Нервная и гуморальная регуляция канальцевой реабсорбции воды и веществ

Реабсорбция — возврат веществ из просвета канальцев в интерстиций и в кровь — обеспечивает сохранение необходимых организму веществ. Осуществляется также во всех отделах канальца нефрона, однако с различной степенью активности. Реабсорбция в нефроне обеспечивается посредством нескольких вторично-активных механизмов: диффузии, осмоса, следования за растворителем — и с помощью соединения переносимого вещества с ионом Na + (натрийзависимый транспорт), а также с помощью первично-активного транспорта. Эпителиальные клетки, образующие стенку канальцев, асимметричны: часть клеточной мембраны, обращенная в просвет канальца, называется апикальной, а часть мембраны клетки, обращенная наружу канальца — в интерстиций, называется базолатеральной. Транспортные функции этих мембран разные. В частности, Na/K-насосы и Са-насосы имеются только в базолатеральной мембране. Поскольку при прохождении по разным отделам нефрона состав и количество фильтрата значительно изменяются, следует различать первичную мочу (в капсуле Шумлянского—Боумена), вторичную мочу (канальцевая жидкость по ходу нефрона) и конечную мочу (выделяемую организмом в окружающую среду.

Глюкоза и аминокислоты реабсорбируются с помощью натриевого ме­ханизма (у отдельных аминокислот или их групп имеются особые переносчики), белки транспортируются пиноцитозом, электро­литы (Na + ,K + ,Ca 2+ ,Mg 2+ ) — первично-ак­тивно и вторично-активно; анионы (СГ, НСО5,SO 2 ,',PO^) следуют за катионами, в основном заNa + (симпорт). Вторичный тран­спорт катионов из просвета канальца через межклеточные шунты обеспечивает электри­ческий градиент — интерстиций здесь несет отрицательный заряд (2 мВ) относительно просвета канальца.

Изнутри мембраны эпителиальных клеток стенок канальцев заряжены отрицательно от­носительно интерстиция и просвета канальца во всех отделах нефрона.

Вода, как обычно, реабсорбируется со­гласно закону осмоса — идет за осмотически активными веществами, т.е. вторично-актив­но. Мочевина следует за водой: вода из ка­нальца уходит, в результате чего концентра­ция мочевины в канальце увеличивается, и она переходит из канальца в интерстиций со­гласно градиенту концентрации. Мочевина, как и любое другое вещество, может следо­вать за водой, если мембрана для них прони­цаема, и без градиента концентрации, но в пропорциональных с водой количествах. Здесь реабсорбируется примерно '/3 про­фильтровавшейся мочевины. Пептиды (глу-татион, карнозин) и пептидные гормоны (ан-гиотензин, инсулин, паратгормон) из-за малых своих размеров легко фильтруются в первичную мочу, но они быстро расщепля­ются пептидазами щеточной каймы до ами­нокислот, которые успевают реабсорбиро-ваться в проксимальных канальцах. Первич­но-активно переносится только '/3 Na + (1 мо­лекула АТФ транспортирует 3 ионаNa + ). По­скольку 2 /3Na + реабсорбируется вторично-активно, то получается, что 1 молекула АТФ транспортирует 9 ионовNa + . Эта же энергия обеспечивает вторичный транспорт глюкозы, аминокислот, Н + ,Mg 2+ ,HCO]. Общий расход энергии почкой в основном идет на транс­портNa + — почти все остальное связано с ним. При блокадеNa/K-АТФазы прекраща­ется вторичный транспорт всех перечислен­ных веществ и ионов. Величину реабсорбции какого-либо вещества определяют по разнос­ти между количеством профильтровавшегося в первичную мочу вещества и его количест­вом в конечной моче.

Сущность поворотно-противоточной системы состоит в том, что два колена петли нисходящее и восходящее, тесно соприкасаясь друг с другом, функционируют сопряженно как единый механизм. Эпителий нисходящего (проксимального отдела) петли пропускают воду, но не пропускают Na + . Эпителий восходящего (дистального отдела) петли активно реабсорбируют Na, т.е. из канальцевой мочи переводит его в тканевую жидкость почки, но не пропускает воду.

