Новые нейронные сети или моделирование работы нервной системы


Человеческий мозг — восхитительное устройство. Он вдохновляет современных исследователей, которые создают искусственные нейроны, словно ученики скульптора, копирующие бюст Сократа. И результат тому — искусственная нейронная сеть (ИНС), одно из самых обсуждаемых явлений современности.

Почему нейронная, почему сеть

Глубокое понимание нейросетей предполагает, что вы в курсе понятий математическая функция, перцептрон и матрица весов. Мы же предлагаем поговорить про это явление на общечеловеческом языке, чтобы всем было понятно.

Искусственная нейронная сеть неспроста получила такое название, ссылаясь к работе нейронов головного мозга. Под нейросетью понимается система вычислительных единиц — искусственных нейронов, функционирующих подобно нейронам мозга живых существ. Как и биологические, искусственные нейроны получают и обрабатывают информацию, после чего передают ее дальше. Взаимодействуя друг с другом, нейроны решают сложные задачи.Среди них:

  • определение класса объекта,
  • выявление зависимостей и обобщение данных,
  • разделение полученных данных на группы на основе заданных признаков,
  • прогнозирование и т. д.


Нейронная сеть воспроизводит психические процессы, например, речь, распознавание образов, творческий выбор, мышление. Те области, которые еще вчера мыслились нами как возможности исключительно человеческого разума, становятся доступными искусственному интеллекту. Другое преимущество нейросетей перед традиционным ПО — возможность обучаться. Нейронные сети апгрейдятся на основе поступающих данных о мире людей, опыта и ошибок. И, надо сказать, они уже здорово эволюционировали.

Кому это выгодно

Нейросети для развлечений


Нейросети знают многое о человеческих лицах: по фотографии они могут определить возраст, пол, настроение, спрогнозировать, как лицо будет выглядеть в старости, анимировать статическое изображение, заставив Барака Обаму говорить то, что он не говорил, и оживить знаменитую Мону Лизу. По фотографии теперь можно найти человека, а китайские нейросети Megvii даже ищут собак по изображению носа. Причем ИНС работает не только с изображениями, но и со звуком. Массачусетский технологический институт недавно представил нейросеть (Speech2Face), определяющую национальность, пол и возраст человека по голосу.

Звучит впечатляюще и пугающе. Конечно, мы можем развлекаться, играя со своей фотографией, но только представьте, какой отнюдь не развлекательный потенциал у этой технологии. Уже сейчас можно найти любого человека по фото, создать реалистичные несуществующие лица для рекламы, модельного бизнеса или кино, заставить статичные изображения говорить и двигаться. Нетрудно представить, что нейросети скоро станут целой индустрией.

Нейросети на службе правительства


Уже есть несколько примеров проектов внедрения искусственных нейронных сетей в России. В ГИБДД хотят научить нейросеть обнаруживать факт кражи автомобильных номеров. По изображению автомобиля ИНС сможет установить, соответствует ли машина своему номеру. Это поможет своевременно выявлять подделку или кражу номеров. Руководитель Департамента транспорта Москвы Максим Ликсутов подтвердил, что данная программа сейчас проходит тестирование.

Еще один пример возможностей нейросетей в распознавании изображений – эксперимент Департамента информационных технологий Москвы по созданию сервиса для передачи показаний приборов учета воды. Возможно, вскоре нам не придется вводить показания вручную, достаточно будет лишь сфотографировать свой счетчик, а нейросеть сама распознает цифры с изображения.

Нейросети и бизнес

Нейросети — настоящий подарок для бизнеса и горе для работников. Мы живем в эпоху, когда данные имеют огромную ценность. Поверьте, мировые корпорации уже проанализировали ваш профиль в соцсетях и предоставляют вам персонализированную рекламу. Только представьте, что способности сетей искусственных нейронов к анализу и обобщению можно использовать для получения еще большего массива знаний о потребителях. Например, в 2019 году компания McDonald’s наняла специалистов по разработке нейросетей для создания индивидуальной рекламы. Потом не удивляйтесь, откуда бизнес знает о том, какую еду, одежду и косметику вы предпочитаете.

