Нервная теория что это такое

Нервная ткань составляет основу нервной системы, которая объединяет организм в единое целое, выполняет в нем регуляторные и координационные функции, обеспечивает связь с внешней средой, позволяя адаптироваться к условиям существования, а также осуществляет высшую нервную деятельность.

Анатомически н.с. принято разделять на центральную и периферическую, а физиологически - на соматическую и вегетативную.

В основе представлений о том, как устроена нервная система, лежит нейронная теория. Коротко ее можно свести к 4 основным положениям:

Н.с. состоит из отдельных клеток - нейронов.

Нейроны соединены только специализированными контактами синапсами.

Как функциональная единица нейрон находится в состоянии либо возбуждения, либо покоя.

Есть 2 типа синапсов - возбуждающие и тормозные.

Таким образом, центральное место занимает нейрон, но все функции н.с. осуществляет благодаря взаимодействию между отдельными нейронами и их объединению в более или менее сложные нейронные системы (ансамбли). Поэтому нейроны обычно располагаются скоплениями. В ц.н.с. они называются ядра, а в периферической н.с. - узлы или ганглии.

Вопрос 2. Рефлекторная дуга.

Наиболее простая из нейронных систем-рефлекторная дуга, которая рассматривается как морфологическая основа нервной системы.

Рефлекторная дуга - это цепочка связанных синапсами нейронов, по которой импульс поступает от рецептора к исполнительному органу. Простейшая рефлекторная дуга - моносинаптическая - состоит всего из двух нейронов (чувствительного и двигательного) и она крайне редка. Обычно в нее включены еще и вставочные ассоциативные нейроны. Компоненты рефлекторной дуги вам известны: рецептор чувствительный нейрон ассоциативные нейроны - двигательный нейрон — рабочий орган.

В составе периферической н.с. чувствительные нейроны образуют чувствительные ганглии - спинальные и ганглии черепно-мозговых нервов. Имеют сходное строение. Спинномозговой узел снаружи покрыт с.-т. капсулой, по его периферии - скопления чувствительных нейронов, а в центре проходят нервные волокна. Нейроны псевдоуниполярные, тело каждого окружено слоем мантийных глиоцитов, а поверх еще тонкой с.-т. оболочкой. Дендриты заканчиваются рецепторным окончанием, а аксоны

идут в спинной мозг и переключаются на ассоциативные или двигательные нейроны. В составе узла различают крупные светлые клетки и темные мелкие. Предполагают, что первые обслуживают соматическую, а вторые -вегетативную н.с. Набор нейромедиаторов очень разнообразен, в том числе вещество Р, которое передает болевую чувствительность.

В разных отделах нервной системы рефлекторные дуги имеют свои особенности.

Соматическая рефлекторная дуга, иннервирующая скелетные мышцы. Чувствительный нейрон спинального ганглия передает раздражения от кожи или мышечных веретен в спинной мозг. Аксоны входят через задние корешки и прямо тянутся в передние рога, либо заканчиваются в задних рогах на ассоциативных нейронах, которые далее передадут его в передние рога. Двигательные мотонейроны образуют ядра в передних рогах. Это крупные мультиполярные клетки. Их аксоны выходят через передние корешки и в составе смешанного нерва достигают мышцы и образуют на ее волокнах моторные бляшки.

Вегетативная н.с. иннервирует все органы и отвечает за все жизненно

важные функции. Состоит из центрального и периферического отделов.

Центральные отделы - это различные вегетативные центры коры больших

полушарий, подкорковые ядра и ядра ствола мозга, а кроме того вегетативные ядра боковых рогов спинного мозга. Периферическая часть состоит из нервов и вегетативных ганглиев.

Функционально вегетативная система разделяется на симпатическую и парасимпатическую. Грудные и поясничные отделы спинного мозга несут ядра симпатической нервной системы, а крестцовый отдел, а также средний

и продолговатый мозг - ядра парасимпатической н.с.

К симпатической н. с. относятся наравертебральные ганглии, которые образуют цепочки по обе стороны позвоночника и превертебральные ганглии. Это нервные сплетения в области шеи, грудной, брюшной и тазовой областях. Парасимпатические ганглии располагаются рядом с иннервируемым органом или внутри него (интрамуральные ганглии).