При прохождении мочи через нисходящий отдел петли Генле моча постепенно сгущается вследствие перехода воды в тканевую жидкость, так как из восходящего отдела переходит Na + и притягивает молекулы воды из нисходящего отдела. Это увеличивает осмотическое давление канальцевой жидкости и она становится гипертоничной на вершине петли Генле.

Нервная регуляция мочеобразования - рефлекторное расширение сосудов почек увеличивает диурез. Раздражение симпатических волокон приводит к сужению почечных сосудов, а это в свою очередь - снижает фильтрационное давление и уменьшает или даже прекращает диурез. Нервная система может рефлекторно изменить секрецию гормонов гипофиза (вазопрессин или АДГ) и коры надпочечников (из "минералокортикоидов" - альдостерон - Na - сберегающий). Нервная же система может вызвать болевую анурию (при болевых раздражениях выброс АДГ усиливается). Всякое повышение кровяного давления, связанное с возбуждением нервной системы, приводит к усилению клубочковой фильтрации, а понижение к уменьшению фильтрации. Эти реакции почек направлены на поддержание уровня кровяного давления и постоянства объема крови. Гуморально-гормональная регуляция мочеобразования: Она более выражена по сравнению с нервной (доказано в опытах на собаках с пересадкой почки в область шеи, где почка функционировала, как и в норме, в соответствии с условиями). Гормоны, регулирующие работу почек (мочеобразование) Вазопрессин (АДГ - антидиуретический гормон). В нормальных условиях на клубочковую фильтрацию не влияет, но усиливает обратное всасывание воды - тем самым уменьшает диурез. При недостаточной функции задней доли гипофиза, выделяющей АДГ, стенка дистального отдела нефрона становится непроницаемой для воды и почка выводит ее до 25 литров в сутки - несахарное мочеизнурение. Альдостерон (гормон коркового вещества надпочечников) - Na+ - сберегающий гормон - усиливает реабсорцию натрия в проксимальных канальцах, усиливает секрецию К+ в дистальных канальцах. Натрийуретический гормон вырабатывается в предсердии при раздражнии волюморецепторов - (действует на проксимальные канальцы, восходящую часть петли Генли) Инсулин- снижает реабсорбцию К+. Паратгормон - ( влияет на проксимальные и дистальные канальцы) - усиливает реабсорбцию Са2+, снижает канальцевую реабсорбцию фосфата, Кальцитонин - уменьшает реабсорбцию Са2+ в проксимальных канальцах. Ренин-ангиотензиновая система (ренин-ангиотензиноген-ангиотензин I-ангио­тен­зин II) Выброс ренина происходит при снижении артериального давления, так как возникает угроза прекращения фильтрации и об­­разования первичной мочи. Ангиотензин 11 представляет собой одно из всех известных сосудосуживающих веществ. Длительно повышает тонус гладкой мускулатуры артериол, это при­­водит к повышению сосудистого сопротивления, что в свою очередь повышает артериальное давление и восстанавливает фильтрацию. Кроме этого, ангиотензин 11вызывает выброс альдостерона. - Адреналин, норадреналин (гормоны мозгового слоя надпочечников) усиливают выработку ренина, непосредственно возбуждая адренорецепторы юкстагломерулярных клеток, а также косвенно активируя барорецепторы в результате сокращения гладкой мускулатуры приносящих артериол.

74. Роль воды и минеральных веществ в организме. Регуляция водно-солевого баланса.

Тело состоит из 50-70 % воды. Вода нужна организму для выполнения функций:

-переваривание, всасыв и транспорт пищев веществ через стенку кишечника и в крови;

-растворение продуктов и выведение их с мочой;

-регулирование температуры тела (при испарении воды тело охлаждается).

