Нервная система ткани кровообращение

Группа нервных тканей объединяет ткани эктодермального происхождения, которые в совокупности образуют нервную систему и создают условия для реализации ее многочисленных функций. Обладают двумя основными свойствами: возбудимостью и проводимостью.

Структурно-функциональной единицей нервной ткани является нейрон (от др.-греч. νεῦρον — волокно, нерв) - клетка с одним длинным отростком - аксоном, и одним/несколькими короткими - дендритами.


Спешу сообщить, что представление, будто короткий отросток нейрона - дендрит, а длинный - аксон, в корне неверно. С точки зрения физиологии правильнее дать следующие определения: дендрит - отросток нейрона, по которому нервный импульс перемещается к телу нейрона, аксон - отросток нейрона, по которому импульс перемещается от тела нейрона.

Отростки нейронов проводят сгенерированные нервные импульсы и передают их другим нейронам, эффекторам (мышцы, железы), благодаря чему мышцы сокращаются или расслабляются, а секреция желез усиливается или уменьшается.


Отростки нейронов покрыты жироподобным веществом - миелиновой оболочкой, которая обеспечивает изолированное проведение нервного импульса по нерву. Если бы не было миелиновой оболочки (вообразите!) нервные импульсы распространялись бы хаотично, и, когда мы хотели сделать движение рукой, двигалась бы нога.

Существует болезнь, при которой собственные антитела уничтожают миелиновую оболочку (случаются и такие сбои в работе организма.) Эта болезнь - рассеянный склероз, по мере прогрессирования приводит к разрушению не только миелиновой оболочки, но и нервов - а значит, происходит атрофия мышц и человек постепенно становится обездвиженным.


Вы уже убедились, насколько значимы нейроны, их высокая специализация приводит к возникновению особого окружения - нейроглии. Нейроглия - вспомогательная часть нервной системы, которая выполняет ряд важных функций:

  • Опорная - поддерживает нейроны в определенном положении
  • Изолирующая - ограничивает нейроны от соприкосновения с внутренней средой организма
  • Регенераторная - в случае повреждения нервных структур нейроглия способствует регенерации
  • Трофическая - с помощью нейроглии осуществляется питание нейронов: напрямую с кровью нейроны не контактируют

В состав нейроглии входят разные клетки, их в десятки раз больше чем самих нейронов. В периферическом отделе нервной системы миелиновая оболочка, изученная нами, образуется именно из нейроглии - шванновских клеток. Между ними хорошо заметны перехваты Ранвье - участки, лишенные миелиновой оболочки, между двумя смежными шванновскими клетками.


Нейроны функционально подразделяются на чувствительные, двигательные и вставочные.


Чувствительные нейроны также называются афферентные, центростремительные, сенсорные, воспринимающие - они передают возбуждение (нервный импульс) от рецепторов в ЦНС. Рецептором называют концевое окончание чувствительных нервных волокон, воспринимающих раздражитель.

Вставочные нейроны также называются промежуточные, ассоциативные - они обеспечивают связь между чувствительными и двигательными нейронами, передают возбуждение в различные отделы ЦНС.

Двигательные нейроны по-другому называются эфферентные, центробежные, мотонейроны - они передают нервный импульс (возбуждение) из ЦНС на эффектор (рабочий орган). Наиболее простой пример взаимодействия нейронов - коленный рефлекс (однако вставочного нейрона на данной схеме нет). Более подробно рефлекторные дуги и их виды мы изучим в разделе, посвященном нервной системе.


На схеме выше вы наверняка заметили новый термин - синапс. Синапсом называют место контакта между двумя нейронами или между нейроном и эффектором (органом-мишенью). В синапсе нервный импульс "преобразуется" в химический: происходит выброс особых веществ - нейромедиаторов (наиболее известный - ацетилхолин) в синаптическую щель.

Разберем строение синапса на схеме. Его составляют пресинаптическая мембрана аксона, рядом с которой расположены везикулы (лат. vesicula — пузырек) с нейромедиатором внутри (ацетилхолином). Если нервный импульс достигает терминали (окончания) аксона, то везикулы начинают сливаться с пресинаптической мембраной: ацетилхолин поступает наружу, в синаптическую щель.