Вегетативная рефлекторная дуга устроена своеобразно. Рецепторное звено такое же, как и в соматической. Это чувствительные нейроны спинального ганглия, чьи аксоны заходят по задним корешкам и переключаются на вставочные (преганглионарные) нейроны боковых рогов. Аксоны последних выходят по передним корешкам и называются преганглионарные волокна. Они следуют в вегетативные узлы, где оканчиваются на эффекторных нейронах, чьи аксоны образуют постганглионарные волокна и оканчиваются двигательными окончаниями на гладких мышцах или железах. В симпатической н.с. более длинными являются постгаглионарные волокна, их нейроны являются 'адренэргическими (рабочие органы должны иметь -адренорецепторы) а в парасимпатической н.с. постганглионарные нейроны холинэргические (рабочие органы используют М-холинорецепторы), а их волокна короткие. Поскольку в каждом звене вегетативных дуг используются свои нейромедиаторы и свои рецепторы на воспринимающих структурах, то в современной лечебной практике широко используются лекарственные препараты, которые блокируют определенные рецепторы и сл-но передачу возбуждения, либо, напротив, стимулируют выброс медиатора.

Под нейронной теорией понимают общее учение о строении нервной ткани, согласно которому вся нервная система состоит из огромного количества структурных единиц - нейронов, соединенных в различные более или менее сложные комплексы.

Нейронная теория была сформулирована в 1891 году Вальдейером и получила дальнейшее развитие в работах Рамон-и-Кахала, Валлера и многих других морфологов и физиологов. В 1907 году ее положения были уточнены Гейденгайном.

Согласно этой теории основной структурно-функциональной и генетической единицей нервной системы является нейрон. Нейрон имеет тело и отростки: дендриты и аксоны. По форме тел нейроны делятся на звездчатые, корзинчатые, пирамидные. Нейроны с большим количеством отростков называют мультиполярными. Кроме этого существуют биполярные и псевдоуниполярные нейроны. Тело нервной клетки и ее отростки покрывает двуслойная мембрана (невролемма). Через нее осуществляется пассивный транспорт воды и некоторых низкомолекулярных веществ. Активный перенос ионов и органических молекул (аминокислот, сахаров) осуществляется за счет энергии макроэргических соединений, таких как АТФ. В теле нейрона находится ядро с расположенным в нем ядрышком, комплекс Гольджи, митохондрии, лизосомы, а также специфическое базофильное вещество Ниссля, представляющее собой гранулы РНК, соединенные с белком. Кроме этого в нейронах содержатся нейрофибриллы и нейротрубочки, могут быть гранулы гликогена и пигмента.

Согласно нейронной теории нервная клетка является трофическим центром нейрона. В ней осуществляется синтез необходимых для ее жизнедеятельности белков, липидов, углеводов, ферментов, медиаторов. Посредством медленного ортоградного аксонального тока транспортируются молекулы растворимого белка и элементы клеточного каркаса. Его скорость 2-4 мм/сутки. Посредством быстрого ортоградного аксонального тока перемещаются фосфолипиды, гликопротеины, ферменты. Его скорость 200-400 мм/сутки. Благодаря существующему ретроградному аксональному току со скорость 150 мм/сутки в тело клетки перемещаются продукты метаболизма аксона. В нервной клетке они подвергаются лизису до составляющих элементов и происходит вторичная утилизация макромолекул. При разрушении аксона на каком-либо участке дистальная его часть подвергается валлеровскому перерождению. Регенерация аксона происходит за счет центрального отростка. Скорость роста нервного волокна около 1 мм/сутки.

Связь между отдельными элементами нервной системы осуществляется при помощи синапсов. Синапс – это специальное образование, обеспечивающее межнейрональные связи и передачу возбуждения с нейрона на нейрон. Синапс состоит из пресинаптической мембраны, через которую выделяется медиатор, синаптической щели и постсинаптической мембраны. Рецепторы могут локализоваться как на пре- так и на постсинаптической мембране. Синапс обеспечивает односторонее проведение возбуждения в нервной системе. В качестве медиатора может быть ацетилхолин, дофамин, норадреналин, ГАМК, серотонин, глицин, глютаминовая кислота и др. По способу контакта различают синапсы аксо-аксональные, аксо-дендритические, аксо-соматические и межнейрональные. Кроме этого, имеются нервно-мышечные синапсы, обеспечивающие связь аксона мотонейрона с мышечным волокном.