При лишении человека воды наступает обезвоживание, которое характеризуется сухостью во рту и прекращением выработки мочи. Ограничение потребл воды при жаре приводит к тепловому удару.

Минеральные вещества– неорганические элементы и их соли, поступающие в организм с пищевыми продуктами.

.Они участвуют в пластических процессах, построении тканей, особенно костной, поддержании кислотно-щелочного равновесия и оптимального состава крови, минеральные вещества нормализуют водно-солевой обмен.

Магний необходим для нормального протекания биосинтеза белков и обмена углеводов в организме. Он обладает успокаивающим, сосудорасширяющим, желчегонным и мочегонным действием, повышает двигательную активность кишечника. Суточная потребность взрослого человека в магнии составляет 350-500 мг. Она возрастает при беременности и кормлении грудью. Недостаточность магния приводит к задержке роста, нарушению усвоения пищи, апатии, депрессии, мышечной слабости, судорожным состояниям. Длительный дефицит вызывает усиленное отложение солей кальция в стенках артериальных сосудов, сердце, почках. Магнием богаты продукты растительного происхождения, особенно пшеничные отруби, крупы, соевая мука, грецкие орехи, бобовые, курага, белокочанная капуста и др.

Калий совместно с натрием и хлором принимает участие в поддержании осмотического равновесия в организме, обеспечивает процессы возбуждения и торможения в нервной системе, сокращения мышц, в том числе и сердечной мышцы. Калий способствует выведению из организма натрия и воды, что важно при устранении отеков. Суточная потребность взрослого человека в нем составляет 2-4 г. Калиевая диета включает продукты богатые калием с низким содержанием натрия (в соотношении примерно 10:1). Она применяется в медицинских учреждениях при гипертонической болезни, нарушении кровообращения. Больше всего калия в сушеных абрикосах, изюме, апельсинах, мандаринах, картофеле, грецких и лесных орехах, морской капусте, бобовых.

Наряду с фосфором кальций является основным минеральным компонентом костей и зубов. В них сосредоточено до 99% всего кальция организма. Кроме этого он участвует в процессах свертываемости крови, поддержании осмотического равновесия внутренней среды организма, нормальной проницаемости стенок сосудов, возбудимости нервной системы и сердечной мышцы, он необходим для нормальной сократимости мышц, активации ряда ферментов и гормонов. Снижение уровня кальция ведет к нарушению минерализации костей, снижению мышечного тонуса, судорогам. Гиперкальциемия вызывает нарушение сердечной деятельности, отложение этого минерала в стенках сосудов, канальцах почек и в других внутренних органах, что ведет к необратимым расстройствам их функций.

Рацион взрослого здорового человека должен содержать 0,8-1 г кальция. Потребность в нем возрастает при беременности, кормлении грудью, лечении переломов. Высоким содержанием кальция отличается молоко, творог, сыры, зеленый лук, петрушка, фасоль, соя, урюк и курага, яблоки, яичный желток.

Кальций относится к трудно усвояемым элементам. Его всасывание возможно только при воздействии желчных кислот. Так как при избытке жиров возникает конкуренция за эти кислоты, жирная пища нарушает процесс усвоения этого макроэлемента организмом. Всасываемость кальция затрудняется также некоторыми кислотами, содержащимися в отрубях, ржаном хлебе, щавеле, какао, а также пищей, богатой магнием.

Натрий поставляется в организм человека в основном с поваренной солью. По официальным данным суточная его норма составляет 4-6 г (примерно 10-15 г соли), но существует и мнение, что эти нормативы сильно завышены и требуют пересмотра. Потребность в натрии возрастает при обильном потоотделении, перегревании, частых рвотах и поносах. Натрий играет основную роль в поддержании постоянства осмотического давления и объема жидкости в организме. Он обеспечивает более чем на 30% щелочные резервы плазмы крови, принимает участие в образовании желудочного сока, активирует ряд ферментов слюнных желез и поджелудочной железы, регулирует выделение почками продуктов обмена веществ, участвует в транспорте аминокислот, сахаров и калия в клетки.

