На постсинаптической мембране симпатических ганглиев располагаются

а) Ганглионарная передача нервных импульсов. Преганглионарные нейроны симпатической и парасимпатической систем — холинергические: при образовании аксодендритических синапсов с ганглионарными клетками из этих нейронов высвобождается ацетилхолин (АХ). Рецепторы на поверхности ганглионарных клеток называют никотиновыми, так как их возбуждение может происходить при местном действии никотина.

б) Передача нервных импульсов в нейроэффекторном синапсе. Постганглионарные нервные волокна симпатической и парасимпатической систем образуют нейроэффекторные соединения (синапсы)с эффекторными тканями (тканями-мишенями). За высвобождение нейромедиаторов отвечают многочисленные пресинаптические утолщения, расположенные по ходу нервных волокон.

Главный нейромедиатор в симпатических нейроэффекторных соединениях — норадреналин (норэпинефрин), который высвобождается из гранулярных везикул. Постганглионарные симпатические волокна — преимущественно адренергические; исключение составляют холинергические волокна, отвечающие за симпатическую иннервацию расположенных по всему телу эккриновых потовых желез. Главный нейромедиатор в парасимпатических нейроэффекторных соединениях — ацетилхолин (АХ). Постганглионарные парасимпатические волокна преимущественно холинергические.


Нейромедиаторы и рецепторы вегетативной нервной системы.
(1) Аксодендритические синапсы с никотиновыми рецепторами.
(2) Нейроэффекторные синапсы с адренергическими рецепторами.
(3) Нейроэффекторные синапсы с мускариновыми рецепторами. Ганглионарные нейроны и постганглионарные волокна выделены красным цветом.
АХ — ацетилхолин; М — мускариновые рецепторы; Н — никотиновые рецепторы; НА — норадреналин.

в) Рецепторы в нейрозффекторном синапсе. Физиологические эффекты вегетативной нервной системы (ВНС) зависят от вида рецепторов на постсинаптической мембране (плазматической мембране эффекторных клеток). На высвобождение нейромедиаторов также влияют рецепторы пресинаптической мембраны (аксолеммы).

- Синаптические рецепторы симпатической системы (адренорецепторы). Для норадреналина существуют два вида а-адренорецепторов и два вида β-адренорецепторов.

1. Постсинаптические α1-адренорецеторы, активация которых вызывает сокращение гладких мышц мелких периферических артерий и крупных артериол, дилататора зрачка, а также мышц семявыносящего протока, сфинктеров ЖКТ и шейки мочевого пузыря.

2. Пресинаптические α2-адренорецеторы локализуются как на симпатических, так и на парасимпатических нервных окончаниях и ингибируют в них высвобождение нейромедиаторов. Пресинаптические α2-адренорецеторы симпатической системы называют ауторецепторами.

3. Постсинаптические адренорецепторы, возбуждение которых приводит к увеличению пейсмекерной активности клеток сердца, а также к повышению силы сердечных (желудочковых) сокращений. При резком падении артериального давления за счет активации симпатических β1-адренорецепторов юкстагломерулярных клеток почек происходит секреция ренина, который, в свою очередь, вызывает секрецию мощного вазоконстриктора ангиотензина II.

4. β2-Адренорецепторы, которые реагируют как на норадреналин, так и на адреналин (эпинефрин).

Активация постсинаптических β2-адренорецепторов вызывает расслабление гладких мышц, наиболее ярко выраженное в трахеобронхиальном дереве и мышцах глаза, участвующих в аккомодации. Часть постсинаптических β2-адренорецепторов располагается на поверхности гепатоцитов. При возрастании энергетических затрат организма их активация вызывает распад гликогена, необходимый для поддержания уровня глюкозы в крови.

Пресинаптические β2-адренорецепторы адренергических нервных окончаний отвечают за высвобождение норадреналина.

В симпатических нервных окончаниях большая часть высвобождаемого норадреналина подвергается обратному захвату моноаминным ферментным насосом. После обратного захвата часть норадреналина разрушается митохондриальным ферментом — моноаминоксидазой (МАО). Влияние лекарственных средств на симпатическую систему подробно рассмотрено в блоке клинической информации ниже.