Попав в синаптическую щель, ацетилхолин связывается с рецепторами на постсинаптической мембране, таким образом, возбуждение передается другому нейрону, и он генерирует нервный импульс. Так устроена нервная система: электрический путь передачи сменяется химическим (в синапсе).

Гораздо интереснее изучать любой предмет на примерах, поэтому я постараюсь как можно чаще радовать вас ими ;) Не могу утаить историю о яде кураре, который используют индейцы для охоты с древних времен.

Этот яд блокирует ацетилхолиновые рецепторы на постсинаптической мембране, и, как следствие, химическая передача возбуждения с одного нейрона на другой становится невозможна. Это приводит к тому, что нервные импульсы перестают поступать к мышцам организма, в том числе к дыхательным мышцам (межреберным, диафрагме), вследствие чего дыхание останавливается и наступает смерть животного.


Собираясь вместе, аксоны образуют нервные пучки. Нервные пучки объединяются в нервы, покрытые соединительнотканной оболочкой. В случае, если тела нервных клеток концентрируются в одном месте за пределами центральной нервной системы, их скопления называют нервные узлы - или ганглии (от др.-греч. γάγγλιον — узел).

В случае сложных соединений между нервными волокнами говорят о нервных сплетениях. Одно из наиболее известных - плечевое сплетение.


Неврологические болезни могут развиваться в любой точке нервной системы: от этого будет зависеть клиническая картина. В случае повреждения чувствительного пути пациент перестает чувствовать боль, холод, тепло и другие раздражители в зоне иннервации пораженного нерва, при этом движения сохранены в полном объеме.

Если повреждено двигательное звено, движение в пораженной конечности будет невозможно: возникает паралич, но чувствительность может сохраняться.


Постепенно любые движения мышцами становятся для пациента все труднее, становится тяжело долго говорить, повышается утомляемость. Наблюдается характерный симптом - опущение верхнего века. Болезнь может привести к слабости диафрагмы и дыхательных мышц, вследствие чего дыхание становится невозможным.

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Внешняя сосудистая сеть нерва

Внешняя сосудистая сеть образована сосудами, сопровождающими нерв на большем или меньшем протяжении. Различного калибра артериальные ветви подходят к крупным нервным стволам через каждые 2—10 см. Наибольшее практическое значение имеют следующие четыре основных типа кровоснабжения нервных стволов.

Тип 1 отличается отсутствием доминирующей артерии (рис. 2.5.1, а).

В связи с тем, что большинство периферических нервов входят в состав сосудисто-нервных пучков, отсутствие доминирующей артерии может наблюдаться лишь на сравнительно небольших по протяженности участках крупных и мелких нервных стволов. Кровоснабжение в этих зонах осуществляется через мышечно-кожные и перегородочно-кожные перфорирующие артерии. Небольшие мелкие ветви нервов могут не сопровождаться сопутствующими сосудами и снабжаться за счет связей с сосудистыми сплетениями окружающих тканей.

Тип 2 характеризуется наличием одной доминирующей артерии (рис 2.5.1, б), которая может сопровождать нерв на значительном протяжении. Это —один из частых вариантов строения внешней сосудистой сети, характерный для большеберцового, межреберных нервов, нервов кисти и стопы, срединного и лучевого нервов (на уровне плеча) и других стволов.

Тип 3 предполагает питание нерва через множественные доминирующие артерии (рис. 2.5.1, в). Этот тип кровоснабжения характерен для локтевого нерва в верхней трети предплечья, для поверхностной ветви лучевого нерва и др.

Тип 4 встречается в той зоне нерва, где участок с преобладающей артерией переходит в свободный от доминирующих сосудов участок (рис. 2.5.1, г). Этот вариант кровоснабжения характерен для лучевого и малоберцового нервов в зоне их деления на конечные ветви.