При избыточном потреблении натрия может наблюдаться задержка воды в организме, что осложняет деятельность сердца и у людей, предрасположенных к сердечно-сосудистым заболеваниям, способствует повышению артериального давления. Диету с пониженным содержанием соли рекомендуют людям с гипертонией, сердечной недостаточностью, заболеваниями почек.

С поваренной солью в организм человека поступает и хлор. Суточная потребность в нем составляет примерно 5 г. Физиологическое значение этого элемента связано с его участием в регуляции водно-солевого обмена и осмотического давления в тканях и клетках. Хлор входит в состав соляной кислоты желудочного сока.

Подавляющая часть фосфора организма (до 80%) сосредоточена в костной ткани. Фосфолипиды служат основным структурным компонентом клеточных мембран. Фосфаты и их органические соединения принимают участие в процессах хранения и использования генетического материала, энергетическом обеспечении всех процессов жизнедеятельности. Суточная потребность в фосфоре для взрослого человека колеблется от 1000-1500 мг. Наиболее богаты этим компонентом молоко, творог, сыры, яичный желток, многие крупы (особенно рис), говядина и говяжья печень, почки.

Сера - непременная составная часть некоторых аминокислот. Суточный рацион человека должен содержать 4-5 г серы. Для этого питание должно включать мясо, куриные яйца, овсяную и гречневую крупы, хлеб, молоко, сыры, бобовые и капусту.

Железо необходимо для процессов кроветворения. Около 55% его в организме входит в состав гемоглобина эритроцитов, примерно 24% -- в состав миоглобина мышц, а 21% хранится про запас в печени и селезенке. Именно наличие железа обуславливает красный цвет крови и мышц. Железо входит также в состав некоторых белков, принимающих участие в переносе электронов по дыхательной цепи и в окислительно-восстановительных реакциях. При его недостатке развивается малокровие. Суточная потребность человека в железе составляет около 10 мг для мужчин и 18 мг для женщин. Богаты железом печень и почки, белые грибы, персики, абрикосы, яблоки, рожь, фасоль, горох, куриные яйца. Практически полностью в кишечнике человека всасывается железо, входящее в состав гемоглобина крови, миоглобина мышц мясной и рыбной пищи. Гораздо хуже усваивается железо из растительной пищи и куриных яиц. При смешанном пищевом рационе усвоение этого минерального вещества обычно не превышает 20%. Для усвоения железа необходимы витамины В12 и С.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Поддержание равновесия между клубочковой фильтрацией и канальцевой реабсорбцией является принципиально важным для поддержания гомеостаза внутренней среды и выведения из организма многих веществ, поэтому имеются многочисленные местные, гуморальные и нервные механизмы регуляции реабсорбции. Важнейшей особенностью регуляции реабсорбции является ее избирательность, что позволяет реабсорбиро- вать одни вещества независимо от других.

Одним из основных местных механизмов регуляции канальцевой реабсорбции является присущая им способность увеличивать интенсивность реабсорбции в ответ на возрастание клубочковой фильтрации. Этот феномен получил название гломерулотубулярного (клубочково-канальцевого) равновесия. Скорость реабсорбции воды в проксимальных канальцах не- фрона (в среднем 81 мл/мин у мужчин) составляет приблизительно около 65% от СКФ (125 мл/мин у мужчин) и остается на достаточно постоянном уровне при значительных изменениях фильтрации. В определенной степени гломерулотубуляр- ное равновесие поддерживается и в петле нефрона. Механизмы сохранения этого равновесия до конца не изучены, однако известно, что они относятся к внутрипочечным регуляторным механизмам и их осуществление не требует дополнительных нервных и гуморальных влияний со стороны организма. Учитывая, что реабсорбция веществ в проксимальном канальце и петле нефрона определяется прежде всего гломерулотубу- лярным равновесием и не требует дополнительных системных механизмов регуляции, ее называют облигатной реабсорбцией. Интенсивность облигатной реабсорбции может изменяться под влиянием некоторых нервных и гуморальных воздействий. Так, возбуждение симпатической нервной системы ведет к увеличению реабсорбции ионов Na + , фосфатов, глюкозы, воды клетками эпителия проксимальных канальцев нефрона. Ангиотензин II также способен вызывать увеличение скорости реабсорбции ионов Na + , хлоридов, воды в проксимальных канальцах и толстой восходящей части петли нефрона.