Нейросети в сфере искусства

Специалисты компании OpenAI заявляют, что их программа по созданию текстов пишет любые тексты без человеческого вмешательства. Тексты за авторством нейросети не отличаются от тех, что написаны человеком. Однако в общественный доступ программа не попала, авторы опасаются, что ее будут использовать для создания фейк-ньюс.


Удивительно, как органично нейросети вписались в мир современного искусства. Получим ли мы робота-Толстого через пару лет? Сможет ли нейросеть постигнуть все глубины человеческих проблем и чувств, чтобы творить не компиляцию, а настоящее искусство? Пока эти вопросы остаются открытыми.

Нейросети в медицине

Нейросети уже помогают улучшить качество диагностики различных заболеваний. Анализируя данные пациентов, искусственный интеллект способен выявлять риск развития сердечно-сосудистых заболеваний, об этом заявляют ученые Ноттингемского университета. По данным исследования, обученная нейросеть прогнозирует вероятность инсульта точнее, чем обычный врач по общепринятой шкале.

В открытом доступе появились даже приложения для диагностики на основе нейросетей, например SkinVision, которое работает с фотографиями родинок и определяет доброкачественность или злокачественность вашего невуса. Точность приложения — 83 %.


Скайнет готовится к атаке?

Все ли так оптимистично в применении нейросетей? Есть ли сценарии, при которых эта технология может нанести вред человечеству? Вот несколько самых актуальных проблем на сегодняшний день.

  • Фейки. Благодаря возможностям нейросетей появились программы для замены лиц и даже времени года на фото и видео. Как, например, нейросеть Nvidia на основе генеративной состязательной сети (GAN). Страшно представить, какие фото и видео можно получить, если применять подобные программы с целью создания убедительных фейков. Также нейросеть может на основе короткого фрагмента голоса создать синтетический голос, полностью идентичный оригиналу. Подделать чью-то речь? Легко. Подделать чью-то фотографию? Проще простого.
  • Трудности понимания. Когда процесс обучения нейросети завершается, человеку становится трудно понять, на каких основаниях она принимает решения. До сих пор непонятно, как у ИНС получилось обыграть лучшего игрока мира в Го. В этом смысле нейросеть — ящик Пандоры.


  • Оружие хакеров и мошенников. Считается, что хакеры могут использовать возможности нейросетей для преодоления систем антивирусной защиты и создания нового поколения вредоносных программ. Также нейросети соблазнительны для мошенников, например, искусственный интеллект, способный имитировать общение с живым человеком и заполучать доверие.

Выводы и прогнозы

Нейросети стремятся сделать мир более персонализированным: каждому из нас будут предлагаться блюда, музыка, фильмы и литература по вкусу. В сериалах мы сможем выбирать развитие сюжета, кстати, Netflix уже экспериментирует с такими решениями.

Так как искусственный интеллект уже начал выполнять человеческие задачи, миллионы квалифицированных специалистов могут постепенно лишаться рабочих мест. Работодателю будет проще запустить нейросеть, чем нанимать человека. По тонкому замечанию Антона Балакирева, руководителя интернет-портала Robo-sapiens.ru, нейросети не уходят на пенсию, не страдают алкоголизмом и депрессией. Идеальный работник.

Однако искусственный интеллект по-прежнему не может заменить человеческий мозг. В вопросах ответственности, норм морали и нравственности, а также критических систем безопасности нам не следует доверять нейросети безраздельно, пусть она и умнее нас. Доверяй, но проверяй.


Ответ я искал в нейробиологии и физиологии нервной системы. Изучение книг на данную тему дало мне хорошее представление о биологическом нейроне, а работы И.П. Павлова сформировали во мне убеждение о том, что любое проявление сколь угодно сложного поведения живых существ, проявление условных и безусловных рефлексов. Тогда и появились первые, наивные гипотезы о принципах работы биологического нейрона и попытки систематического описания этих принципов. О том, что существуют искусственные нейронные сети, я не имел представления, в то время интернет был редкость.