Внутриствольная сосудистая сеть

Внутриствольная сосудистая сеть образуется ветвями расположенных вблизи нервов сосудов, которые подходят к нерву и делятся на восходящую и нисходящую ветви. Их конечные разветвления, анастомозируя между собой, образуют выраженную интраневральную непрерывную сеть, ячейки которой представлены прекапиллярами и капиллярами, вытянуты между волокнами и располагаются между ними

С практической точки зрения, целесообразнс выделить два основных варианта строения интраневральной сосудистой сети. Первый из них отличается наличием внутриствольно расположенной доминирующей артерии и характерен только для крупных нервных стволов на тех участках, где они проходят вне сосудистых пучков.

Это — срединный (на предплечье) и седалищный нервы, сосуды которых располагаются субэпиневрально или внутриствольно и могут достигать 1—2 мм в диаметре. Для второго варианта характерно отсутствие интраневральной доминирующей артерии. При этом внутриствольная сеть представлена сосудами малого калибра.

Следует отметить, что в любых крупных многопучковых нервах наиболее значительные по диаметру сосуды располагаются в наружном эпииеприи, что позволяет использовать их для идентификации соответствующих нервных пучков при сшивании и пластике.

Кровообращение в нервах с позиций пластической хирургии

Так, при отсутствии доминирующих артерий во внешней сосудистой сети (тип 1) внутриствольнос кровообращение в нерве обеспечивается в максимальной степени при выделении его концов из тканей вместе с прилегающей клетчаткой, когда сохраняют непрерывность сосудистой сети (рис. 2.5.2).

Однако клинические наблюдения показывают, что и в этом случае кровоснабжение концов нерва, выделенных на протяжении 8—10 см (или более), значительно снижается, особенно на периферическом отрезке. Эти нарушения выражены в минимальной степени, когда концы нерва выделяют вместе с доминирующей артерией. При этом протяженность участка выделения существенного значения не имеет.

Особенно просто задача выделения нерва из тканей решается при субэпиневральном расположении доминирующей артерии. При этом выделение концов нерва ограничивается прежде всего необходимостью выделения (пересечения) его ветвей.

При экстраневральном расположении доминирующей артерии (тип 2) выделение концов нерва из тканей следует по возможности осуществлять с включением сопутствующего сосудистого пучка, что сохраняет сосудистую сеть нерва практически неизменной.

При 3-м и 4-м типах строения внешней сосудистой сети нерва, когда рядом с ним на определенном участке проходит крупный сосудистый пучок (например, локтевой на предплечье или плечевой на плече), хирург может оказаться в трех различных ситуациях.

Прежде всего при сохранении целости магистральных сосудов их пересечение и выделение из тканей вместе с нервом, как правило, нецелесообразны, а часто —недопустимы. Поэтому нервный ствол выделяют так же, как и при 1-м типе его кровоснабжения.

Когда поврежден весь сосудисто-нервный пучок и когда нет необходимости в восстановлении магистральных сосудов (рис. 25.3, а), концы нерва можно выделять одним блоком с сосудами до того участка, где сосуды уходят в сторону (рис. 2 53, б). Если - же необходимо выделить нерв и более проксимально, то включать сосудистый пучок в выделяемый лоскут, как правило, нецелесообразно (рис. 2 5 3, в).

Следует отметить, что протяженность участка выделения концов нерва из тканей и техника этого этапа операции определяются не только архитектоникой сосудистой сети в зоне повреждения, но и такими факторами, как тип оперативного вмешательства (сшивание нерва, пластика, транспозиция и пр.), выраженность и распространенность рубцовых изменений окружающих тканей, наличие сопутствующих повреждений других сосудов сегмента и т. д.

1.7. Кровоснабжение центральной нервной системы

Кровоснабжение головного мозга. Осуществляется парными внутренними сонными (а. carotida interna) и позвоночными (а. vertebralis) артериями. Внутренняя сонная артерия берет начало от общей сонной, а позвоночная – от подключичной артерии.

В полости черепа от внутренней сонной артерии отходит глазная артерия (а. ophthalmica) и разделяется на переднюю и среднюю мозговые артерии (а. cerebri anterior et media). От мозговой части внутренней сонной артерии отходят также задняя соединительная артерия и передняя ворсинчатая артерия. Позвоночные артерии, отдав ряд ветвей к спинному мозгу, твердой мозговой оболочке, и задние нижние мозжечковые артерии соединяясь, образуя базилярную артерию (а. basilaris). Базилярная артерия посылает ряд ветвей к мозжечку, мосту и лабиринту и разделяется на две задние мозговые артерии (а.cerebri posterior).