В дистальных канальцах и собирательных трубочках почки осуществляется главным образом реабсорбция воды, ионов и мочевины (в собирательных протоках мозгового слоя), выраженность которой зависит от водно-электролитного баланса организма и контролируется антидиуретическим гормоном (АДГ), альдостероном, предсердным натрийуретическим пептидом. Реабсорбция воды и других веществ в этих структурах получила название факультативной реабсорбции.

Вазопрессин (АДГ) образуется в гипоталамусе, его синтез и выброс в кровь из нейрогипофиза увеличиваются при повышении осмотического давления крови (гиперосмии), при уменьшении содержания воды в организме (дегидратации), а также при снижении АД крови (гипотензии). Этот гормон действует на эпителий 2-й половины дистальных канальцев и собирательных трубочек почки (через У2-рецепторы, увеличение уровня цАМФ) и вызывает повышение их проницаемости для воды вследствие перемещения из цитоплазмы эпителиальных клеток и встраивания в их апикальные мембраны белков аквапоринов (АП-2), формирующих каналы для тока воды. АП-3 и АП-4, расположенные на базолатеральной мембране клеток, обеспечивают быстрый переход воды в интер- стиций. Перемещение воды идет по осмотическому градиенту.

Вазопрессин способствует также реабсорбции мочевины в собирательных протоках мозгового вещества, что поддерживает в нем гиперосмотичность, необходимую для реабсорбции воды. Таким образом, под влиянием АДГ происходит увеличение реабсорбции воды (ее сохранение в организме), снижение диуреза и повышение осмоляльности и плотности образующейся мочи. При снижении выработки АДГ (травма, опухоль гипоталамуса) или недостатке У2-рецепторов в эпителиоцитах проницаемость для воды стенок дистальных канальцев собирательных трубочек и протоков почек снижается, ее реабсорбция уменьшается и образуется большое количество (до 10- 15 л/сут) конечной гипотоничной мочи (несахарный диабет 1 или II типа соответственно). Потеря большого количества жидкости с мочой может привести к обезвоживанию организма и его гибели.

Алъдостерон вырабатывается в клубочковой зоне коры надпочечников, действует на главные эпителиальные клетки дистальных и соединительных канальцев, а также собирательных трубочек, вызывает увеличение реабсорбции ионов Na + (СГ, Н20) и повышение секреции ионов К + через образование внутри клеток специфических белков, необходимых для транспорта этих ионов (активацию синтеза Ыа + /К + -АТФазы для базолатеральной мембраны и белков натриевых каналов для апикальной мембраны).

Ангиотензин II оказывает влияние как на задержку ионов Na + в организме, так и на реабсорбцию воды. Он непосредственно стимулирует реабсорбцию ионов Na + в проксимальных канальцах, петле нефрона, дистальных и соединительных канальцах, собирательных трубочках через активацию в их эпителиоцитах Ыа + /К + -АТФазы базолатеральной мембраны и Na + /H + -ATOa3bi апикальной мембраны. При этом усиливается секреция ионов К + и Н + в просвет канальцев и трубочек. В результате задержки ионов Na + усиливается реабсорбция ионов СГ и Н20. Кроме того, ангиотензин II стимулирует секрецию альдостерона, который также способствует увеличению реабсорбции ионов Na + , образование и высвобождение в кровь АДГ. Ангиотензин II увеличивает реабсорбцию ионов Na + , СГ и Н20 из интерстиция в перитубулярные капилляры через сужение просвета выносящей артериолы. Это вызывает уменьшение гидростатического давления крови, а также повышение онкотического давления крови (из-за увеличения концентрации белка в крови при увеличении СКФ) в периту- булярных капиллярах, что способствует усилению рсабсорб- ции в них воды и растворенных веществ.