Только в студенческие годы, я познакомился с некоторыми статьями на тему искусственных нейронных сетей, знакомство с ними на меня произвели неоднозначное впечатление. С одной стороны, удивило столь серьезные различия между моделью нейрона, принятым за основу перцептрона и биологическим нейроном. С другой стороны, описательные методы, использованные в искусственных нейронных сетях, позволили мне пересмотреть свои гипотезы о работе нейрона и представить их в уже более систематизированном виде. Хотя и тогда это были весьма иллюзорные представления.

Модель нейрона в основе классических искусственных сетей обычно представлялась, как клетка с множеством входов – дендритов и с одним выходом – аксоном. Клетка анализировала сигналы, поступающие с входов, и подобно функции выдавала результат, который передавался следующим нейронам. На самом деле нейрон с аксоном лишь частный случай в нервной системе, большинство нейронов в мозгу человека не имеет аксона. Нейрон принимает сигналы практически всей поверхностью мембраны, специальными рецепторами. После чего, передает сигналы по дендритам через синапсы к другим клеткам, причем, синапсы клетки имеют различную силу, их сила определяется независимо друг от друга. У биологического нейрона много входов и множество независимо определяемых выходов. Получалось что, в математическом нейроне анализируются и подсчитываются коэффициенты весов входных сигналов, а в биологическом нейроне происходит анализ силы выходных.

Несмотря на сильные несоответствия искусственных сетей от биологических, они оказались весьма продуктивными, работы в этой области дали множество интересных и практичных результатов.

Классические нейронные сети являются очень удобными для реализации, у меня был опыт написания простой программы на Delphi в основе перцептрона, но к моему стыду, у меня навыков в программировании было недостаточно для реализации своих идей по моделированию нервной системы.

Я долгое время не обращался к этой теме, но продолжал интересоваться и изучать книги и статьи по нейробиологии и психологии. Примерно два года назад, я занялся изучением игрового движка Unity3D, меня он интересовал именно, как игровой движок. Создав пару игровых приложений на нем, я понял, что Unity3D лучше всего подходит для отработки идей. Здесь и рабочее трехмерное пространство, и удобство в программировании, и свобода в организации структуры объектов. Я поставил себе задачу сделать простую модель, демонстрирующую элементарные принцы работы нейрона и нервной системы, основанную на своих предположениях.

Уже через некоторое время работы над моделью, меня ждало первое разочарование. Модель представляла собой некоторое подобие клеточного автомата, связанных между собой элементов. Созданная сеть нейронов, примерно 450 клеток, расположенных в трёхмерном пространстве, в кубическую сетку, работала не в соответствии с моими представлениями. Попытки откорректировать её работу были безуспешными.

Расположение в трехмерном пространстве, является очень важным аспектом для системы, так как для анализа и определения силы своих выходов, в нейроне принимается в расчет его местоположение относительно других активных клеток.


Первая неудачная архитектура нейронной сети

Посчитав, что причиной моих неудач может служить предопределённость в количестве нейронов и количестве связей имеющихся у нейрона. Было принято решение создавать нейроны динамически. Дело в том, что существует принцип последовательной передачи возбуждения от нейрона к нейрону, каждый рефлекторный акт можно представить, как цепочку последовательных передач нервного сигнала. Некоторые нейроны могли быть не задействованы ни в одном рефлекторном акте, при этом использовать ресурсы компьютера и мешать обзору при изучении сети.

При динамическом создании нейронов, можно сказать, что рабочая область программы представляет собой пространство, заполненное гипотетическими нейронами, которые будут активированы при необходимости. Программа создает нейроны там, где они необходимы с определёнными ограничениями, имитирующими предварительную наполненность пространства клетками.

