Нервная и гуморальная регуляция артериального давления

Основные механизмы общей сердечно-сосудистой регуляции направлены на поддержание в сосудистой системе градиента давления, необходимого для нормального кровотока. Это осуществляется путем сочетанных изменений общего периферического сопротивления и сердечного выброса.

Регуляция системного артериального давления осуществляется путем реализации трех последовательных механизмов, включающихся друг за другом: 1) механизмы кратковременного действия, 2) механизмы проме­жу­точ­ног­о действия. 3) механизмы длительного действия. В зависимости от потреб­ностей организма будут реализовываться те или иные механизмы регуляции.

К регуляторным механизмам кратковременного действия относятся преимущественно сосудодвигательные реакции нервного происхождения 1) барорецепторные рефлексы (рефлексы на растяжение рецепторов давления) 2) хеморецепторные рефлексы.

Механизмы быстрого реагирования реализуются с помощью основных рефлексогенных зон.

Отклонение параметров кровяного давления в области этих рефлексогенных зон означает изменение артериального давления во всем организме, что воспринимается барорецепторами и центр кровообращения вносит соответствующие коррективы.

При повышении артериального давления увеличивается импульсация от барорецепторов в центр кровообращения, что оказывает депрессорное действие – снижение артериального давления. При этом дыхание становиться более поверхностным, снижается мышечный тонус, наблюдается тенденция к десинхронизации ЭЭГ. Однако при значительном увеличении артериального давления через несколько дней наступает адаптация сосудистых барорецепторов, работающих в этом диапазоне, частота импульсации снижается и приближается к нормальной.

При снижении артериального давления барорецепторы рефлексогенных зон возбуждаются меньше, следовательно меньше импульсов от дуги аорты и каротидного синуса поступает в центр кровообращения. Нейроны блуждающего нерва возбуждаются меньше и к сердцу по эфферентным волокнам поступает меньше нервных импульсов. Одновременно с этим затормаживаются депрессорные нейроны симпатического отдела центра кровообращения в продолговатом мозге и вследствие этого возбуждение ослабевает, следовательно сердечные и сосудистые симпатические центры затормаживаются, что ведет к вазоконстрикции кровеносных сосудов.

Механизмы небыстрого реагирования – это средние по скорости реакции (минуты-десятки минут), участвующие в регуляции АД.

1. Изменение скорости транскапиллярного перехода жидкости.

Повышение АД ведет к увеличению фильтрационного давления в капиллярах большого круга кровообращения и, естественно, к увеличе­нию жидкости в межклеточном пространстве и нормализации артериального давления. При этом кровоток в капиллярах повышается, что также способствует увеличению выхода жидкости в межклеточные пространства.

При снижении артериального давления фильтрационное давление в капиллярах уменьшается вследствие чего повышается реабсорбция жидкости из тканей в капилляры, в результате артериальное давление возрастает. Так например через 15–30 мин после потери 5 000 мл крови 80–100% плазмы восполняется за счет межклеточной жидкости. При большей потери объем плазмы нормализуется через 12–72 ч при этом включаются механизмы длительного действия с включением в регуляцию ренин-ангио­тензиновой системы.

2. Увеличение или уменьшение объема депонированной крови. Функцию депо выполняет селезенка (0,5 л крови), сосудистые сплетения кожи, где кровь течет в 10–20 раз медленнее, печень, легкие, причем в селезенке кровь сгущается и содержит до 20% эритроцитов.

3. Изменение миогенного тонуса (миогенная ауторегуляция). Она обусловлена сокращениями гладких мышц сосудов при повышении давления и их расслаблением при его понижении.

4. Изменение выработки ангиотензина. В условиях резкого падения АД максимальный эффект выработка ренина развивается в течение 20 мин. Ангиотензин, возбуждая симпатико-адреналовую систему усиливает работу сердца, увеличивает венозный приток крови к сердцу вследствие сужения вен, все это ведет к повышению артериального давления (рис. 8).