Передача возбуждения в адренергическом нейроэффекторном синапсе.
Секреция норадреналина стимулируется адреналином и ингибируется путем активации пресинаптических α2-рецепторов (данные рецепторы активируются и на пресинаптической мембране близлежащих парасимпатических синапсов, где также ингибируют секрецию).

- Синаптические рецепторы парасимпатической системы. Парасимпатические синаптические рецепторы называют мускариновыми, так как их активацию, помимо АХ, может вызывать другое химическое вещество — мускарин. Стимуляция парасимпатической системы приводит к следующим М-холинергическим эффектам.
• Замедление (в ответ на стимуляцию блуждающего нерва) частоты сердечных сокращений, а также уменьшение силы желудочковых сокращений.
• Сокращение гладких мышц, которое обусловливает такие процессы, как перистальтика кишечника, опустошение мочевого пузыря, а также рефлекс аккомодации при взгляде на близкое расстояние.
• Секреция желез.

Помимо представленных выше эффектов, пресинаптические мускариновые рецепторы симпатических нервных окончаний также отвечают за ингибирование высвобождения норадреналина.

Влияние лекарственных средств на парасимпатическую систему подробно рассмотрено в Блоке клинической информации. Лекарственные средства, обладающие мускариноподобным действием, называют холинергическими (холиномиметическими). Лекарственные средства, блокирующие доступ АХ к постсинаптической мембране, называют антихолинергическими (холинолитическими).

Главный фактор, который необходимо учитывать при назначении препаратов, активирующих или подавляющих деятельность симпатической и парасимпатической систем,— наличие рецепторов к этим лекарственным веществам α-, β- и мускариновых) в ЦНС. Так, в частности, применение данных лекарственных средств в психиатрии обусловлено их действием на центральные, а не на периферические рецепторы.


Расположение парасимпатических интрамуральных ганглиев в сердце.
Синаптическое соединение преганглионарного волокна грудного внутренностного нерва и хромаффинной клетки мозгового вещества надпочечников.
Активация никотиновых рецепторов ацетилхолином (АХ).
8% клеток содержат крупные гранулярные везикулы (представлены на рисунке), высвобождающие адреналин; его секрекция в капиллярное русло обозначена стрелкой.
20% клеток содержат маленькие гранулярные везикулы, высвобождающие норадреналин.

Высвобождение и обратный захват нейромедиатора в адренергическом нервном окончании.
МАО — моноаминоксидаза.

Передача возбуждения в холинергическом нейроэффекторном синапсе.
Избыточная секреция ацетилхолина (АХ) ингибируется путем активации пресинаптических мускариновых рецепторов (данные рецепторы активируются и на пресинаптической мембране близлежащих симпатических синапсов, где также ингибируют секрецию).

г) Другие типы нейронов. И в симпатическом, и в парасимпатическом отделах ВНС часть нейронов представлена неадренергическими, нехолинергическими нейронами (NANC-нейронами). Находящиеся в симпатических ганглиях небольшие вставочные нейроны отвечают за высвобождение дофамина — предшественника норадреналина. Часть дофамина выделяется в капиллярное русло, другая часть связывается с дофаминовыми рецепторами на основных (адренергических) нейронах, оказывая на них слабое тормозное действие.

Самое большое количество NANC-нейронов находится в области ганглионарных клеток стенки ЖКТ и в тазовых ганглиях. Эти нейроны содержат более 50 разнообразных белковых субстанций, находящихся в несвязанном состоянии или в различных комбинациях. Функция большей части этих веществ — регуляторная: действуя на пресинаптическую или постсинаптическую мембрану, они влияют на продолжительность работы основных нейромедиаторов. Другие белковые субстанции (вещества, выделяющиеся совместно с ацетилхолином (АХ)) представляют собой комедиаторы (сопутствующие медиаторы).


Редактор: Искандер Милевски. Дата публикации: 14.11.2018

а) медиатора серотонина и серотонинергических рецепторов;

б) медиатора ацетилхолина и Н-холинорецепторов;

в) медиатора норадреналина и альфа- и бета-адренорецепторов.