Симпатический отдел автономной нервной системы при его активации уменьшает выведение Na + , СГ и Н90 из организма тремя способами: 1) из-за сужения просвета приносящих артериол и снижения СКФ; 2) за счет увеличения их реабсорбции в проксимальных канальцах и восходящем толстом отделе петли Генле; 3) вследствие активации секреции ренина юкстагломерулярными клетками.

В то же время даже небольшое повышение системного артериального давления (при стимуляции симпатического отдела автономной нервной системы или под влиянием ангиотензина II и альдостерона, катехоламинов адреналина и норадреналина) вызывает прессорный натрийурез и прессорный диурез - выраженное возрастание выведения ионов Na + и ГГ,0 с мочой. Их механизмами являются: 1) небольшое повышение СКФ; 2) снижение реабсорбции веществ из паренхимы почки в перитубулярные капилляры (из-за повышения в них гидростатического давления крови), что усиливает утечку ионов Na + и Н?0 в просвет канальцев; 3) снижение чувствительности клеток плотного пятна к изменениям АД крови и содержания в ней ионов Na + приводит к торможению выделения ренина и снижению содержания ангиотензина II в крови. Таким образом, повышение натрийуреза и диуреза по механизму обратной связи позволяет понизить системное артериальное давление до нормальных величин. Механизм обратной связи дополняется в организме действием натрийуретического гормона.

Предсердный натрийуретический гормон (атриопептид) образуется миоцитами предсердий при их растяжении избыточным объемом крови, т.е. при гиперволемии. Под влиянием этого гормона происходит увеличение клубочковой фильтрации и уменьшение реабсорбции ионов Na + , СГ и Н20 в дистальных канальцах, собирательных трубочках и протоках, вследствие чего происходит усиление мочеобразования и удаление из организма избытка воды (и солей) и возвращение объема крови к прежней нормальной величине (нормоволе- мии). Кроме того, натрийуретический гормон снижает продукцию ренина, ангиотензина II и альдостерона, что дополнительно тормозит реабсорбцию ионов Na + , СГ и Н20.

Первичная моча превращается в конечную благодаря процессам, которые происходят в почечных канальцах и собирательных трубочках. В почке человека за сутки образуется 150- 180 л фильтрата, или первичной мочи, а выделяется 1,0 – 1,5 л мочи. Остальная жидкость всасывается в канальцах и собирательных трубочках. Канальцевая реабсорбция – это процесс обратного всасывания воды и веществ из содержащейся в просвете канальцев мочи в лимфу и кровь. Основной смысл реабсорбции состоит в том, чтобы сохранить организму все жизненно важные вещества в необходимых количествах. Обратное всасывание происходит во всех отделах нефрона. Основная масса молекул реабсорбируется в проксимальном отделе нефрона. Здесь практически полностью реабсорбируются аминокислоты, глюкоза, витамины, белки, микроэлементы, значительное количество ионов Na + , Сl - , НСО 3 - и многие другие вещества. В петле Генле, дистальном отделе канальца и собирательных трубочках всасываются электролиты и вода. Ранее считали, что реабсорбция в проксимальной части канальца является обязательной и нерегулируемой. В настоящее время доказано, что она регулируется как нервными, так и гуморальными факторами.

Обратное всасывание различных веществ в канальцах может происходить пассивно и активно. Пассивный транспорт происходит без затраты энергии по электрохимическому, концентрационному или осмотическому градиентам. С помощью пассивного транспорта осуществляется реабсорбция воды, хлора, мочевины.