Рис. 8. Последовательность реакций вовлечения

ренин-ангиотензиновой системы в регуляцию кровяного давления

Механизмы медленного реагирования – это регуляция системного АД с помощью изменения количества выводимой из организма воды. Это так называемая почечная система контроля за объемом циркулирующей жидкости. Повышение кровяного давления имеет несколько основных следствий: 1) возрастает выведение жидкости почками, 2) в результате увеличенного выведения жидкости снижается объем внеклеточной жидкости и, следовательно, 3) уменьшается объем крови, 4) уменьшение объема крови приводит к снижению среднего давления наполнения, что сопровождается 5) падением венозного возврата и сердечного выброса; 6) вследствие уменьшения сердечного выброса артериальное давление снижается до исходного уровня (рис. 9).

Рис. 9. Блок-схема почечной системы регуляции объема,

относящейся к системам регуляции кровяного давления

длительного действия (по Гайтону)

При падении артериального давления происходят обратные про­цессы почечная экскреция уменьшается, объем крови возрастает, веноз­ный возврат и сердечный выброс увеличиваются и артериальное давление вновь повышается.

Эффективность почечной системы регуляции артериального дав­ле­ния определяется фильтрационным давлением в почечных клубочках и меняется с помощью гормонов.

При увеличении количества воды в организме АД возрастает, во-первых, из-за непосредственного влияния количества жидкости в сосудах, во-вторых, возрастает наполнение емкостных сосудов (венул и мелких вен), что ведет к увеличению венозного возврата крови к сердцу и, естественно, к увеличению выброса крови в артериальную систему – АД повышается. При этом импульсация от рецепторов предсердий воз­рас­тает, и в результате через 10–20 мин выделение вазопрессина снижается. Это приводит к увеличению выделения жидкости почками. При умень­шении количества жидкости в организме и как следствие этого падение АД происходят обратные процессы: выброс вазопрессина увеличивается, и выделение жидкости уменьшается. Это так называемый рефлекс Гауэра–Генри.

Увеличивает выведение жидкости натрийуретический гормон. Вслед за ионами натрия выводится вода, которая следует за натрием по концентрационному градиенту.

Антидиуретический гормон участвует в регуляции АД посредством изменения количества выводимой из организма воды лишь в случае значительного его падения.

В ответ на резкое падение АД в юкстагламерулярном комплексе вырабатывается ренин, участвующий в свою очередь в переводе неактивной формы ангиотензиногена в ангиотензин 1, последний в свою очередь переводит ангиотензин 1 в ангиотензин 2, который стимулирует выброс альдостерона из коркового слоя надпочечников.

Все рассмотренные механизмы регуляции АД взаимодействуют между собой, дополняя друг друга в случае как повышения так и понижения АД. Данные механизмы нормализации АД не срабатывают при быстрой потере крови до 40–50% от всего объема ОЦК. В этом случае наступает смерть. Схема функциональной системы, поддерживающей оптимальный для метаболизма уровень АД, представлен на рис 10.

Рис. 10. Функциональная система поддержания АД по Судакову К.В.

Тема 2.3. Регуляция системного кровообращения в различных условиях

Гуморальная регуляция кровяного давления

1. Сосудосуживающие гормоны – адреналин, норадреналин, вазопрессин (АДГ), тироксин, серотонин (повышают Ркрови) 2. Сосудорасширяющие гормоны – гистамин, ацетилхолин, углекислый газ (понижают Ркрови)

Скорость крови

- Источник скорости крови – давление крови-Максимальная скорость в сосудистом русле – в аорте (0,5 м\сек),т. к. max Ркрови - В артериях скорость крови снижается и составляет 0,25 м\сек , поскольку давление падает - Минимальная скорость крови в капиллярах – 0,5 мм\сек - благодаря медленному течению крови в капиллярах и большой их протяженности успевает произойти обмен веществ и газообмен (общая длина капилляров в организме человека достигает 100 тыс. км, а общая поверхность всех капилляров тела составляет 6300 м 2 ) - каждая артерия сопровождается двумя венами, ширина просвета которых в два раза больше, чем артерий; этим объясняется, что скорость течения крови в венах в два раза меньше, чем в артериях.