Передача возбуждения с постганглионарных парасимпатических нервов осуществляется посредством

а) медиатора ацетилхолина и М-холинорецепторов постсинаптической мембраны;

б) медиатора ацетилхолина и Н-холинорецепторов постсинаптической мембраны;

в) медиатора норадреналина и альфа- и бета-адренорецепторов постсинаптической мембраны.

Постганглионарные симпатические волокна, иннервирующие сердце, выделяют медиатор

г) норадреналин;

Постганглионарные парасимпатические нервы относятся к

а) холинергическим;

В симпатических ганглиях медиатором является

Д) ацетилхолин.

Сужение зрачка на свет вызывает медиатор и рецептор

а) норадреналин и альфа-адренорецептор;

б) норадреналин и бета-адренорецептор;

в) ацетилхолин и Н-холинорецептор;

г) ацетилхолин и М-холинорецептор;

д) адреналин и бета-адренорецептор.

Дуга вегетативного рефлекса отличается от дуги соматического тем, что

а) не имеет афферентного звена;

б) в эфферентном пути есть вегетативный ганглий;

в) в эфферентном пути есть спинальный ганглий;

г) не имеет исполнительного органа;

д) нейроны дуги связаны электрическими синапсами.

К вегетативным рефлексам не относятся

г) вестибуло-моторные;

К висцеральным рефлексам относятся

а) вестибуло-моторные, сухожильные;

б) висцеро-висцеральные, висцеро-секреторные, висцеро-вазомоторные;

в) висцеро-вазомоторные, соматические, экстероцептивные.

Вторичными посредниками являются

а) ацетилхолин и фосфолипаза С;

Б) цАМФ, цГМФ, инозитол-три-фосфат, Са;

в) магний, натрий, АТФ;

г) фосфолипиды, норадреналин и адреналин.

Гормонами передней доли гипофиза являются

а) либерины, статины;

б) окситоцин, вазопрессин, глюкокортикоиды;

в) адренокортикотропный гормон, соматотропный, тиреотропный, гонадотропный;

г) адреналин, норадреналин, серотонин;

д) тироксин, натрийуретический, глюкагон.

Гормон, регулирующий выделение глюкокортикоидов

в) лютеинизирующий гормон;

Г) адренокортикотропный.

При гиперфункции щитовидной железы основной обмен

б) повышается;

в) не изменяется.

При гипофункции щитовидной железы основной обмен

б) снижается;

г) не изменяется.

Выделение гормонов щитовидной железы регулирует гормон

Г) тиреотропный.

При избытке инсулина содержание гликогена а мышцах

а) увеличивается;

в) не изменяется.

Для того, чтобы заблокировать тормозные парасимпатические влияния на сердце, вы назначите

а) блокираторы М-холинорецепторв;

б) блокираторы Н-холинорецепторв;

в) блокираторы бета-адренорецепторов;

г) блокираторы альфа-адренорецепторов.

Раздел: Кровь.

Объем крови у здорового человека составляет от массы тела

а) 5 – 9%; б) 6 – 8%; в) 9 – 10%; г) 8 – 9%; д) 4 – 5%.

Часть объема крови, приходящаяся на форменные элементы, называется

а) плотным остатком;

в) цветовым показателем;

г) гематокритом;

д) лейкоцитарной массой.

Какая жидкость соответствует по составу нормальной плазме крови?

а) б) в)
Вода 92% 90% 90%
Белки 7% 8% 8%
Соли 0,9% 2% 0,1%

Осмотическое давление крови создается в основном

В) солями.

Для нормализации повышенного осмотического давления крови

а) увеличивается выработка антидиуретического гормона;

б) уменьшается выработка антидиуретического гормона;

в) формируется солевой аппетит;

г) уменьшается выработка натрийуретического гормона.

Гемолизом называют

а) разрушение оболочки эритроцитов;

б) растворение тромба;

в) сморщивание эритроцитов;

г) склеивание эритроцитов.

Какой раствор поваренной соли изотоничен плазме крови

а) 0,75%; б) 0,9%; в) 20%.

Осмотическое давление крови в норме равно

а) 760 мм рт.; ст. б) 7,9 атм.; в) 7,6 атм.; г) 7,36 атм.; д) 9,9 атм.