Активным транспортом называют перенос веществ против электрохимического и концентрационного градиентов. Причем различают первично-активный и вторично-активный транспорт. Первично-активный транспорт происходит с затратой энергии клетки. Примером служит перенос ионов Na+ с помощью фермента Na + ,К + –АТФазы, использующей энергию АТФ. При вторично-активном транспорте перенос вещества осуществляется за счет энергии транспорта другого вещества. Механизмом вторично-активного транспорта реабсорбируются глюкоза и аминокислоты.

Вещества, реабсорбция которых не зависит от их концентрации в плазме крови, называются непороговыми. К ним относятся вещества, которые или вообще не реабсорбируются, (инулин, маннитол) или мало реабсорбируются и выделяются с мочой пропорционально накоплению их в крови (сульфаты).

Реабсорбция аминокислот происходит также по механизму сопряженного с Na+ транспорта. Профильтровавшиеся в клубочках аминокислоты на 90% реабсорбируются клетками проксимального канальца почки. Этот процесс осуществляется с помощью вторично-активного транспорта, т. е. энергия идет на работу натриевого насоса. Выделяют не менее 4 транспортных систем для переноса различных аминокислот (нейтральных, двуосновных, дикарбоксильных и иминокислот). Эти же системы транспорта действуют и в кишечнике для всасывания аминокислот. Описаны генетические дефекты, когда определенные аминокислоты не реабсорбируются и не всасываются в кишечнике.

В норме небольшое количество белка попадает в фильтрат и реабсорбируется. Процесс реабсорбции белка осуществляется с помощью пиноцитоза. Эпителий почечного канальца активно захватывает белок. Войдя в клетку, белок подвергается гидролизу со стороны ферментов лизосом и превращается в аминокислоты. Не все белки подвергаются гидролизу, часть их переходит в кровь в неизмененном виде. Этот процесс активный и требует энергии. За сутки с конечной мочой уходит не более 20 – 75 мг белка. Появление белка в моче носит название протеинурии. Протеинурия может быть и в физиологических условиях, например, после тяжелой мышечной работы. В основном протеинурия имеет место в патологии при нефритах, нефропатиях, при миеломной болезни.

Она играет важную роль в механизмах концентрирования мочи, свободно фильтруется в клубочках. В проксимальном канальце часть мочевины пассивно реабсорбируется за счет градиента концентрации, который возникает вследствие концентрирования мочи. Остальная часть мочевины доходит до собирательных трубочек. В собирательных трубочках под влиянием АДГ происходит реабсорбция воды и концентрация мочевины повышается. АДГ усиливает проницаемость стенки и для мочевины, и она переходит в мозговое вещество почки, создавая здесь примерно 50% осмотического давления. Из интерстиция по концентрационному градиенту мочевина диффундирует в петлю Генле и вновь поступает в дистальные канальцы и собирательные трубочки. Таким образом совершается внутрипочечный круговорот мочевины. В случае водного диуреза всасывание воды в дистальном отделе нефрона прекращается, а мочевины выводится больше. Таким образом ее экскреция зависит от диуреза.

Слабые органические кислоты и основания.

Реабсорбция слабых кислот и оснований зависит от того, в какой форме они находятся – в ионизированной или неионизированной. Слабые основания и кислоты в ионизированном состоянии не реабсорбируются и выводятся с мочой. Степень ионизации оснований увеличивается в кислой среде, поэтому они с большей скоростью экскретируются с кислой мочой, слабые кислоты, напротив, быстрее выводятся с щелочной мочой. Это имеет большое значение, так как многие лекарственные вещества являются слабыми основаниями или слабыми кислотами. Поэтому при отравлении ацетилсалициловой кислотой или фенобарбиталом (слабыми кислотами) необходимо вводить щелочные растворы (NaHCО 3), для того чтобы перевести эти кислоты в ионизированное состояние, тем самым способствуя их быстрому выведению из организма. Для быстрой экскреции слабых оснований необходимо вводить в кровь кислые продукты для закисления мочи.

Вода и электролиты.