На основании мозга, над турецким седлом (sella turcica), вокруг участка, ограниченного зрительным перекрестом (chiasma opticum), серым бугром (tuber cinereum) и сосцевидными телами (corpus mammilaris), образуется артериальный круг большого мозга. Он связывает в общую систему две внутренние сонные артерии (а. carota interna) с позвоночно-базилярной артериальной системой.

Артериальный круг действует как мозговой анастомоз при стенозе или закупорке одной из крупных артерий. Кровоснабжение отдельных участков мозга зависит от закономерностей микроциркуляции и распределения капилляров.

Венозная кровь от коры большого мозга и прилежащего белого вещества направляется по венам к верхнелатеральной, медиальной и нижней поверхностям полушария, где формируется венозная анастомозная сеть. Кровь оттекает по поверхностным мозговым венам в венозные синусы твердой мозговой оболочки. Из глубоких отделов полушарий большого мозга, включая базальные ядра, таламус, гипоталамус, сосудистые сплетения желудочков и ряда поверхностных образований основания мозга, венозный отток происходит в систему глубоких мозговых вен. Через большую мозговую вену кровь из этих образований поступает в прямой венозный синус.

Кровоснабжение спинного мозга. В спинном мозге выделяют три перекрывающих друг друга сосудистых бассейна: а) верхний (шейно-грудной); б) срединный (грудной); в) нижний (пояснично-грудной).

Васкуляризация самых верхних сегментов шейной части спинного мозга (СI—СIII) осуществляется передней и двумя задними спинномозговыми артериями, отходящими от позвоночной артерии внутри черепа. На всем остальном протяжении кровоснабжение спинного мозга обеспечивают сегментарные корешково-спинномозговые артерии, вливающиеся в продольно идущие спинномозговые артерии. Каждая корешково-спинномозговая артерия питает несколько сегментов. Кровоснабжение средних, нижнешейных и верхнегрудных сегментов спинного мозга осуществляется через корешково-спинномозговые артерии, отходящие от ветвей позвоночной артерии и шейных артерий (система подключичной артерии), а ниже – от ветвей межреберных и поясничных артерий, отходящих от аорты. От межреберной артерии (аналогично от позвоночных, шейных и поясничных артерий) отходит короткая дорсальная артериальная ветвь. Пройдя через межпозвоночное отверстие, она делится на переднюю и заднюю корешково-спинномозговые артерии, идущие вместе с нервными корешками. Кровь из передних корешково-спинномозговых артерий поступает в переднюю спинномозговую артерию, а из задних – в задние спинномозговые.

Передних корешково-спинномозговых артерий меньше, чем задних. В шейной части чаще всего обнаруживают 3 передние корешково-спинномозговые артерии, в верхней и средней грудной частях спинного мозга – 2—3, а в нижней грудной, поясничной и крестцовой частях спинного мозга – 1—3, причем наиболее крупная из них (до 2 мм в диаметре) называется артерией поясничного утолщения (артерия Адамкевича).

От передней спинномозговой артерии под прямым углом отходят центральные, или бороздчатые, артерии, входящие в спинной мозг вблизи передней спайки и снабжающие 4/5 поперечника спинного мозга.

Нервная ткань состоит из нервных клеток и нейроглии.

Нейроглией называют специализированные клетки, заполняющие пространство между нейронами и их отростками. Нейроглия выполняет в нервной ткани опорную и разграничительную, трофическую, секреторную и защитную функции.

Характерной чертой для всех зрелых нейронов является наличие у них отростков.

По функции отростки нейронов делятся на 2 вида:

Аксоны- выполняют функцию отведения нервного импульса от тел нейронов.

Дендриты- воспринимают нервные раздражения и проводят нервный импульс к телу нейрона.

По количеству отростков нейроны делятся на:

Униполярные- это клетки с одним отростком.