Дата добавления: 2019-02-22 ; просмотров: 785 ;

Холинергические синапсы представляют собой место, в котором происходит контакт двух нейронов или нейрона и эффекторной клетки, получающей сигнал. Синапс состоит из двух мембран – пресинаптической и постсинаптической, а также из синаптической щели. Передача нервного импульса осуществляется посредством медиатора, то есть вещества-передатчика. Происходит это в результате взаимодействия рецептора и медиатора на постсинаптической мембране. В этом заключаются основные функции холинергического синапса.

Медиатор и рецепторы


В парасимпатической НС медиатором является ацетилхолин, рецепторами – холинорецепторы двух типов: Н (никотин) и М (мускарин). М-холиномиметики, обладающие прямым типом действия, могут стимулировать рецепторы на мембране постсинаптического типа.

Синтез ацетилхолина осуществляется в цитоплазме нейронных холинергических окончаний. Он образуется из холина, а также ацетилкоэнзима-А, который имеет митохондриальное происхождение. Синтез происходит под действием цитоплазматического энзима холинацетилазы. В синаптических пузырьках происходит депонирование ацетилхолина. В каждом из таких пузырьков может находиться до нескольких тысяч ацетилхолиновых молекул. Нервный импульс провоцирует высвобождение молекул ацетилхолина в синаптическую щель. После этого он вступает во взаимодействие с холинорецепторами. Строение холинергического синапса уникально.

Строение

По данным, которые имеются у биохимиков, холинорецептор нервно-мышечного синапса может включать 5 белковых субъединиц, которые окружают ионный канал и проходят сквозь всю толщу мембраны, состоящей из липидов. Пара молекул ацетилхолина вступает во взаимодействие с парой α-субъединиц. Это приводит к тому, что открывается ионный канал и постсинаптическая мембрана деполяризуется.

Виды холинергических синапсов


Холинорецепторы по-разному локализованы и так же по-разному чувствительны к воздействию фармакологических веществ. В соответствии с этим различают:

  • Маскариночувствительные холинорецепторы – так называемые М-холинорецепторы. Мускарин представляет собой алкалоид, присущий ряду ядовитых грибов, к примеру мухоморам.
  • Никотиночувствительные холинорецепторы – так называемые Н-холинорецепторы. Никотин представляет собой алкалоид, содержащийся в листьях табака.

Их расположение

Первые располагаются в постсинаптической мембране клеток в составе эффекторных органов. Расположены они у окончаний постганглионарных парасимпатических волокон. Помимо этого они также есть в нейронных клетках вегетативных ганглиев и в коре головного мозга. Установлено, что М-холинорецепторы различной локализации гетерогенны, что обуславливает различную чувствительность холинергических синапсов к веществам фармакологической природы.


Виды в зависимости от расположения

Биохимики различают несколько видов М-холинорецепторов:

  • Расположенные в вегетативных ганглиях и в ЦНС. Особенностью первых является то, что они локализованы вне синапсов – М1-холинорецепторы.
  • Расположенные в сердце. Некоторые из них способствуют снижению высвобождения ацетилхолина – М2-холинорецепторы.
  • Расположенные в гладких мышцах и в большей части эндокринных желез – М3-холинорецепторы.
  • Расположенные в сердце, в стенках легочных альвеол, в ЦНС – М4-холинорецепторы.
  • Расположенные в ЦНС, в радужной оболочке глаза, в слюнных железах, в мононуклеарных кровяных клетках – М5-холинорецепторы.

Воздействие на холинорецепторы

Большая часть эффектов, оказываемых известными фармакологическими веществами, влияющими на М-холинорецепторы, связана с взаимодействием этих веществ и постсинаптических М2- и М3-холинорецепторов.

Рассмотрим классификацию средств, стимулирующих холинергические синапсы, ниже.

Н-холинорецепторы располагаются в постсинаптической мембране нейронов ганглиев у окончаний каждого из преганглионарных волокон (в парасимпатических и симпатических ганглиях), в синокаротидной зоне, в мозговом слое надпочечников, в нейрогипофизе, в клетках Реншоу, в скелетных мышцах. Чувствительность различных Н-холинорецепторов неодинакова к веществам. Например, Н-холинорецепторы в структуре вегетативных ганглиев (рецепторы нейтрального типа) имеют значительные отличия от Н-холинорецепторов в скелетных мышцах (рецепторы мышечного типа). Именно такая их особенность позволяет избирательно блокировать ганглии специальными веществами. Например, курареподные вещества способны блокировать нервно-мышечную передачу.