Факторы, определяющие скорость крови 1. Давление крови 2. Разница давления крови в разных участках кровяного русла (чем больше разница давления, тем выше скорость) 3. Суммарный диаметр сосудов (общая площадь сечения сосудов), по которым движется кровь - чем больше суммарный диаметр, тем меньше скорость движения крови - самый узкий суммарный диаметр – у аорты (max Vкрови) - самый большой – в капиллярах(2 м 2) ; суммарный просвет капилляров в 600-800 раз превышает просвет аорты – min Vкрови . - в верхней и нижней полых венах, диаметр каждой из которых равен диаметру аорты, скорость крови 0,25 м\сек, т.к. их суммарный диаметр в два раза меньше диаметра аорты (сколько крови выбрасывается из сердца в аорту, столько её и поступает в сердце по венам) - кровь по венам нижних конечностей не должна течь, поскольку её давление и разница давления недостаточны для подъёма такой массы вязкой жидкости на такую высоту к сердцу, тем не менее, она течёт и с увеличивающейся скоростью Особенности (факторы) движения крови по венам 1.Присасывающее действие грудной клетки при вдохе (резко увеличивает разницу давления крови между венами ног, брюшной полости и грудной клеткой, где давление ниже атмосферного) 2. Присасывающее действие правого предсердия при расслаблении (диастоле). 3. Сокращение скелетной мускулатуры при движении, которая сдавливает тонкие стенки вен, имеющие кармашковые полулунные клапаны, препятствующие ее обратному току, и проталкивает кровь к правому предсердию. - вот почему после сна, в течение которого сокращения мышц отсутствовали, объём артериальной крови резко снижается, что вызывает знакомую все утреннюю слабость, которая проходит после зарядки и водных процедур - длительный застой крови в венах нижних конечностей может вызвать необратимое расширение их стенок – варикозное расширение вен, требующее хирургического вмешательства 4. В венозной части кровеносной системы общий просвет сосудов по мере приближения к сердцу уменьшается, что вызывает увеличение её скорости

· Причина - ритмические колебания толстых стенок артериальных сосудов, вызываемых выбросом ударного объёма крови в аорту (пульсируют только артерии, вены не пульсируют, поскольку стенки тонкие, легко спадаются и их колебания невозможны)

· Скорость распространения пульсовой волны по стенкам артерий около 10 м/сек

· Легко прощупывается в местах, где артерии лежат на кости (лучевая, тыльная артерия стопы).

· Считая пульс, можно определить частоту сердечных сокращений и их силу, поскольку каждое пульсовое колебание соответствует одному сокращению желудочков в течение сердечного цикла

· У взрослого здорового человека в состоянии покоя частота пульса равна 60-70 ударам в минуту. При различных болезнях сердца возможна аритмия - перебои пульса Тахикардия — увеличение частоты сердечных сокращений в покое свыше 90 ударов в минуту; следует различать тахикардию как патологическое явление, то есть увеличение ЧСС в покое, и тахикардию как нормальное физиологическое явление (увеличение ЧСС в результате физической нагрузки, волнения или страха) Брадикардия - изменение сердечного ритма, при котором происходит уменьшение частоты сердечных сокращений в покое до 50—30 ударов в минуту