НЕЙРОННАЯ ТЕОРИЯ (греч, neuron нерв) — теория строения, развития и функционирования нервной системы. В основе Н. т. лежит признание анатомической обособленности основной структурной единицы нервной системы — нервной клетки, или нейрона, ее генетической самостоятельности, функц, специфичности. В соответствии с Н. т. нейрон со всеми своими отростками и окончаниями является трофически автономной единицей нервной системы; ему свойственна динамическая поляризация (т. е. закрепленность передачи возбуждения по дендритам к телу нервной клетки, а от тела — вдоль по аксону).

Основные положения Н: т. были сформулированы В. Валъдейером и Р. Гейденгайном. Созданию Н. т. предшествовали развитие теории нервизма, разработанной на основе трудов И. П. Павлова, И. М. Сеченова, С. П. Боткина, а также работ К. А. Арнштейна, А. С. Догеля, А. Е. Смирнова, В. В. Николаева, С. Рамон-и-Кахаля и др.

В первой половине 20 в. последователи Н. т. вели острые дискуссии с ее противниками. Одни из них — так называемые ретикуляристы пытались доказать, что нервная система устроена в виде сети, в которой отростки одних нейронов без перерыва переходят в отростки других, и утверждали, что фибриллярные компоненты нервных клеток являются структурно-функциональными единицами всей нервной системы и переходят из клетки в клетку* ДрУгие — отстаивали непрерывность нейроплазмы в местах соприкосновения отростков нервных клеток в составе синцитиальной нейронной сети. В их представлении нервная система выступала в виде бесформенной конструкции с хаотическим распространением возбуждения но проводникам.

Отстаивая правильность Н. т., советские нейроморфологи, напр. Б. И. Лаврентъев и другие, преодолели ее методологическую ограниченность, отражавшую недостатки целлюлярной теории с ее абсолютизацией клеточной автономии и признанием механической суммации клеток в органах. Была подчеркнута интегрирующая роль нейронной организации в обеспечении нервной деятельности, открыто значение синапсов (см.), объединяющих нейроны в функц, ансамбли. Окончательной победы сторонники Н. т. добились, когда при помощи электронной микроскопии удалось установить контакты нервных окончаний там, где ретикуляристы видели непрерывность (континуитет) нервных сетей, а также расшифровать тонкую структуру различных типов синапсов.

Прогрессивное значение Н. т. заключалось в том, что она противопоставила произвольным и ошибочным воззрениям на организацию нервной системы концепцию о строгой упорядоченности нервных элементов, работающих сочетанно по принципу рефлекса (см.). В соответствии с Н. т. материальную основу рефлекса составляют объединенные в функц, системы основные структурные элементы нервной системы — нервные клетки: чувствительные, вставочные, или ассоциативные, и двигательные. Отростки нервных клеток вступают в связь с отростками или телами других нервных клеток по типу контакта (синапса). В местах контактов совершается переход импульса по цепи нейронов (см. Нервный импульс). Благодаря этому сохраняется относительная самостоятельность нервных клеток при выполнении сложных реакций с участием большого количества функционально интегрированных нейронов.

Методологические основы Н. т. и практические выводы, сделанные при ее помощи, нашли применение в неврологии и невропатологии. На основе Н. т. устанавливаются пути рефлексов и пункты переключения этих путей, проекции проводящих систем, создаются перспективы целенаправленного воздействия на патол, процессы. Разработка Н. т. во второй половине 20 в. связана с изучением различных по степени сложности функц, систем синаптически связанных нейронов, к-рые обеспечивают реализацию простых рефлекторных актов, сложных поведенческих реакций, участвуют в механизмах памяти (см.), выяснением значения нейроглии (см.) в процессах генерации нервных импульсов, механизмов обособления нервной системы от иннервируемого субстрата и т. д. На современном этапе классические положения Н. т. должны быть дополнены новым содержанием с учетом гуморального (в частности, нейросекреторного) компонента нейрогуморальной регуляции (см.).


Библиография: Долго-Сабуров Б. А. Невронная теория — основа современных представлений о строении и функции нервной системы, Л., 1956; Многотомное руководство по неврологии, под ред. Н.Н. Гращенкова, т. 1, кн. 1, М., 1955; Поляков Г. Современное состояние нейронной теории, в кн.: Некоторые теорет. вопр, строения и деятельности мозга, под ред. С. А. Саркисова, с. 22, М., 1960; Handbuch der Neurologie, hrsg. v. O. Bumke u. O. Foerster, Bd 1, S. 8S7, B., 1935.