Пресинаптические холинорецепторы и адренорецепторы участвуют в регуляции процесса высвобождения ацетилхолина в синапсах нейроэффекторной природы. Возбуждение этих рецепторов будет угнетать высвобождение ацетилхолина.

Ацетилхолин взаимодействует с Н-холинорецепторами и изменяет их конформацию, повышает уровень проницаемости постсинаптической мембраны. Ацетилхолин оказывает возбуждающий эффект на ионы натрия, которые проникают затем внутрь клетки, а это приводит к тому, что постсинаптическая мембрана деполяризуется. Изначально возникает локальный синаптический потенциал, который достигает определенной величины и начинает процесс генерации потенциала действия. После этого местное возбуждение, которое ограничено синаптической областью, начинает распространяться по всей клеточной мембране. Если происходит стимуляция М-холинорецептора, то при передаче сигнала значительную роль играют вторичные мессенджеры и G-белки.

Ацетилхолин действует в течение весьма короткого времени. Это обусловлено тем, что он стремительно гидролизуется под действием фермента ацетилхолинэстеразы. Холин, который образуется в процессе гидролиза ацетилхолина, в половине объема будет захвачен пресинаптическими окончаниями и транспортирован в цитоплазму клетки для последующего биосинтеза ацетилхолина.


Вещества, которые воздействуют на холинергические синапсы

Фармакологические и разнообразные химические вещества способны воздействовать на множество процессов, которые связаны с синаптической передачей:

  • Процесс синтеза ацетилхолина.
  • Процесс высвобождения медиатора. К примеру, карбахолин способен усиливать процесс выделения ацетилхолина, а ботулиновый токсин может препятствовать процессу высвобождения медиатора.
  • Процесс взаимодействия между ацетилхолином и холинорецептором.
  • Гидролиз ацетилхолина энзиматической природы.
  • Процесс захвата холина, образованного в результате гидролиза ацетилхолина, пресинаптическими окончаниями. К примеру, гемихолиний способен угнетать нейроновый захват и транспортировку холина в цитоплазму клетки.

Классификация


Средства, стимулирующие холинергические синапсы, способны оказывать не только этот эффект, но и холиноблокирующий (угнетающий) эффект. В качестве основы для классификации подобных веществ биохимики используют направленность действия этих веществ на различные холинорецепторы. Если придерживаться такого принципа, то вещества, оказывающие влияние на холинорецепторы, можно классифицировать следующим образом:

  • Вещества, которые оказывают влияние на М-холинорецепторы и Н-холинорецепторы: к холиномиметикам относятся ацетилхолин и карбахолин, а к холиноблокаторам – циклодол.
  • Средства антихолинэстеразного характера. К ним относятся салицилат физостигмина, прозерин, гидробромид галантамина, армин.
  • Вещества, которые влияют на холинергические синапсы. К холиномиметикам относятся гидрохлорид пилокарпина и ацеклидин, к холиноблокаторам – сульфат атропина, матацин, гидротартрат платифиллина, бромид ипратропия, гидробромид скопаламина.


Мы подробно рассмотрели средства, влияющие на холинергические синапсы.

Синапсы вегетативной нервной системы имеют в целом такое же строение, что и центральные.

Передача нервных импульсов с преганглионарных волокон на нейроны всех вегетативных ганглиев осуществляется Н-холинергическими синапсами, т.е. синапсами, на постсинаптической мембране которых расположены никотинчувствительные холинорецепторы.

Постганглионарные холинергические волокна образуют на клетках исполнительных органов М-холинергические синапсы. Их постсинаптическая мембрана содержит мускаринчувствительные рецепторы (блокатор - атропин).

И в тех, и в других синапсах передача возбуждения осуществляется ацетилхолином. М-холинергические синапсы оказывают возбуждающее влияние на гладкие мышцы пищеварительного канала, мочевыводящей системы (кроме сфинктеров), железы ЖКТ. Однако они уменьшают возбудимость, проводимость и сократимость сердечной мышцы и вызывают расслабление некоторых сосудов головы и таза.