Перераспределение крови в организме –

  • Из 5 литров крови организма все её функции в тканях и органах выполняет около 1,5 л, - периферическая кровь, остальной объём крови хранится в т. н. кровяных депо (печень, селезёнка, легкие, кожа);
  • в случае кровопотери кровь из этих депо поступает в общий кровоток, что позволяет поддерживать кровяное давление и кровоснабжение всех органов
  • Расширение и сужение сосудов в различных органах влияет на перераспределение крови в организме. В работающий орган, где сосуды расширены, направляется больше крови за счёт относительного обескровливания других органов, в неработающий орган - меньше.
  • Увеличение количества притекающей крови к работающим мышцам и, следовательно, улучшение снабжения ресурсами, всегда вызывает увеличение их объёма и силы

Лимфатическая система

Лимфа

· Лимфа образуется в тканях организма из тканевой (интерстициальной) жидкости путём её фильтрации из межклетников в лимфатические капилляры (около 2 л в сутки)

· Продвигаясь по сосудам лимфатической системы, она проходит через лимфатические узлы, где в нее поступают форменные элементы - лимфоциты.

· Лимфа состоит из лимфоплазмы и форменных элементов - лимфоцитов и тромбоцитов, а эритроциты у здорового человека в лимфе отсутствуют.

· Химический состав лимфы аналогичен химическому составу плазмы крови, но в ней в 3-4 раза меньше белков (более жидкая), больше жиров и продуктов обмена веществ (лимфа, оттекающая от кишечника, молочно- белого цвета от всосавшихся жиров)

· Состав периферической лимфы в разных лимфатических сосудах различных органов и тканей может значительно различаться (для примера: лимфа, оттекающая от кишечника, богата жирами, а лимфа, оттекающая от печени, содержит много белков и углеводов)

· Способна к свёртыванию (содержит фибриноген)

· Объем циркулирующей лимфы в среднем составляет 1-2 л
Функции лимфы:
1. Поддержание постоянства химического состава и объема тканевой жидкости (дренаж межклеточной жидкости путем оттока её избытка в лимфатические капилляры)
2. Поддержание постоянства химического состава и объема крови (возврат белков, воды, солей из межклеточной жидкости в кровь)3. Возврат белков из тканевой жидкости в кровь (все белки, поступающие из крови в межклетники, возвращаются в кровь только через лимфатическую систему)
3. Защитная, обеспечение механизма иммунитета (распознавание антигенов, созревание, накопление и деление лимфоцитов, фагоцитоз бактерий, вирусов и раковых клеток, образование антител)
4. Транспортная: всасывание и транспортпродуктов гидролиза пищи, особенно жиров, из желудочно-кишечного тракта в кровь.
5. Участие в перераспределении жидкости в организме
6. Обеспечение гуморальной связи между тканями и органами

Лимфатическая система

· Лимфатическая система состоит из лимфатических капилляров, сосудов, лимфатических узлов и лимфатических протоков, собирающих весь объём лимфы (грудной и правый), впадающих в систему верхней полой вены (вены шеи)

· Всего в организме 500 -1000 лимфоузлов, самые крупные лимфатические узлы локализованы в носовой полости (аденоид) и носоглотке (глоточные миндальны), выполняющие барьерную роль; воспаление лимфоузлов – лимфаденит

· В состав лимфатических узлов входят клетки, обладающие фагоцитарной функцией. Они обезвреживают микробы и утилизируют чужеродные вещества, проникшие в лимфу, в результате чего лимфатические узлы припухают, становясь болезненными. Клетки лимфатических узлов участвуют в образовании антител и лимфоцитов

· Лимфатические сосуды имеют полулунные клапаны, обеспечивающие односторонний ток лимфы в кровеносное русло и способны к изменению диаметра

· Лимфатическая система не имеет циклического круговорота - При нарушении оттока лимфы из тканей – заболевание лимфостаз (слоновая болезнь), при которой объём конечности увеличивается в несколько раз

Последнее изменение этой страницы: 2017-01-20; Нарушение авторского права страницы

Инкреторная функция почки заключается в синтезе и выведении в кровоток физиологически активных веществ, которые действуют на другие органы и ткани или обладают преимущественно местным действием, регулируя почечный кровоток и метаболизм почки.