Однако, после внесённых модификаций процесс работы с моделью, представлял собой поиски, круговорот из гипотез и их проверок. Я вносил изменения в скрипт нейрона, наблюдал за поведением системы, которая вела себя не в соответствии с моими ожиданиями, что заставляло меня строить новые гипотезы и опять вносить правки в программу. Данная работа заставила меня переоценить важность некоторых аспектов в биологии нейрона, которые ранее для меня казались незначащими. К примеру, пришлось учитывать изменение отрицательного следового потенциала, добавлять усталость нейронов и тормозящие клетки.

В результате я получил результат, который ставил перед собой изначально. Программа, которая может продемонстрировать, как происходит ассоциативное обучение в нервных тканях, формирование новых рефлекторных дуг, подобно тому, как это происходит в мозгу собаки в экспериментах И.П. Павлова.

В сравнении с классическими нейронными сетями, которые с меньшим количеством элементов могут распознавать лица, рисовать картины и сочинять музыку, функционально моя нейронная сеть практически бесполезна. Однако, для меня большее значение имеет потенциал, заложенный в ней.

В системе существуют двенадцать входов, представляющие собой рецепторы-кнопки, это кнопки клавиатуры, которым соответствуют индикаторы обозначенные буквами и двенадцать выходов, которые представляют собой индикаторы активности определённых клеток. Программа позволяет редактировать сеть: создавать нейроны, настраивать их синапсы (связи), настраивать входы и выходы. Изначально создаются безусловные рефлексы, на базе которых происходит обучение. Человек рождается с уже готовым набором безусловных рефлексов, которые старательно подготовила и подобрала эволюция. Этот набор рефлексов и предопределяет вариативность нашего обучения.

Это только начало пути, еще предстоит множество работы. Сейчас я планирую работу над новой версией программы, которая позволит мне разобраться в некоторых деталях, касательно торможения в нервной системе. Планирую расширить возможности входных сигналов, более развернутую и разнообразную систему чувств, а так же учесть специфические химические информационные сигналы, которые позволят смоделировать подобие эмоций.

Отработав на подобных моделях, все аспекты работы нейронов, можно будет переходить к созданию системы, позволяющей создавать, как в редакторе структуры имитирующих работу мозга животных. На этом этапе будут так же востребованы знания специалистов в области физиологии мозга.

Способность к самоидентификации личности и самосознании являются неотъемлемыми элементами интеллекта, как известно, все это заложено в структурах мозга. И не возможно создание мыслящей машины без копирования структур и принципов работы мозга.

Исследования в области искусственного интеллекта, как и написание статей на эту тему не является основным видом моей деятельности, поэтому не судите строго. Буду благодарен любому содействию в работе, помощи, совету, напутствию. Ваше мнение и конструктивная критика для меня очень важны.


Только в студенческие годы, я познакомился с некоторыми статьями на тему искусственных нейронных сетей, знакомство с ними на меня произвели неоднозначное впечатление. С одной стороны, удивило столь серьезные различия между моделью нейрона, принятым за основу перцептрона и биологическим нейроном. С другой стороны, описательные методы, использованные в искусственных нейронных сетях, позволили мне пересмотреть свои гипотезы о работе нейрона и представить их в уже более систематизированном виде. Хотя и тогда это были весьма иллюзорные представления.

Модель нейрона в основе классических искусственных сетей обычно представлялась, как клетка с множеством входов – дендритов и с одним выходом – аксоном. Клетка анализировала сигналы, поступающие с входов, и подобно функции выдавала результат, который передавался следующим нейронам. На самом деле нейрон с аксоном лишь частный случай в нервной системе, большинство нейронов в мозгу человека не имеет аксона. Нейрон принимает сигналы практически всей поверхностью мембраны, специальными рецепторами. После чего, передает сигналы по дендритам через синапсы к другим клеткам, причем, синапсы клетки имеют различную силу, их сила определяется независимо друг от друга. У биологического нейрона много входов и множество независимо определяемых выходов. Получалось что, в математическом нейроне анализируются и подсчитываются коэффициенты весов входных сигналов, а в биологическом нейроне происходит анализ силы выходных.