Вода реабсорбируется во всех отделах нефрона. В проксимальных извитых канальцах реабсорбируется около 2/3 всей воды. Около 15% реабсорбируется в петле Генле и 15% – в дистальных извитых канальцах и собирательных трубочках. Вода реабсорбируется пассивно за счет транспорта осмотически активных веществ: глюкозы, аминокислот, белков, ионов натрия, калия, кальция, хлора. При снижении реабсорбции осмотически активных веществ уменьшается и реабсорбция воды. Наличие глюкозы в конечной моче ведет к увеличению диуреза (лолиурии).

Основным ионом, обеспечивающим пассивное всасывание воды, является натрий. Натрий, как указывалось выше, также необходим для транспорта глюкозы и аминокислот. Кроме того, он играет важную роль в создании осмотически активной среды в интерстиции мозгового слоя почки, благодаря чему происходит концентрирование мочи. Реабсорбция натрия совершается во всех отделах нефрона. Около 65% ионов натрия реабсорбируется в проксимальных канальцах, 25% – в петле нефрона, 9% – в дистальном извитом канальце и 1% – в собирательных трубочках.

Поступление натрия из первичной мочи через апикальную мембрану внутрь клетки канальцевого эпителия происходит пассивно по электрохимическому и концентрационному градиентам. Выведение натрия из клетки через базолатеральные мембраны осуществляется активно с помощью Na + ,К + –АТФазы. Так как энергия клеточного метаболизма расходуется на перенос натрия, транспорт его является первично-активным. Транспорт натрия в клетку может происходить за счет разных механизмов. Один из них – это обмен Na + на Н + (противоточный транспорт, или антипорт). В этом случае ион натрия переносится внутрь клетки, а ион водорода – наружу. Другой путь переноса натрия в клетку осуществляется с участием аминокислот, глюкозы. Это так называемый котранспорт, или симпорт. Частично реабсорбция натрия связана с секрецией калия.

Сердечные гликозиды (строфантин К, оубаин) способны угнетать фермент Na + ,К + –АТФазу, обеспечивающую перенос натрия из клетки в кровь и транспорт калия из крови в клетку.

Большое значение в механизмах реабсорбции воды и ионов натрия, а также концентрирования мочи имеет работа так называемой поворотно-противоточной множительной системы. Поворотно-противоточная система представлена параллельно рас-положенными коленами петли Генле и собирательной трубочкой, по которым жидкость движется в разных направлениях (противоточно). Эпителий нисходящего отдела петли пропускает воду, а эпителий восходящего колена непроницаем для воды, но способен активно переносить ионы натрия в тканевую жидкость, а через нее обратно в кровь. В проксимальном отделе происходит всасывание натрия и воды в эквивалентных количествах и моча здесь изотонична плазме крови. В нисходящем отделе петли нефрона реабсорбируется вода и моча становится более концентрированной (гипертонической). Отдача воды происходит пассивно за счет того, что в восходящем отделе одновременно осуществляется активная реабсорбция ионов натрия. Поступая в тканевую жидкость, ионы натрия повышают в ней осмотическое давление, тем самым способствуя притягиванию в тканевую жидкость воды из нисходящего отдела. В то же время повышение концентрации мочи в петле нефрона за счет реабсорбции воды облегчает переход натрия из мочи в тканевую жидкость. Так как в восходящем отделе петли Генле реабсорбируется натрий, моча становится гипотоничной. Поступая далее в собирательные трубочки, представляющие собой третье колено противоточной системы, моча может сильно концентрироваться, если действует АДГ, повышающий проницаемость стенок для воды. В данном случае по мере продвижения по собирательным трубочкам в глубь мозгового вещества все больше и больше воды выходит в межтканевую жидкость, осмотическое давление которой повышено вследствие содержания в ней большого количества Na + и мочевины, и моча становится все более концентрированной.

При поступлении больших количеств воды в организм почки, наоборот, выделяют большие объемы гипотонической мочи.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.