно ветвящиеся отростки. У одного нейрона их может быть несколько. По дендритам нервные импульсы поступают к телу нервной клетки.

Аксон, (греч. Аксис - отросток) - длинный, чаще всего мало ветвящийся отросток, по которому импульсы идут от тела клетки. Каждая нервная клетка имеет только 1 аксон, длина которого может достигать нескольких десятков сантиметров. По длинным отросткам нервных клеток импульсы в организме могут передаваться на большие расстояния.

Длинные отростки часто покрыты оболочкой из жироподобного вещества белого цвета. Их скопления в центральной нервной системе образуют белое вещество. Короткие отростки и тела нейронов не имеют такой оболочки. Их скопления образуют серое вещество.

Нейроны различаются по форме и функциям. Одни нейроны, чувствительные, передают импульсы от органов чувств в спинной и головной мозг. Тела чувствительных нейронов лежат на пути к центральной нервной системе в нервных узлах. Нервные узлы - это скопления тел нервных клеток за пределами центральной нервной системы. Другие нейроны, двигательные, передают импульсы от спинного и головного мозга к мышцам и внутренним органам. Связь между чувствительными и двигательными нейронами осуществляется в спинном и головном мозге вставочными нейронами, тела и отростки которых не выходят за пределы мозга. Спинной и головной мозг связан со всеми органами нервами.

Нервы - скопления длинных отростков нервных клеток, покрытых оболочкой. Нервы, состоящие из аксонов двигательных нейронов, называются двигательными нервами. Чувствительные нервы состоят из дендритов чувствительных нейронов. Большинство нервов содержат и аксоны и дендриты. Такие нервы называются смешанными. По ним импульсы идут в двух направлениях - к центральной нервной системе и от нее к органам.

Си́напс [1] (греч. σύναψις, от συνάπτειν — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Отделы нервной системы. Нервная система состоит из центрального и периферического отделов. Центральный отдел представлен головным и спинным мозгом, защищенным оболочками из соединительной ткани. К периферическому отделу относятся нервы и нервные узлы.

Часть нервной системы, которая регулирует работу скелетных мышц, называют соматической (греч. Сома - тело). Посредством соматической нервной системы человек может управлять движениями, произвольно вызывать или прекращать их. Часть нервной системы, регулирующую деятельность внутренних органов (сердца, желудка, желез и т.д.), называют автономной (греч. автономия - самоуправление). Работа автономной нервной системы не подчиняется человека. Нельзя, например, по желанию остановить сердце, ускорить процесс пищеварения, задержать потоотделение.

В автономной нервной системе различают два отдела: симпатический и парасимпатический. Большинство внутренних органов снабжаются нервами этик двух отделов. Как правило, они оказывают противоположные влияния на органы. Например, симпатический нерв усиливает и ускоряет работу сердца, а парасимпатический - замедляет и ослабляет ее.

Рефлекторный принцип работы нервной системы

Рефлекс. Рефлекторная дуга. Ответную реакцию организма на раздражение, осуществляемую и контролируемую центральной нервной системой, называют рефлексом. Путь, по которому проводятся нервные импульсы при осуществлении рефлекса, называют рефлекторной дугой. Рефлекторная дуга состоит из пяти частей: рецептора, чувствительного пути, участка центральной нервной системы, двигательного пути и рабочего органа.

Рефлекторная дуга начинается рецептором. Каждый рецептор воспринимает определенный раздражитель: свет, звук, прикосновение, запах, температуру и др. Рецепторы преобразуют чти раздражители в нервные импульсы-сигналы нервной системы. Нервные импульсы имеют электрическую природу, распространяются но мембранам длинных отростков нейронов и одинаковы у животных и человека.

От рецептора нервные импульсы по чувствительному пути передаются в центральную нервную систему. Этот путь образован чувствительным нейроном. От центральной нервной системы импульсы по двигательному пути идут к рабочему органу. В состав большинства рефлекторных дуг входят и вставочные нейроны, которые находятся как в спинном, так и в головном мозге.

Рефлексы человека разнообразны. Некоторые из них очень просты. Например, одергивание руки в ответ на укол или ожог кожи, обильное выделение слез под действием веществ, раздражающих глаза, чихание при попадании посторонних частиц в носовую полость. Во время рефлекторной реакции рецепторы рабочих органов передают сигналы в центральную нервную систему, которая контролирует, насколько реакция эффективна.

Таким образом, основной принцип работы нервной системы рефлекторный.

Значение возбуждения и торможения для рефлекторных реакции организма. В ответ на раздражение возникает согласованное рефлекторное изменение деятельности многих систем органов. Так, одергивание руки от горячего предмета возможно лишь при сокращении одних мышц и расслаблении других. При этом рефлекторно изменяется работа сердца, дыхание и т. д. Такая согласованная рефлекторная деятельность обусловлена взаимодействием в центральной нервной системе процессов возбуждения и торможения. Возбуждение нейронов сопровождается появлением или усилением одних рефлекторных реакций. Торможение нейронов приводит к ослаблению или полному прекращению других рефлексов.

Торможение ограничивает и уменьшает возбуждение нейронов. Ослабление торможения приводит к чрезмерному возбуждению и истощению нервной системы, а иногда и гибели организма. В то же время возбуждение обеспечивает реакцию организма на раздражители внешней и внутренней среды.

Впервые торможение в центральной нервной системе было открыто русским физиологом И.М. Сеченовым. Позднее ученые установили, что торможение связано с работой тормозных нейронов.