Постганглионарные синаптические волокна образуют 2 типа адренергических синапсов на эффекторах: альфа-адренегрические и бета-адренергические. Постсинаптическая мембрана первых содержит бета1- и бета2- адренорецепторы.

постгаплионарными волокнами иннервируются клетки подкожно-жировой клетчатки и печени и, возможно, канальцы почек и лимфатические образования (например, вилочковая железа, селезенка, пейеро-вы бляшки и лимфатические узлы). Постганглионарные симпатические волокна, иннервирующие потовые железы и сосуды скелетных мышц, выделяют ацетилхолин, являются холинергическими.

Норадреналин — нейромедиатор адренергической системы. Другая важная составляющая ВНС — адренергическая система. До сих пор неизвестно, какой нейромедиатор использовался в этой системе первоначально — эпинефрин или норэпинефрин. Сейчас известно, что за исключением надпочечников, которые секретируют эпинефрин (адреналин), нейроме-диатором в адренергической системе является норэпинефрин. Ацетилхолин — ганглионарный медиатор для холинергической и адренергической систем. Эфферентные нервы и для холинергической, и для адренергической систем происходят из соответствующих частей ствола мозга и спинного мозга. Эфферентные нервы образуют синапс в ганглии, расположенном вне органа.

32. Холинэргические и адренэргические нервы. Биохимический механизм передачи возбуждения в холинэргических и адренэргических нервах. М- и Н-холинореактивные системы.

Симпатические и парасимпатические нервные волокна секретируют в основном один из двух синаптических медиаторов — ацетилхолин или норадреналин. Волокна, секретирующие ацетилхолин, называют холинергическими, волокна, секретирующие норадреналин, называют адренергическими (термин, происходящий от адреналина, — альтернатива эпинефрину).

Все преганглионарные нейроны (и симпатической, и парасимпатической нервных систем) являются холинергическими. Ацетилхолин или подобные ему вещества при действии их на ганглии возбуждают симпатические и парасимпатические постганглионарные нейроны. Все или почти все постганглионарные нейроны парасимпатической системы — также холинергические.

С другой стороны, большинство постганглионарных симпатических нейронов являются адренергическими. Однако постганглионарные симпатические нервные волокна, идущие к потовым железам, мышцам, поднимающим волосы, и к очень небольшому числу кровеносных сосудов, являются холинергическими.

Холинергические механизмы нервной системы - это вещества, которые обеспечивают передачу возбуждения в холинергическом синапсе.

Медиатор ацетилхолин (эфир холина и уксусной кислоты) образуется из аминокислоты холина и ацетил-СоА на пресинаптическом окончании нервноего волокна. Образующийся медиатор поступает в везикулы, а частично может остаться в свободном состоянии. При возбуждении медиатор выделяется из везикул. Процесс выделения медиатора С-зависим. Для нормальной работы синапса необходим запас медиатора, поэтому на пресинаптической мембране идёт ресинтез ацетилхолина. Для этого аминокислота холин выделяется из постсинаптической мембраны, частично из синаптической щели (возврат медиатора). Для образования медиатора необходима энергия метехондрий.

Фермент, способствующий синтезу ацетилхолина - ацетилхолинтрансфераза или холинацетилаза. Этот фермент образуется в теле нейрона и поступает в нервные окончания. Для нормального образования медиатора необходима целостность тела нейрона. Изолированное нервное волокно не может долго выделять медиатор.

Фермент, расщепляющий ацетилхолин - ацетилхолинэстераза. Этот фермент обладает высоким сродстворм к ацетилхолину, который находится в виде комплекса и Х-рецептором. Различают истинную ацетилхолинэстеразу (находится в синапсах и эритроцитах), которая расщепляет ацетилхолин в физиологических концентрациях и ложную ацетилхолинэстеразу (в жидкостях организма - слюне, плазме и т. д.), которая расщепляет ацетилхолин в высоких концентрациях и разрушает еще и различные производные ацетилхолина (курарекодовые препараты). Освобождённый холин с помощью переносчиков поступает на пресимпатическую мембрану, а уксусная кислота и глюкоза поступают в кровь через межтканевую жидкость.