Биполярные- это клетки с двумя отростками.

Мультиполярные- это клетки с тремя и более отростками.

Псевдоуниполярные- от тела такой клетки отходит один отросток, который вскоре делится на два.

Кроме органелл, которые имеются в любой клетке, цитоплазма нейронов содержит тигроидное вещество или глыбки Ниссля, в условиях перенапряжения или каких-либо травм, глыбки распадаются и исчезают- ТИГРОЛИЗ.

Возвращение нейронов в нормальное состояние сопровождается восстановлением глыбок тигроидного вещества.

Другим характерным компонентом цитоплазмы нейрона являются нейрофибриллы- это тончайшие нити, которые не прерываясь проходят через тело клетки из одного отростка в другой.

Нервными волокнами называются отростки нервных клеток, покрытыми оболочками.

В зависимости от строения оболочки различают:

Миелиновые нервные волокна имеют оболочку из жироподобного вещества- миелина.

Безмиелиновые нервные волокна лишены оболочки.

На определенном расстоянии в миелиновом волокне находятся сужения или перехваты Ранвье. Миелиновые волокна толще безмиелиновых.

Пучки миелиновых и безмиелиновых волокон покрыты соединительно-тканной оболочкой называются нервами. Нервные волокна заканчиваются нервными окончаниями.

Нейроны, в зависимости от выполняемой функции делятся на:

Воспринимающие или чувствительные нейроны несут импульсы в ЦНС к рефлекторному центру. Отростки этих нейронов называются центростремительными (афферентными).

Эффекторные (двигательные или секреторные нейроны) передают нервные импульсы от ЦНС по эфферентным или центробежным волокнам к различным органам, изменяя их состояние и деятельность.

В ЦНС нейроны связаны друг с другом при помощи синапсов.

Синапс- место контакта двух нейронов.

  • 1. нервного окончания (терминаль), покрытого пресинаптической мембраной;
  • 2. синаптической щели;
  • 3. постсинаптической мембраны, находящейся на теле или дендритах нейрона, которым передаются нервные импульсы.

В ЦНС различают возбуждающие и тормозные синапсы.

Рефлекс- причинно-обусловленная реакция организма на раздражения, осуществляется при участии ЦНС.

Для проявления любой рефлекторной реакции, необходимо наличие раздражителя и совокупности нервных образований, получившей название- рефлекторной дуги.

Рефлекторная дуга включает:

  • 1. рецептор;
  • 2. афферентный нервный путь;
  • 3. рефлекторный центр;
  • 4. эфферентный нервный путь;
  • 5. эффектор.

Рецептор- начало любой рефлекторной дуги, он воспринимает раздражение и преобразует его в нервный импульс.

Интерорецепторы, которые воспринимают раздражители из внутренней среды (рецепторы внутренних органов, сосудов);

экстерорецепторы, возбуждающиеся под влиянием раздражителя из окружающей среды (рецепторы кожи, глаза, слизистой оболочки полости носа, рта);

проприорецепторы, которые реагируют на изменение положения тела в пространстве (рецепторы мышц, сухожилий, связок).

По центростремительному нервному пути передаются нервные импульсы от рецепторов в ЦНС. Этот путь представлен чувствительными нервными волокнами, воспринимающего нейрона.

Рефлекторный центр- группа нейронов, расположенных в различных отделах ЦНС. Здесь происходит переработка поступивших нервных импульсов и переключение их на центробежный нервный путь.

По центробежному нервному пути импульсы передаются от рефлекторного центра к эффектору. Этот путь представлен нервными волокнами эфферентных нервных клеток, расположенных в ЦНС или в вегетативных ганглиях.

Эфферентные волокна могут быть:

Двигательными (мышца) и секреторными (железа).

Эффектор- рабочий орган, отвечающий на раздражение изменением деятельности.

Биологическая роль рефлексов состоит в том, что они регулируют, контролируют, согласовывают функции внутренних органов и физиологических систем организма. Рефлекторные реакции имеют приспособительное значение. Засчет рефлекторной деятельности организм тонко, точно и совершенно приспосабливается к внешней окружающей среде и уравновешивается с ней.