Ренин образуется в гранулярных клетках юкстагломерулярного аппарата. Ренин является протеолитическим ферментом, который приводит к расщеплению a2-глобулина - ангиотензиногена плазмы крови и превращению его в ангиотензин I. Под влиянием ангиотензинпревращающего фермента ангиотензин I превращается в активное сосудосуживающее вещество ангиотензин II. Ангиотензин II, суживая сосуды, повышает артериальное давление, стимулирует секрецию альдостерона, увеличивает реабсорбцию натрия, способствует формированию чувства жажды и питьевого поведения.

Ангиотензин II вместе с альдостероном и ренином составляет одну из важнейших регуляторных систем - ренин-ангиотензин-альдостероновую систему. Ренин-ангиотензин-альдостероновая система участвует в регуляции системного и почечного кровообращения, объема циркулирующей крови, водно-электролитного баланса организма.

Если давление в приносящей артериоле возрастает, то продукция ренина снижается и наоборот. Продукция ренина также регулируется плотным пятном. При большом количестве NaCI в дистальном отделе нефрона тормозится секреция ренина. Возбуждение b-адренорецепторов гранулярных клеток приводит к усилению секреции ренина, a-адренорецепторов - торможению.

Почки извлекают из плазмы крови прогормон витамин D3, образующийся в печени, и превращают его в физиологически активный гормон - витамин D3. Этот стероидный гормон стимулирует образование кальцийсвязывающего белка в клетках кишечника, регулируя реабсорбцию кальция в почечных канальцах, и способствует его освобождению из костей.

Почки принимают участие в регуляции фибринолитической активности крови, синтезируя активатор плазминогена - урокиназу.

В мозговом веществе почки синтезируются Простагландины, которые участвуют в регуляции почечного и общего кровотока, увеличивают выделение натрия с мочой, уменьшают чувствительность клеток канальцев к АДГ.

В почке образуются кинины. Почечный кинин брадикинин является сильным вазодилататором, участвующим в регуляции почечного кровотока и выделения натрия.

Регуляция артериального давления

Регуляция артериального давления почкой осуществляется несколькими механизмами. Во-первых, как уже указывалось выше, в почке синтезируется ренин. Через ренин-ангиотензин-альдостероновую систему происходит регуляция сосудистого тонуса и объема циркулирующей крови.

В почках синтезируются вещества и депрессорного действия: депрессорный нейтральный липид мозгового вещества, Простагландины.

Кроме того, почка экскретирует большинство гормонов и других физиологически активных веществ, которые являются гуморальными регуляторами артериального давления, поддерживая их необходимый уровень в крови.

Метаболическая функция почек

Метаболическая функция почек заключается в поддержании во внутренней среде организма постоянства определенного уровня и состава компонентов белкового, углеводного и липидного обмена.

Почки расщепляют фильтрующиеся в почечных клубочках низкомолекулярные белки, пептиды, гормоны до аминокислот и возвращают их в кровь.
Почка обладает способностью к глюконеогенезу. При длительном голодании половина поступающей в кровь глюкозы образуется почками.

Участие почки в обмене липидов заключается в том, что свободные жирные кислоты в ее клетках включаются в состав триацилглицеринов и фосфолипидов и в виде этих соединений поступают в кровь.

Нейрогуморальная регуляция деятельности почек
Нервная регуляция

Нервная система регулирует гемодинамику почки, работу юкстагломерулярного аппарата, а также фильтрацию, реабсорбцию и секрецию. Раздражение симпатических нервов, иннервирующих почку, которые являются преимущественно ветвями чревных нервов, приводит к сужению ее кровеносных сосудов. При сужении приносящих артериол уменьшаются фильтрационное давление и фильтрация.

Сужение выносящих артериол сопровождается повышением фильтрационного давления и ростом фильтрации. Стимуляция симпатических эфферентных волокон приводит к увеличению реабсорбции натрия, воды. Раздражение парасимпатических волокон, идущих в составе блуждающих нервов, вызывает усиление реабсорбции глюкозы и секреции органических кислот.