Под нейронной теорией понимают общее учение о строении нервной ткани, согласно которому вся нервная система состоит из огромного количества структурных единиц - нейронов, соединенных в различные более или менее сложные комплексы.

Нейронная теория была сформулирована в 1891 году Вальдейером и получила дальнейшее развитие в работах Рамон-и-Кахала, Валлера и многих других морфологов и физиологов. В 1907 году ее положения были уточнены Гейденгайном.

Согласно этой теории основной структурно-функциональной и генетической единицей нервной системы является нейрон. Нейрон имеет тело и отростки: дендриты и аксоны. По форме тел нейроны делятся на звездчатые, корзинчатые, пирамидные. Нейроны с большим количеством отростков называют мультиполярными. Кроме этого существуют биполярные и псевдоуниполярные нейроны. Тело нервной клетки и ее отростки покрывает двуслойная мембрана (невролемма). Через нее осуществляется пассивный транспорт воды и некоторых низкомолекулярных веществ. Активный перенос ионов и органических молекул (аминокислот, сахаров) осуществляется за счет энергии макроэргических соединений, таких как АТФ. В теле нейрона находится ядро с расположенным в нем ядрышком, комплекс Гольджи, митохондрии, лизосомы, а также специфическое базофильное вещество Ниссля, представляющее собой гранулы РНК, соединенные с белком. Кроме этого в нейронах содержатся нейрофибриллы и нейротрубочки, могут быть гранулы гликогена и пигмента.

Согласно нейронной теории нервная клетка является трофическим центром нейрона. В ней осуществляется синтез необходимых для ее жизнедеятельности белков, липидов, углеводов, ферментов, медиаторов. Посредством медленного ортоградного аксонального тока транспортируются молекулы растворимого белка и элементы клеточного каркаса. Его скорость 2-4 мм/сутки. Посредством быстрого ортоградного аксонального тока перемещаются фосфолипиды, гликопротеины, ферменты. Его скорость 200-400 мм/сутки. Благодаря существующему ретроградному аксональному току со скорость 150 мм/сутки в тело клетки перемещаются продукты метаболизма аксона. В нервной клетке они подвергаются лизису до составляющих элементов и происходит вторичная утилизация макромолекул. При разрушении аксона на каком-либо участке дистальная его часть подвергается валлеровскому перерождению. Регенерация аксона происходит за счет центрального отростка. Скорость роста нервного волокна около 1 мм/сутки.

Связь между отдельными элементами нервной системы осуществляется при помощи синапсов. Синапс – это специальное образование, обеспечивающее межнейрональные связи и передачу возбуждения с нейрона на нейрон. Синапс состоит из пресинаптической мембраны, через которую выделяется медиатор, синаптической щели и постсинаптической мембраны. Рецепторы могут локализоваться как на пре- так и на постсинаптической мембране. Синапс обеспечивает односторонее проведение возбуждения в нервной системе. В качестве медиатора может быть ацетилхолин, дофамин, норадреналин, ГАМК, серотонин, глицин, глютаминовая кислота и др. По способу контакта различают синапсы аксо-аксональные, аксо-дендритические, аксо-соматические и межнейрональные. Кроме этого, имеются нервно-мышечные синапсы, обеспечивающие связь аксона мотонейрона с мышечным волокном.

| следующая лекция ==>
Задачи курса клинической неврологии | Системная организация деятельности ЦНС

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА

ИНСТИТУТ ЗАОЧНОГО И ДИСТАНЦИОННОГО ОБУЧЕНИЯ

по дисциплине Физиология ЦНС

1. Основные положения нейронной теории

2. Структурные элементы нервной клетки

3. Обмен веществ в нейроне

4. Кровоснабжение нервных клеток

6. Основные функции нервных клеток

6.1 Воспринимающая функция нейрона

6.2 Интегративная функция нейрона

6.3 Эффекторная функция нейрона

Список использованных источников

Наше тело – один большой механизм. Он состоит из огромнейшего количества мельчайших частиц, которые расположены в строгом порядке и каждая из них выполняет определённые функции, и имеет свои неповторимые свойства. Этот механизм – тело, состоит из клеток, соединяющих их тканей и систем: Всё это в целом представляет собой единую цепочку, сверхсистему организма. Величайшее множество клеточных элементов не могли бы работать как единое целое, если бы в организме не существовал утончённый механизм регуляции. Особую роль в регуляции играет нервная система. Вся сложная работа нервной системы - регулирование работы внутренних органов, управление движениями, будь то простые и неосознаваемые движения (например, дыхание) или сложные, движения рук человека – всё это, в сущности, основано на взаимодействии клеток между собой, на передаче сигнала от одной клетки к другой. Причем каждая клетка выполняет свою работу, а иногда имеет несколько функций.