Система кровообращения

Система кровообращения состоит из сердца, артерий, вен и капилляров.

1–артерии, 2–капилляры, 3–вены

В органах артерии ветвятся на сосуды более мелкого диаметра. Самые мелкие из артерий называются артериолами, которые в свою очередь распадаются на капилляры. Стенки артерий довольно толстые и состоят из трех слоев: наружного соединительнотканного, среднего гладкомышечного с наибольшей толщиной и внутреннего, образованного одним слоем плоских клеток.

  • Капилляры – самые тонкие кровеносные сосуды в организме человека. Их диаметр составляет 4-20 мкм. Наиболее густая сеть капилляров в мышцах, где на 1 мм 2 ткани их насчитывается более 2000. Кровь по ним движется гораздо медленнее, чем в аорте. Стенки капилляров состоят только из одного слоя плоских клеток – эндотелия. Через такой тонкий слой и происходит обмен веществ между кровью и тканями. Перемещаясь по капиллярам, артериальная кровь постепенно превращается в венозную, поступающую в более крупные сосуды, составляющие венозную систему.
  • Вены – это сосуды, по которым кровь оттекает от органов и тканей к сердцу. Стенка вен, как и артерий, трехслойная, но средний слой содержит гораздо меньше мышечных и эластических волокон, чем в артериях, а внутренняя стенка образует карманоподобные клапаны, расположенные по направлению тока крови и способствующие ее продвижению к сердцу.

Все артерии, вены и капилляры в организме человека объединяются в два круга кровообращения: большой и малый.

Кровь движется по сосудам за счет ритмичной работы сердца, а также разницы давления в сосудах при выходе крови из сердца и в венах при возвращении ее в сердце. Во время сокращения желудочков кровь под давлением нагнетается в аорту и легочный ствол. Здесь развивается самое высокое давление – 150 мм рт.ст. По мере продвижения крови по артериям давление снижается до 120 мм рт. ст., а в капиллярах – до 20 мм. Самое низкое давление в венах; в крупных венах оно ниже атмосферного. Разница давлений в различных отделах кровеносной системы и вызывает движение крови: из области более высокого давления в область более низкого.

Кровь из желудочков выбрасывается порциями, а непрерывность ее течения обеспечивается эластичностью стенок артерий. В момент сокращения желудочков сердца стенки артерий растягиваются, а затем в силу эластической упругости возвращаются в исходное состояние еще до очередного поступления крови из желудочков. Благодаря этому кровь продвигается вперед. Ритмические колебания диаметра артериальных сосудов, вызываемые работой сердца, называются пульсом. Он легко прощупывается в местах, где артерии лежат на кости. Считая пульс, можно определить частоту сердечных сокращений и их силу. У взрослого здорового человека в состоянии покоя частота пульса равна 60-70 ударам в минуту. При различных болезнях сердца возможна аритмия – перебои пульса.

С наибольшей скоростью, кровь течет в аорте: около 0,5 м/с. В дальнейшем скорость движения падает и в артериях достигает 0,25 м/с, а в капиллярах – приблизительно 0,5 мм/с. Медленное течение крови в капиллярах и большая протяженность последних благоприятствуют обмену веществ (общая длина капилляров в организме человека достигает 100 тыс. км, а общая поверхность всех капилляров тела составляет 6300 м 2 ). Большая разница в скорости течения крови в аорте, капиллярах и венах обусловлена неодинаковой шириной общего сечения кровяного русла в его различных участках. Самый узкий такой участок – аорта, а суммарный просвет капилляров в 600-800 раз превышает просвет аорты. Этим объясняется замедление тока крови в капиллярах.

На движение крови по венам оказывает влияние присасывающее действие грудной клетки, так как давление в ней ниже атмосферного, а в брюшной полости, где находится большая часть крови, оно выше атмосферного. В среднем слое стенки вен не имеют эластических волокон поэтому легко спадаются, а поступлению крови в сердце способствует сокращение скелетной мускулатуры, которая сдавливает вены. Важное значение в продвижении венозной крови имеют и карманообразные клапаны, препятствующие ее обратному току. Кроме того в венозной части кровеносной системы общий просвет сосудов по мере приближения к сердцу уменьшается. Но здесь каждая артерия сопровождается двумя венами, ширина просвета которых в два раза больше, чем артерий. Этим объясняется, что скорость течения крови в венах в два раза меньше, чем в артериях.