Спинной мозг

Строение спинного мозга. Спинной мозг расположен в костном позвоночном канале. Он имеет вид длинного белого шнура диаметром около 1 см. В центре спинного мозга проходит узкий спинномозговой канал, заполненный спинномозговой жидкостью. На передней и задней поверхности спинного мозга имеются две глубокие продольные борозды. Они делят его на правую и левую половины.

Центральная часть спинного мозга образована серым веществом, которое состоит из вставочных и двигательных нейронов. Вокруг серого вещества расположено белое вещество, образованное длинными отростками нейронов. Они направляются вверх или вниз вдоль спинного мозга, образуя восходящие и нисходящие проводящие пути.

От спинного мозга отходит 31 пара смешанных спинномозговых нервов, каждый из которых начинается двумя корешками: передним и задним.

Задние корешки - это аксоны чувствительных нейронов. Скопления тел этих нейронов образуют спинномозговые узлы. Передние корешки - это аксоны двигательных нейронов.

Функции спинного мозга. Спинной мозг выполняет 2 основные функции: рефлекторную и проводниковую.

Рефлекторная функция спинного мозга обеспечивает движение. Через спинной мозг проходят рефлекторные дуги. с которыми связано сокращение скелетных мышц тела (кроме мышц головы). Пример простейшего двигательного рефлекса - коленный рефлекс. Он проявляется в быстром подъеме ноги при резком ударе по сухожилию ниже коленной чашечки.

Спинной мозг вместе с головным мозгом регулирует работу внутренних органов: сердца, желудка, мочевого пузыря, половых органов.

Белое вещество спинного мозга обеспечивает связь и согласованную работу всех отделов центральной нервной системы, осуществляя проводниковую функцию. Нервные импульсы, поступающие в спинной мозг от рецепторов, передаются по восходящим проводящим путям в головной мозг. Из головного мозга импульсы по нисходящим проводящим путям поступают к нижележащим отделам спинного мозга и оттуда - к органам.

Головной мозг регулирует работу спинного мозга. Известны случаи, когда в результате ранения или перелома позвоночника у человека прерывается связь между спинным и головным мозгом. Головной мозг у таких людей функционирует нормально. Но большинство спинномозговых рефлексов, центры которых расположены ниже места повреждения, исчезают. Такие люди могут поворачивать голову, совершать жевательные движения, изменять направление взгляда, иногда у них действуют руки. В то же время нижняя часть их тела лишена чувствительности и неподвижна.

Нервное сплетение - это анатомическая структура периферической части нервной системы, представляющая собой сеть переплетающихся и анастомозирующих афферентных (чувствительных) и эфферентных (двигательных), соматических ивегетативных нервов и нервных узлов (ганглиев).
Соматический отдел нервной системы содержит соматические нервные сплетения, а вегетативный отдел нервной системы - вегетативные нервные сплетения.
Соматические нервные сплетения образованы передними ветвями шейных, грудных, поясничных, крестцовых и копчиковыхспинномозговых нервов. Выделяют шейное сплетение, плечевое сплетение, поясничное сплетение, крестцовое сплетение икопчиковое сплетение. Иногда поясничное и крестцовое сплетение объединяют в пояснично-крестцовое сплетение. От соматических сплетений отходят периферические нервы. В состав этих нервов входят нервные волокна принадлежащие нескольким соседним сегментам спинного мозга. Периферические нервы иннервируют кожу и мышцы шеи, груди, живота, верхних и нихних конечностей.

Ше́йное не́рвное сплете́ние (лат. plexus cervicalis) — это нервное сплетение, парное образование, сформированное передними ветвями четырёх верхних шейных спинномозговых нервов, соединённых тремя дугообразными петлями. Располагается на переднелатеральной поверхности глубоких мышц шеи (мышца, поднимающая лопатку, медиальная лестничная мышца, ременная мышца шеи) на уровне четырех верхних шейных позвонков. Спереди и сбоку оно прикрыто грудино-ключично-сосцевидной мышцей. Шейное сплетение состоит из таких нервов, как:

§ мышечные;

§ кожные;

§ диафрагмальные.

Имеет соединение с добавочным и подъязычным нервам.

Двигательные (мышечные) нервы (ветви) иннервируют расположенные рядом мышцы: длинные мышцы шеи и головы, передние, средние и задние лестничные мышцы, передние и латеральные прямые мышцы головы, передние межпоперечные мышцы и мышцы, поднимающие лопатку, а также шейная петля (лат. ansa cervicalis). В её образовании участвуют нисходящая ветвь подъязычного нерва — верхний корешок (лат. radix superior (anterior)), содержащий нервные волокна из шейного сплетения, и ветви, отходящие от шейного сплетения, — нижний корешок (лат. radix inferior (posterior)). Шейная петля располагается немного выше верха промежуточного сухожилия лопаточно-подъязычной мышцы, на передней поверхности общей сонной артерии. Нервы, отходящие от шейной петли, иннервируют мышцы, расположенные ниже подъязычной кости (подподъязычные мышцы: грудино-подъязычная, грудино-щитовидная, лопаточно-подъязычная, щитоподъязычная). От шейного сплетения отходят ветви двигательных нервов, иннервирующие также трапециевидную и грудино-ключично-сосцевидную мышцы [1] .

Дата добавления: 2019-02-26 ; просмотров: 183 ;

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.