При болевых раздражениях диурез рефлекторно уменьшается вплоть до полного его прекращения (болевая анурия). Механизм этого явления заключается в сужении почечных сосудов в результате возбуждения симпатической нервной системы, усилении секреции катехоламинов надпочечниками и увеличении продукции антидиуретического гормона (вазопрессина).

Уменьшение и увеличение диуреза может быть вызвано условно-рефлекторным путем, что свидетельствует о выраженном влиянии высших отделов ЦНС на работу почек. ЦНС регулирует работу почек или непосредственно через вегетативные нервы, или через нейроны гипоталамуса, изменяя секрецию гормонов. В этом проявляется единство нервной и гуморальной регуляции.

Гуморальная регуляция

Ведущая роль в регуляции деятельности почек принадлежит гуморальной системе. На работу почек оказывают влияние многие гормоны, главными из которых являются антидиуретический гормон (АДГ), или вазопрессин, и альдостерон.

Антидиуретический гормон (АДГ), или вазопрессин, способствует реабсорбции воды в дистальных отделах нефрона путем увеличения проницаемости для воды стенок дистальных извитых канальцев и собирательных трубочек. Механизм действия АДГ заключается в активации фермента аденилатциклазы. который участвует в образовании цАМФ из АТФ. цАМФ активирует цАМФ-зависимые протеинкиназы, которые участвуют в фосфорилировании мембранных белков, что приводит к повышению проницаемости для воды мембраны и увеличению ее поверхности. Кроме того, АДГ активирует фермент гиалуронидазу, которая деполимеризует гиалуроновую кислоту межклеточного вещества, что обеспечивает пассивный межклеточный транспорт воды по осмотическому градиенту.

При избытке АДГ может наступить полное прекращение мочеобразования. Уменьшение секреции АДГ вызывает развитие тяжелого заболевания несахарного диабета (несахарного мочеизнурения). При этом заболевании выделяется большое количество светлой мочи с незначительной относительной плотностью (до 25 л в сутки).

АДГ имеет важное значение, как уже отмечалось выше, в поддержании осмотического давления крови, волюморегуляции.

Альдостерон увеличивает реабсорбцию ионов натрия и секрецию ионов калия и водорода клетками почечных канальцев. Одновременно возрастает реабсорбция воды, которая всасывается пассивно по осмотическому градиенту, создаваемому ионами Na+, что приводит к уменьшению диуреза. Гормон уменьшает реабсорбцию кальция и магния в проксимальных отделах канальцев.

Натрийуретический гормон (атриальный пептид) усиливает выведение ионов натрия с мочой.

Паратгормон стимулирует реабсорбцию кальция и тормозит реабсорбцию фосфатов, что приводит к повышению концентрации ионов кальция в плазме крови и усилению выведения фосфатов с мочой. Кроме того, этот гормон угнетает реабсорбцию ионов натрия и НСО3- в проксимальных канальцах и активирует реабсорбцию магния в восходящем колене петли Генле.

Кальцитонин тормозит реабсорбцию кальция и фосфата.

Адреналин в малых дозах суживает просвет выносящих артериол, в результате чего повышается гидростатическое давление, увеличиваются фильтрация и диурез. В больших дозах он вызывает сужение как выносящих, так и приносящих артериол, что приводит к уменьшению диуреза вплоть до анурии.

Инсулин. Недостаток этого гормона приводит к гипергликемии, глюкозурии, увеличению осмотического давления мочи и увеличению диуреза.

Тироксин усиливает обменные процессы, в результате чего в моче возрастает количество осмотически активных веществ, в частности азотистых, что приводит к увеличению диуреза.

Простагландины угнетают реабсорбцию натрия, стимулируют кровоток в мозговом веществе почки, увеличивают диурез.

Соматотропин и андрогены увеличивают секрецию некоторых веществ, например парааминогиппуровой кислоты.