Движение крови по сосудам регулируется нервно–гуморальными факторами. Импульсы, посылаемые по нервным окончаниям, могут вызывать или сужение, или расширение просвета сосудов. К гладкой мускулатуре стенок сосудов подходят два вида сосудодвигательных нервов: сосудорасширяющие и сосудосуживающие. Импульсы, идущие по этим нервным волокнам, возникают в сосудодвигательном центре продолговатого мозга.

При обычном состоянии организма стенки артерий несколько напряжены и их просвет сужен. Из сосудодвигательного центра по сосудодвигательным нервам непрерывно поступают импульсы, которые и обусловливают постоянный тонус. Нервные окончания в стенках сосудов реагируют на изменения давления и химического состава крови, вызывая в них возбуждение. Это возбуждение поступает в центральную нервную систему, результатом чего служит рефлекторное изменение деятельности сердечно–сосудистой системы. Таким образом, увеличение и уменьшение диаметров сосудов происходит рефлекторным путем, но тот же эффект может возникнуть и под влиянием гуморальных факторов – химических веществ, которые находятся в крови и поступают сюда с пищей и из различных внутренних органов. Среди них имеют значение сосудорасширяющие и сосудосуживающие. Например, гормон гипофиза – вазопрессин, гормон щитовидной железы – тироксин, гормон надпочечников – адреналин суживают сосуды, усиливают все функции сердца, а гистамин, образующийся в стенках пищеварительного тракта и в любом работающем органе, действует противоположно: расширяет капилляры, не действуя на остальные сосуды. Значительный эффект на работу сердца оказывает изменение содержания в крови калия и кальция. Повышение содержания кальция увеличивает частоту и силу сокращений, повышает возбудимость и проводимость сердца. Калий вызывает прямо противоположное действие.

Расширение и сужение сосудов в различных органах существенно влияет на перераспределение крови в организме. В работающий орган, где сосуды расширены, направляется больше крови, в неработающий орган – меньше. Депонирующими органами служат селезенка, печень, подкожная жировая клетчатка. В случае кровопотери кровь из этих органов поступает в общий кровоток, что позволяет поддерживать кровяное давление.

Величина его примерно равна сжатому кулаку, а весом около 300 г. У сердца есть околосердная сумка, где находится жидкость, увлажняющая сердце и уменьшающая трение при его сокращениях.

В правое предсердие кровь поступает из верхней и нижней полых вен и венечных вен самого сердца, в левое предсердие впадают четыре легочные вены. Желудочки дают начало сосудам: правый – легочному стволу, который делится на две ветви и несет венозную кровь в правое и левое легкое, т. е. в малый круг кровообращения, левый желудочек дает начало левой дуге аорты, по которой артериальная кровь поступает в большой круг кровообращения. На границе левого желудочка и аорты, правого желудочка и легочного ствола имеются полулунные клапаны (по три створки в каждом). Они закрывают просветы аорты и легочного ствола и пропускают кровь из желудочков в сосуды, но препятствуют обратному току крови из сосудов в желудочки.

Стенка сердца состоит из трех слоев:

  • внутреннего – эндокарда, образованного клетками эпителия,
  • среднего – миокарда – мышечного
  • наружного – эпикарда, состоящего из соединительной ткани.

Снаружи сердце покрыто соединительнотканной оболочкой – околосердечной сумкой, или перикардом. Миокард состоит из особой поперечно–полосатой мышечной ткани, которая сокращается непроизвольно. Для сердечной мышцы характерна автоматия – способность сокращаться под действием импульсов, возникающих в самом сердце. Это связано с особыми нервными клетками, залегающими в сердечной мышце, в которых ритмично возникают возбуждения. Автоматическое сокращение сердца продолжается и при его изоляции из организма. При этом возбуждение, поступившее в одну точку, переходит на всю мышцу, и все ее волокна сокращаются одновременно. Мышечная стенка в предсердиях значительно тоньше, чем в желудочках.