Адренергические механизмы нервной системы осуществляются за счет норадреналина - составляет 90 % и других катехоламинов - 10 %.

Предшественник норадреналина - изопропилнораденалин, дофамин. Для синтеза необходимы аминокислоты тиронин, фениламин, которые поступают с постсинапсической мембраны и из тела нейрона. Любые структуры могут образовывать норадреналин, но 95 % его образуется на пресимпатической мембране.

Ферменты синтеза норадреналина - трансаминазы.

Ферменты разрушения ноадреналина - группа катехоламинтрансфераз, часто моноаминоуксусная кислота и моноаминооксидант.

Адренорецепторы - белковые молекулы, обладающие сродством к норадреналину и его производным. Эти рецепторы - наружная субъединица крайней белковой молекулы, внутренняя субъединица может быть ферментом (адемилат- и гуанилатциклазы). При взаимодействии с рецептором изменяется структура молекулы белка и, как следствие, изменяется активность фермента.

Существует 2 вида холинорецепторов - М и Н.

М-холинорецепторы - чувствительны к мускалину (яду мухомора) - расположены в основном во внутренних органах, эндокринных железах, сердце, сосудах, дыхательных путях, желудочнокишечном тракте. Они обладают медленным, но продолжительным действием, могут суммировать возбуждение. Существуют 2 вида М-холинорецепторов: одна - во внутренних органах, другая - в эндокринных железах. При возбуждении М-холинорецепторв происходит торможение сердечной деятельности, раширение сосудов, активация деятельности желудочно-кишечного тракта, изменяется секреция некоторых эндокринных желёз.

Н-холинорецепторы - чувствительны к никотину. Располагаются в вегетативных ганглиях, мионевральных синапсах, в хлорофильной ткани надпочечников. Эти рецепторы обладают быстрым, кратковременным действием, не могут суммировать возбуждение. Существует 3 разновидности. За счёт наличия разновидностей рецепторы могут блокироваться различными веществами. В центральной нервной системе больше Н-холинорецепторов. М-холинорецепторы преобладают в области ствола мозга, подкорковых узлах, лимбической системе, ретикулярной формации, гипоталамусе.

33. Химическая передача возбуждения в ганглиях симпатической нервной системы. Ацетинхолин как передатчик возбуждения в ганглиях. Роль холиностеразы. Ганглиоблокирующие вещества и их роль в лекарственной терапии.