Ренин-ангиотензин-альдостероновая система участвует в регуляции почечного и системного кровообращения, объема циркулирующей крови, электролитного баланса организма.

Движение крови по кровеносным сосудам подчиняется законам гемодинамики, являющейся частью гидродинамики(раздел физики)- науки о движении жидкостей по трубкам.

Основным гемодинамическим показателем является артериальной давление(АД), уровень которого по ходу сосудистого русла падает неравномерно и зависит от рядя факторов: сократительной силы миокарда и величины общего периферического сопротивления сосудов.

Во время систолы желудочков АД повышается -это систолическое, или максимальное давление. У здорового человека в возрасте 20-40 лет в плечевой артерии оно равно 110-120 мм рт.ст. Во время диастолы АД снижается -это диастолическое, или минимальное давление, равное 70-80мм рт.ст. Разницу между систолическим и диастолическим давлением составляет пульсовое давление-40мм рт.ст.

Уровень систолического давления зависит от сократительной способности миокарда, уровень диастолического давления определяется в большей степени сопротивлением сосудов.

Сопротивление сосуда , которое изменяется в зависимости от просвета, влияет на уровень АД. Так, приём сосудосуживающих препаратов приводит к увеличению сопротивления в сосуде и повышению АД. Основное сопротивление току крови возникает в артериолах.

На уровень давления влияет количество циркулирующей крови. При кровопотере давление снижается. АД зависит также от эластичности сосудистой стенки. Поэтому у пожилых людей (после 50лет) в связи с потерей эластичности сосуда АД повышается до 140/90мм рт.ст.

Вязкость крови не является величиной постоянной. Чем меньше диаметр сосуда, тем меньше вязкость протекающей в нём крови.

Увеличение вязкости крови повышает артериальное давление, уменьшение - снижает.

Физические упражнения повышают давление до 180мм рт.ст. и более, особенно систолическое. Во время сна давление падает на 15-20 мм рт.ст.

Приём пищи, эмоции повышают систолическое давление. На уровень АД влияет положение тела в пространстве, так как сосудистая система находится в поле силы тяжести. В вертикальном положении давление в сосудах, расположенных ниже сердца, больше чем давление в сосудах, расположенных выше сердца. При горизонтальном положении эти различия нивелируются.

Артериальное давление нужно для того, чтобы кровь доставлялась к головному мозгу, расположенному у человека намного выше уровня сердца.

Поддержание нормального уровня давления крови в магистральных артериях является необходимым условием сохранения кровотока.

Механизмы нейрогуморальной регуляции организма могут повлиять на кровяное давление только через воздействие на эти факторы. Как за счёт нервных, так и некоторых гуморальных влияний (выброс в кровь адреналина и норадреналина)изменения работы сердца и сопротивление сосудов может быть достигнуто быстро (за единицы секунд). Для проявления ряда гуморальных реакций требуются десятки минут. На конец, для изменения объёма циркулирующей крови и её вязкости могут потребоваться часы и дни.Поэтому по скорости реализации влияния на уровень артериального давления выделяют:

1)механизмы быстрого реагирования;

2)механизмы небыстрого реагирования (среднего);

Механизмы медленного реагирования и длительного действия.

Механизмы быстрого реагирования.

В сложной системе регуляции уровня кровяного давления рефлекторные реакции играют роль механизма быстрого реагирования, которые за единицы секунд может изменить величину давления крови в артериальных сосудах.

Любой рефлекс запускается с рецепторных образований. (Места скопления однотипных рецепторов называется рефлексогенными зонами). Рецепторы, воспринимающие колебания кровяного давления, называются барорецепторами или рецепторами растяжения. Основное количество барорецепторов сосредоточено в рефлексогенных зонах крупных сосудов и сердца. Важнейшими среди них являются дуга аорты и место разветвления сонной артерии на внутреннюю и наружную. В них сосредоточены не только барорецепторы, но и хеморецепторы, воспринимающие изменение напряжения углекислого газа и кислорода.