Основным структурным элементом нервной системы является нервная клетка или нейрон. Функция нейронов заключается в восприятии сигналов от рецепторов или других нервных клеток, хранении и переработке информации и передаче нервных импульсов к другим клеткам – нервным, мышечным или секреторным. Нейронная теория была разработана в деталях великим испанским нейрогистологом Рамон-и-Кахалем. Именно он, а также итальянский гистолог Камилло Гольджи открыли специфические методы исследования, которые позволили анализировать гистологическую структуру нервной системы, за что оба были удостоены Нобелевской премии в 1906 году. В то время существовало две гипотезы о строении нервной системы – теория сети и нейронная теория. Первую в начале века выдвинул Герлах и поддержал Гельд, Мейнерт и Гольджи, а в последующем активно пропагандировал профессор университета в Страсбурге Альфред Бете и немецкий гистолог Штер, вторую предложили в те же годы Гис и Форель.

1. Основные положения нейронной теории

Вся нервная система построена из нервной ткани. Нервная ткань состоит из нейронов и нейроглии. Нейроглия обеспечивает существование и специфические функции нейронов, выполняет опорную, трофическую, разграничительную и защитную функции. По численности их в 10 тысяч раз больше чем нейронов, и они занимают половину объёма Центральной Нервной Системы. Глиальные клетки окружают нервные клетки и играют вспомогательную роль. Нейрон получает, обрабатывает и передаёт информацию, закодированную в виде электрических и химических сигналов. В коре головного мозга человека их насчитывают, по крайней мере, 14 миллиардов. Каждый нейрон является клеточной единицей, самостоятельной в гистогенетическом, анатомическом и функциональном отношении. Помимо нейронов, каких-либо других элементов, которым можно было бы приписать нервные функции, не существует. Нейроны подразделяют на три группы: афферентные, эфферентные и промежуточные нейроны. Афферентные нейроны (чувствительные) передают информацию от рецепторов в центральную нервную систему. Тела этих Неронов расположены вне центральной нервной системы – в спинномозговых ганглиях и в ганглиях черепно-мозговых нервов. Афферентный нейрон имеет ложноуниполярную форму, т.е. оба его отростка отходят из одного полюса клетки. Далее нейрон разделяется на длинный дендрит, образующий на переифирии воспринимающее образование – рецептор и аксон, входящий через задние рога в спинной мозг. К афферентным нейронам относят также нервные клетки, аксоны которых составляют восходящие пути спинного и головного мозга. Эфферентные нейроны (центробежные) связаны с передачей нисходящих влияний от вышележащих этажей нервной системы к рабочим органам (например, в передних рогах спинного мозга расположены тела двигательных нейронов, или мотонейронов, от которых идут волокна к скелетным мышцам; в боковых рогах спинного мозга находятся клетки вегетативной нервной системы, от которых идут пути к внутренним органам). Для эфферентных нейронов характерны разветвлённая сеть дендритов и один длинный отросток – аксон. Промежуточные нейроны (интернейроны или вставочные) – это, как правило, более мелкие клетки, осуществляющие связь между различными (в частности, афферентными и эфферентными) нейронами. Они передают нервные влияния в горизонтальном направлении (например, в пределах одного сегмента спинного мозга) и в вертикальном (например, из одного сегмента спинного мозга в другие – выше или нижележащие сегменты). Благодаря многочисленным разветвлениям аксона промежуточные нейроны могут одновременно возбуждать большое число других нейронов.

2. Структурные элементы нервной клетки

Различные структурные элементы нейрона имеют свои функциональные особенности и разное физиологическое значение. Нервная клетка состоит из тела, или сомы, и различных отростков. Многочисленные древовидно разветвлённые отростки дендриты служат входами нейрона, через которые сигналы поступают в нервную клетку. Выходом нейрона является отходящий от тела клетки отросток аксон, который передаёт нервные импульсы дальше – другой нервной клетке или рабочему органу (мышце, железе). Форма нервной клетки, длина и расположение отростков чрезвычайно разнообразны и зависят от функционального назначения нейрона.

Среди нейронов встречаются самые крупные клеточные элементы организма. Размеры их поперечника колеблются от 6-7 мк (мелкие зернистые клетки мозжечка) до 70 мк (моторные нейроны головного и спинного мозга).