Основным же способом передачи возбуждения в ав­тономной нервной системе является химический. Он осуществляется по определенным закономерностям, среди которых выделяют два принципа. Первый (принцип Дейла) заключается в том, что нейрон со всеми отростками выделяет один медиатор. Как стало теперь известно, наряду с основным в этом нейроне могут присутствовать также другие передатчики и участвующие в их синтезе вещества. Согласно второму принципу, действие каждого медиатора на нейрон или эффектор зависит от природы рецептора постсинаптической мембраны.В автономной нервной системе насчитывают более десяти видов нервных клеток, которые продуцируют в качестве основных разные медиаторы: ацетилхолин, норадреналин, серотонин и другие био­генные амины, аминокислоты, АТФ.Каждый из медиаторов выполняет передаточную функцию, как правило, в определенных звеньях дуги автономного рефлекса.Так, ацетилхолин выделяетсяв окончаниях всех преганглионарных симпатических и парасимпатических нейронов, а также большинства постганглионарных парасимпатических оконча­ний. Кроме того, часть постганглионарных симпатических волокон, иннервирующих потовые железы и, по-видимому, вазодилататоры скелетных мышц, также осуществляют передачу с помощью ацетилхолина.Медиатор, освобождающийся в пресинаптических терминалах под влиянием приходящих нервных импульсов, взаимодействует со специфическим белком-рецептором постсинаптической мембраны и об­разует с ним комплексное соединение. Белок, с которым взаимо­действует ацетилхолин, носит название холинорецептора, адрена­лин или норадреналин — адренорецептора и т. д. Местом локализации рецепторов различных медиаторов является не только постсинаптическая мембрана. Обнаружено существование и специ­альных пресинаптических рецепторов, которые участвуют в меха­низме обратной связи регуляции медиаторного процесса в синапсе.Ацетилхолинэстераза играет ключевую роль в процессах нейрогуморальной и синаптической передачи: в холинэргических синапсах катализирует гидролиз ацетилхолина, и, как следствие, прекращает влияние данного медиатора на холинорецептор, отвечающий за возбуждение нервного волокна. При ингибировании АХЭ освобождение рецепторов от ацетилхолина происходит очень медленно (только посредством диффузии), и передача нервных импульсов заблокирована на уровне (нейротрансмиттер постсинаптическая мембрана). Это вызывает дезорганизацию процессов организма, а при тяжелых отравлениях (в частности фосфорорганическими боевыми отравляющими веществами) может привести к летальному исходу.Ганглиоблокирующие вещества обладают способностью блокировать н-холинорецепторы вегетативных нервных узлов и в связи с этим тормозить передачу нервного возбуждения с преганглионарных на постганглионарные волокна вегетативных нервов. Современные ганглиоблокаторы угнетают или полностью выключают проведение нервного импульса в симпатических и парасимпатических узлах, синокаротидном клубочке и хромафинной ткани надпочечников, что приводит к временной искусственной денервации внутренних органов и изменению их функции. Однако разные препараты могут обладать различной активностью по отношению к разным группам ганглиев. Первым ганглиоблокатором, получившим практическое применение в медицине в начале 50-х годов, был гексаметоний (гексоний). Затем был получен целый ряд других ганглиоблокаторов; некоторые из них, подобно гексаметонию, являются четвертичными аммониевыми соединениями, а часть является третичными аминами.

34. Значение вегетативной нервной системы в деятельности целого организма. Адаптационно-трофическое значение вегетативной нервной системы организма.

Главной функцией автономной нервной системы является регулирование процессов жизнедеятельности органов тела, согласование и приспособление их работы к общим нуждам и потребностям организма в условиях окружающей среды. Выражением этой фун­кции служит регуляция метаболизма, возбудимости и других сторон деятельности органов и самой ЦНС. В этом случае управление работой тканей, органов и систем осуществляется посредством двух типов влияний — пусковых и корригирующих.Влияние автономной нервной системы на висцеральные функ­ции. Все структуры и системы организма иннервируются волокнами автономной нервной системы. Многие из них имеют двойную, а полые висцеральные органы даже тройную (симпатическую, пара­симпатическую и метасимпатическую) иннервацию. Изучение роли каждой из них обычно осуществляют с помощью электрического раздражения, хирургического или фармакологического выключения, химической стимуляции и т. д.Основная функциональная роль метасимпатической части авто­номной нервной системы состоит в осуществлении механизмов, обес­печивающих гомеостаз — относительное динамическое постоянство внутренней среды и устойчивость основных физиологических фун­кций. В отличие от нее симпатическая часть автономной нервной системы рассматривается как система тревоги, мобилизации защит­ных сил и ресурсов для активного взаимодействия с факторами среды. Задачу восстановления и поддержания этого постоянства, нарушенного в результате возбуждения симпатической части авто­номной нервной системы, берет на себя метасимпатическая и отчасти парасимпатическая части автономной нервной системы.Адаптационно-трофическая функция симпатической части ав­тономной нервной системы.Эффекты адаптационно-трофи­ческого влияния, полученные сначала при раздражении симпати­ческих волокон, полностью воспроизводятся раздражением гипоталамической области. Следовательно, в целом организме адаптаци­онно-трофические влияния могут осуществляться рефлекторно (по­средством стимуляции рецепторов чувствительных путей), а также и путем непосредственного раздражения гипоталамических центров, нейроны которых могут возбуждаться образуемыми местно или при­носимыми с кровью биологически активными веществами. Таким образом, адаптационно-трофическое влияние симпатической части автономной нервной системы, не являясь пусковым, модулирует функциональную активность того или иного органа — рецепцию, проведение возбуждения, медиацию, сокращение, секрецию и др. и приспосабливает его к потребностям организма.

35. Участие вегетативной нервной системы в формировании целостных поведенческих реакций.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.