Барорецепторы сосудов активны уже при нормальном уровне кровяного давления. Во время диастолы при понижении давления (до 60-80мм рт.ст.)их активность снижается, а при каждой систоле желудочков, когда давление крови в аорте и артериях поднимается (до 120-140мм рт.ст.), частота импульсов, идущих от этих рецепторов в ЦНС увеличивается. Учащение импульсации прогрессивно нарастает, если давление крови становится выше нормы. Афферентные импульсы от барорецепторов приходят к депрессорному отделу центра кровообращения в продолговатом мозге и усиливают возбуждение этого центра. Тогда депрессорный отдел осуществляет торможение активности прессорного отдела сосудодвигательного центра. В результате частота импульсов в эфферентных волокнах, идущих к сосудам, уменьшается. Сосуды расширяются и кровяное давление снижается. Таким образом, барорецепторы следят за повышением давления и способствуют его снижению. Эти рецепторы и возникающие с них рефлексы называют нормализаторами кровяного давления.

Рефлекторная регуляция давления крови осуществляется не только барорецепторами, но и хеморецепторами, чувствительным к изменениям химического состава крови. Активация рецепторов кислорода и углекислого газа вызывает увеличение кровяного давления. Эти рецепторы активны уже при нормальном напряжении кислорода и углекислого газа. От них к нервным центрам идёт постоянная импульсация. Импульсы от хеморецепторов поступают не к депрессорному, а к прессорному отделу сосудодвигательного центра и возбуждают этот отдел. Тогда прессорный отдел через симпатические структуры посылает большое количество возбуждающих импульсов к сосудам и сердцу. Сосуды суживаются, а сердце увеличивает частоту и силу сокращений.

Таким образом, возбуждение хеморецепторов аорты и сонной артерии вызывает сосудистые прессорные рефлексы, а раздражение барорецепторов-депрессорные рефлексы.

Все эти рефлекторные реакции кровообращения называют собственными. Так как их рецепторы и эффекторное звено принадлежит к структурам сердечно-сосудистой системы. Если рефлекторное влияние на кровообращение осуществляется с рефлексогенной зоны, находящейся вне сердца и сосудов, то такие рефлексы называются сопряжёнными, эти рефлексы проявляются преимущественно повышением АД. Их можно вызывать, например раздражением поверхности тела.

Центры регуляции кровообращения имеются в спинном и продолговатом мозге, гипоталамусе и коре мозга.

В спинном мозге находятся центры симпатического отдела вегетативной нервной системы. Они расположены в боковых рогах трёх верхних грудных сегментов спинного мозга и регулируют тонус сосудов и работу сердца, тем самым обеспечивая достаточную регуляцию уровня кровяного давления.

В продолговатом мозге находится сосудодвигательный центр.

Состоит из двух отделов- прессорного и депрессорного. Раздражение прессорного отдела сосудодвигательного центра вызывает сужение артерий и подъём АД (повышает тонус артерий), а раздражение второго- расширение артерий и падение АД (понижает тонус артерий). Депрессорный отдел не имеет прямых эфферентных связей с сердцем и сосудами. Он осуществляет своё влияние на кровообращение, воздействия на активность прессорного отдела.

В ретикулярной формации продолговатого мозга рядом с сосудодвигательным центром расположен сердечно-сосудистый центр или центр кровообращения (регулирует сердечную деятельность).

Центры регуляции кровообращения в спинном мозге, гипоталамусе и коре мозга оказывают своё влияние на кровообращение через сердечно-сосудистый центр продолговатого мозга и вегетативные образования спинного мозга. Гипоталамус и кора могут влиять также путём регуляции выброса в кровь гормонов(адреналина, норадреналина, кортикостероидов, ренина, вазопрессина).

Дата добавления: 2019-02-26 ; просмотров: 551 ;

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.