Внутренняя часть клетки заполнена цитоплазмой, в которой расположены ядро и различные органоиды. Цитоплазма очень богата ферментными системами и белком. Её пронизывает сеть трубочек и пузырьков – эндоплазматический ретикулюм. В цитоплазме также имеются отдельные зёрнышки – рибосомы и скопления этих зёрнышек – тельца Ниссля, представляющие собой белковые образования, содержащие до 50% РНК. Это белковые депо нейронов, где также происходит синтез белков и РНК. При чрезмерно длительном возбуждении нервной клетки, вирусных поражениях ЦНС и других неблагоприятных воздействиях величина этих рибосомных зёрнышек резко уменьшается.

В специальных аппаратах нервных клеток – митохондриях совершаются окислительные процессы с образованием богатых энергией соединений. Это энергетические станции нейрона. В них происходит трансформация энергии химических связей в такую форму, которая может быть использована нервной клеткой. Митохондрии концентрируются в наиболее активных частях клетки. Их дыхательная функция усиливается при мышечной тренировке. Интенсивность окислительных процессов нарастает в нейронах более высоких отделов ЦНС, особенно в коре больших полушарий. Резкие изменения митохондрий вплоть до разрушения, а, следовательно, и угнетение деятельности нейронов отмечаются при различных неблагоприятных воздействиях (длительном торможении в ЦНС, при интенсивном рентгеновском облучении, кислородном голодании и гипотермии).


Нервная система

Раздражимость или чувствительность – характерная черта всех живых организмов, означающая их способность реагировать на сигналы или раздражители.

Сигнал воспринимается рецептором и передается с помощью нервов и (или) гормонов к эффектору, который осуществляет специфическую реакцию или ответ.

Животные имеют две взаимосвязанные системы координации функций – нервную и гуморальную (см. таблицу).

Нервная регуляция

Гуморальная регуляция

Электрическое и химическое проведение (нервные импульсы и нейромедиаторы в синапсах)

Химическое проведение (гормоны) по КС

Быстрое проведение и ответ

Более медленное проведение и отстроченный ответ (исключение - адреналин)

В основном кратковременные изменения

В основном долговременные изменения

Специфический путь распространения сигнала

Неспецифический путь сигнала (с кровью по всему телу)к специфической мишени

Ответ часто узко локализован (например, один мускул)

Ответ может быть крайне генерализованным (например, рост)

Нервная система состоит из высокоспециализированных клеток со следующими функциями:

- восприятие сигналов – рецепторы;

- преобразование сигналов в электрические импульсы (трансдукция);

- проведение импульсов к другим специализированным клеткам – эффекторам, которые получив сигнал, дают ответ;

Связь между рецепторами и эффекторами осуществляют нейроны .

Нейрон – это структурно – функциональная единица НС.


Нейрон — электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Нейрон имеет сложное строение и узкую специализацию. Нервная клетка содержит ядро, тело клетки и отростки (аксоны и дендриты).

В головном мозге человека насчитывается около 90—95 миллиардов нейронов. Нейроны могут соединяться друг с другом, образуя биологические нейронные сети.

Нейроны разделяют на рецепторные, эффекторные и вставочные.

Тело нейрона: ядро (с большим количеством ядерных пор) и органеллы (ЭПС, рибосомы, аппарат Гольджи, микротрубочки), а также из отростков (дендриты и аксоны).

Нейроглия – совокупность вспомогательных клеток НС; составляет 40% общего объема ЦНС.

  • Аксон – длинный отросток нейрона; проводит импульс от тела клетки; покрыт миелиновой оболочкой (образует белое вещество мозга)
  • Дендриты - короткие и сильно разветвлённые отростки нейрона; проводит импульс к телу клетки; не имеют оболочки


Важно! Нейрон может иметь несколько дендритов и обычно только один аксон.

Важно! Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.

  • чувствительные – передают возбуждение от органов чувств в спинной и головной мозг
  • двигательные – передают возбуждение от головного и спинного мозга к мышцам и внутренним органам
  • вставочные – осуществляют связь между чувствительными и двигательным нейронами, в спинном и головном мозге

Нервные отростки образуют нервные волокна.

Пучки нервных волокон образуют нервы.

Нервы – чувствительные (образованы дендритами), двигательные (образованы аксонами), смешанные (большинство нервов).