1–левое предсердие, 2–правое предсердие, 3–левый желудочек, 4–правый желудочек, 5–аорта, 6–легочные артерии, 7–легочные вены, 8–полые вены.

Нормальный обмен веществ в организме обеспечивается непрерывным движением крови. Кровь в сердечно–сосудистой системе течет только в одном направлении: от левого желудочка через большой круг кровообращения она поступает в правое предсердие, затем в правый желудочек и далее через малый круг кровообращения возвращается в левое предсердие, а из него–в левый желудочек. Это движение крови обусловливается работой сердца благодаря последовательному чередованию сокращений и расслаблений сердечной мышцы.

В работе сердца различают три фазы. Первая – сокращение предсердий, вторая – сокращение желудочков – систола, третья – одновременное расслабление предсердий и желудочков –диастола, или пауза. В последней фазе оба предсердия заполняются кровью из вен, и она свободно проходит в желудочки, так как створчатые клапаны прижаты к стенкам желудочков. Затем сокращаются оба предсердия, и вся кровь из них поступает в желудочки. Вытолкнув кровь, предсердия расслабляются и вновь заполняются кровью. Поступившая в желудочки кровь давит на клапаны предсердий с нижней стороны, и они закрываются. При сокращении обоих желудочков в их полостях нарастает давление крови, и когда оно становится выше, чем в аорте и легочном стволе, их полулунные клапаны прижимаются к стенкам аорты и легочной артерии, и кровь начинает поступать в эти сосуды (в большой и малый круг кровообращения). После сокращения желудочков наступает их расслабление, давление в них становится меньше, чем в аорте и легочной артерии, поэтому полулунные клапаны заполняются кровью со стороны сосудов, закрываются и препятствуют возвращению крови в сердце. За паузой следует сокращение предсердий, затем желудочков и т. д.

Период от одного сокращения предсердий до другого называют сердечным циклом. Каждый цикл длится 0,8 с. Из этого времени на сокращение предсердий приходится 0,1 с, на сокращение желудочков – 0,3 с, а общая пауза сердца длится 0,4 с. Если частота сердечных сокращений увеличивается, время каждого цикла уменьшается. Это происходит в основном за счет укорочения общей паузы сердца. При каждом сокращении оба желудочка выбрасывают в аорту и легочную артерию одинаковое количество крови (в среднем около 70 мл), которое называется ударным объемом крови.

Работа сердца регулируется нервной системой в соответствии с воздействиями внутренней и внешней среды: концентрацией ионов калия и кальция, гормона щитовидной железы, состоянием покоя или физической работы, эмоционального напряжения. К сердцу как к рабочему органу подходят два вида центробежных нервных волокон, относящихся к вегетативной нервной системе. Одна пара нервов (симпатические волокна) при раздражении усиливает и учащает сердечные сокращения. При раздражении другой пары нервов (ветви блуждающего нерва) импульсы, поступающие к сердцу, ослабляют его деятельность.

Работа сердца связана с деятельностью других органов. Если возбуждение в центральную нервную систему передается от работающих органов, то из центральной нервной системы оно передается на нервы, усиливающие функцию сердца. Так рефлекторным путем устанавливается соответствие между деятельностью различных органов и работой сердца. Сердце сокращается 60-80 раз в минуту.

Мышечная стенка желудочков значительно толще стенки предсердий. Желудочки выполняют бо'льшую работу, чем предсердия. Предсердия и желудочки соединяются между собой отверстиями, перекрытыми специальными клапанами. Клапаны бывают двустворчатые и трехстворчатые (между предсердием и желудочком), полулунные (между желудочком и артерией). Работу сердца регулируют:

  • Продолговатый мозг
  • Промежуточный мозг
  • Кора больших полушарий
  • Симпатическая нервная система (учащают сердечный ритм)
  • Парасимпатическая Н.С.(замедляют с. р.)

Относящихся к Нервной регуляции, а также Гуморальная регуляция:

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.