Синапс – это специализированный функциональный контакт между двумя возбудимыми клетками, служащий для передачи возбуждения


У нейронов синапс находится между аксоном одной клетки и дендритом другой; при этом физического контакта не происходит – они разделены пространством - синаптической щель.

Нервная система:

  • периферическая (нервы и нервные узлы) – соматическая и автономная
  • центральная (головной и спинной мозг)

В зависимости от характера иннервации НС:

  • Соматическая – управляет деятельностью скелетной мускулатуры, подчиняется воле человека
  • Вегетативная (автономная) – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека

Соматическая нервная система часть нервной системы человека, представляющая собой совокупность чувствительных и двигательных нервных волокон, иннервирующих мышцы (у позвоночных — скелетные), кожу, суставы.

Она представляет часть периферической нервной системы, которая занимается доставкой моторной (двигательной) и сенсорной (чувственной) информации до центральной нервной системы и обратно. Эта система состоит из нервов, прикрепленных к коже, органам чувств и всем мышцам скелета.

  • спинномозговые нервы – 31 пара; связаны со спинным мозгом; содержат как двигательные, так и сенсорные нейроны, поэтому смешанные;
  • черепномозговые нервы – 12 пар; отходят от головного мозга, иннервируют рецепторы головы (за исключением блуждающего нерва – иннервирует сердце, дыхание, пищеварительный тракт); бывают сенсорными, моторными (двигательными) и смешанными

Рефлекс – это быстрый автоматический ответ на раздражитель, осуществляемый без осознанного контроля головного мозга.

Рефлекторная дуга – путь, проходимый нервными импульсами от рецептора до рабочего органа.

  • в ЦНС – по чувствительному пути;
  • от ЦНС – к рабочему органу – по двигательному пути

- рецептор (окончание дендрита чувствительного нейрона) – воспринимает раздражение

- чувствительное (центростремительное) нервное волокно – передает возбуждение от рецептора к ЦНС

- нервный центр – группа вставочных нейронов, расположены на разных уровнях ЦНС; передает нервные импульсы с чувствительных нейронов на двигательные

- двигательное (центробежное) нервное волокно – передает возбуждение от ЦНС к исполнительному органу


Простая рефлекторная дуга: два нейрона – чувствительный и двигательный (пример – коленный рефлекс)

Сложная рефлекторная дуга: три нейрона – чувствительный, вставочный, двигательный (благодаря вставочным нейронам происходит обратная связь между рабочим органом и ЦНС, что позволяет вносить изменения в работу исполнительных органов)

Вегетативная (автономная) нервная система – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека.

Делится на симпатическую и парасимпатическую.


Обе состоят из вегетативных ядер (скопления нейронов, лежащих в спинном и головном мозге), вегетативных узлов (скопления нейронов, нейронов, за пределами НС), нервных окончаний (в стенках рабочих органов)

Путь от центра до иннервируемого органа состоит из двух нейронов (в соматической - один).

Место выхода из ЦНС

От спинного мозга – в шейный, поясничный, грудной отделы

От ствола головного мозга и ствола крестцового отдела спинного мозга

Местоположение нервного узла (ганглия)

По обе стороны спинного мозга, за исключением нервных сплетений (непосредственно в этих сплетениях)

В иннервируемых органах или вблизи них

Медиаторы рефлекторной дуги

В предузловом волокне –

в послеузловом - норадреналин

В обоих волокнах - ацетилхолин

Названия основных узлов или нервов

Солнечное, легочное, сердечное сплетения, брыжеечный узел

Общие эффекты симпатической и парасимпатической НС на органы:

  • Симпатическая НС – расширяет зрачки, угнетает слюноотделение, повышает частоту сокращений, расширяет сосуды сердца, расширяет бронхи, усиливает вентиляцию легких, угнетает перистальтику кишечника, угнетает секрецию пищеварительных соков усиливает потоотделение, удаляет с мочой лишний сахар; общий эффект – возбуждающий, повышает интенсивность обмена, снижает порог чувствительности; активизирует во время опасности, стресса, контролирует реакции на стресс
  • Парасимпатическая НС – сужает зрачки, стимулирует слезотечение, уменьшает частоту сердечных сокращений, поддерживает тонус артериол кишечника, скелетных мышц, снижает кровяное давление, уменьшает вентиляцию легких, усиливает перистальтику кишечника, расширяет артериолы в коже лица, увеличивает выделение с мочой хлоридов; общий эффект – тормозящий, снижает или не влияет на интенсивность обмена, восстанавливает порог чувствительности; доминирует в состоянии покоя, контролирует функции в повседневных условиях

Центральная нервная система (ЦНС) – обеспечивает взаимосвязь всех частей НС и их координированную работу

У позвоночных ЦНС развивается из эктодермы (наружного зародышевого листка)

ЦНС – 3 оболочки:

- твердая мозговая (dura mater) - снаружи;

- мягкая мозговая оболочка (pia mater) – прилегает непосредственно к мозгу.

Головной мозг расположен в мозговом отделе черепа; содержит

- белое вещество - проводящие пути между головным мозгом и спинным, между отделами головного мозга

- серое вещество - в виде ядер внутри белого вещества; кора покрывающая большие полушария и мозжечок

Масса головного мозга – 1400-1600 грамм.


5 отделов:

  • продолговатый мозг– продолжение спинного мозга; центры пищеварения, дыхания, сердечной деятельности, рвота, кашель, чихание, глотание, слюноотделение, проводящая функция
  • задний мозг – состоит из варолиевого моста и мозжечка; варолиев мост связывает мозжечок и продолговатый мозг с большими полушариями; мозжечок регулирует двигательные акты (равновесие, координация движений, поддержание позы)
  • промежуточный мозг– регуляция сложных двигательных рефлексов; координация работы внутренних органов; осуществление гуморальной регуляции;
  • средний мозг – поддержание тонуса мыщц, ориентировочные, сторожевые, оборонительные рефлексы на зрительные и звуковые раздражители;
  • передний мозг (большие полушария) – осуществление психической деятельности (память, речь, мышление).

Промежуточный мозг включает таламус, гипоталамус, эпиталамус

Таламус – подкорковый центр всех видов чувствительности (кроме обонятельного), регулирует внешнее проявление эмоций (мимика, жесты, изменение пульса, дыхания)

Гипоталамус – центры вегетативной НС, обеспечивают постоянство внутренней среды, регулируют обмен веществ, температуру тела, чувство жажды, голода, насыщения, сна, бодрствования; гипоталамус контролирует работу гипофиза

Эпиталамус – участие в работе обонятельного анализатора

Передний мозг имеет два больших полушария: левое и правое

  • Серое вещество (кора) находится сверху полушарий, белое – внутри
  • Белое вещество – это проводящие пути полушарий; среди него – ядра серого вещества (подкорковые структуры)

Кора больших полушарий – слой серого вещества, 2-4 мм в толщину; имеет многочисленные складки, извилины

Каждое полушарие разделено бороздами на доли:

- лобная – вкусовая, обонятельная, двигательная, кожно- мускульная зоны;

- теменная – двигательная, кожно- мускульная зоны;

- височная – слуховая зона;

- затылочная – зрительная зона.

Важно! Каждое полушарие отвечает за противоположную сторону тела.

  • Левое полушарие – аналитическое; отвечает за абстрактное мышление, письменную и устную речь;
  • Правое полушарие – синтетическое; отвечает за образное мышление.

Спинной мозг расположен в костном позвоночном канале; имеет вид белого шнура, длина 1м; на передней и задней сторонах есть глубокие продольные борозды

В самом центре спинного мозга – центральный канал, заполненный спинномозговой жидкостью.

Канал окружен серым веществом (имеет вид бабочки), который окружен белым веществом.

  • В белом веществе – восходящие (аксоны нейронов спинного мозга) и нисходящие пути (аксоны нейронов головного мозга)
  • Серое вещество напоминает контур бабочки, имеет три вида рогов.

- передние рога – в них расположены двигательные нейроны (мотонейроны) – их аксоны иннервируют скелетные мышцы

- задние рога – содержат вставочные нейроны – связывают чувствительные и двигательные нейроны

- боковые рога – содержат вегетативные нейроны – их аксоны идут на периферию к вегетативным узлам

Спинной мозг – 31 сегмент; от каждого сегмента отходит 1 пара смешанных спинномозговых нервов, имеющих по паре корешков:

- передний (аксоны двигательных нейронов);

- задний (аксоны чувствительных нейронов.

Функции спинного мозга:

- рефлекторная – осуществление простых рефлексов (сосудодвигательных, дыхательных, дефекации, мочеиспускания, половых);

- проводниковая – проводит нервные импульсы от и к головному мозгу.


Повреждение спинного мозга приводит к нарушению проводниковых функций, вследствие чего – паралич.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.