Несмотря на сильные несоответствия искусственных сетей от биологических, они оказались весьма продуктивными, работы в этой области дали множество интересных и практичных результатов.
Классические нейронные сети являются очень удобными для реализации, у меня был опыт написания простой программы на Delphi в основе перцептрона, но к моему стыду, у меня навыков в программировании было недостаточно для реализации своих идей по моделированию нервной системы.

Я долгое время не обращался к этой теме, но продолжал интересоваться и изучать книги и статьи по нейробиологии и психологии. Примерно два года назад, я занялся изучением игрового движка Unity3D, меня он интересовал именно, как игровой движок. Создав пару игровых приложений на нем, я понял, что Unity3D лучше всего подходит для отработки идей. Здесь и рабочее трехмерное пространство, и удобство в программировании, и свобода в организации структуры объектов. Я поставил себе задачу сделать простую модель, демонстрирующую элементарные принцы работы нейрона и нервной системы, основанную на своих предположениях.
Уже через некоторое время работы над моделью, меня ждало первое разочарование. Модель представляла собой некоторое подобие клеточного автомата, связанных между собой элементов. Созданная сеть нейронов, примерно 450 клеток, расположенных в трёхмерном пространстве, в кубическую сетку, работала не в соответствии с моими представлениями. Попытки откорректировать её работу были безуспешными.
Расположение в трехмерном пространстве, является очень важным аспектом для системы, так как для анализа и определения силы своих выходов, в нейроне принимается в расчет его местоположение относительно других активных клеток.



Первая неудачная архитектура нейронной сети

Посчитав, что причиной моих неудач может служить предопределённость в количестве нейронов и количестве связей имеющихся у нейрона. Было принято решение создавать нейроны динамически. Дело в том, что существует принцип последовательной передачи возбуждения от нейрона к нейрону, каждый рефлекторный акт можно представить, как цепочку последовательных передач нервного сигнала. Некоторые нейроны могли быть не задействованы ни в одном рефлекторном акте, при этом использовать ресурсы компьютера и мешать обзору при изучении сети.
При динамическом создании нейронов, можно сказать, что рабочая область программы представляет собой пространство, заполненное гипотетическими нейронами, которые будут активированы при необходимости. Программа создает нейроны там, где они необходимы с определёнными ограничениями, имитирующими предварительную наполненность пространства клетками.

Однако, после внесённых модификаций процесс работы с моделью, представлял собой поиски, круговорот из гипотез и их проверок. Я вносил изменения в скрипт нейрона, наблюдал за поведением системы, которая вела себя не в соответствии с моими ожиданиями, что заставляло меня строить новые гипотезы и опять вносить правки в программу. Данная работа заставила меня переоценить важность некоторых аспектов в биологии нейрона, которые ранее для меня казались незначащими. К примеру, пришлось учитывать изменение отрицательного следового потенциала, добавлять усталость нейронов и тормозящие клетки.
В результате я получил результат, который ставил перед собой изначально. Программа, которая может продемонстрировать, как происходит ассоциативное обучение в нервных тканях, формирование новых рефлекторных дуг, подобно тому, как это происходит в мозгу собаки в экспериментах И.П. Павлова.
В сравнении с классическими нейронными сетями, которые с меньшим количеством элементов могут распознавать лица, рисовать картины и сочинять музыку, функционально моя нейронная сеть практически бесполезна. Однако, для меня большее значение имеет потенциал, заложенный в ней.

В системе существуют двенадцать входов, представляющие собой рецепторы-кнопки, это кнопки клавиатуры, которым соответствуют индикаторы обозначенные буквами и двенадцать выходов, которые представляют собой индикаторы активности определённых клеток. Программа позволяет редактировать сеть: создавать нейроны, настраивать их синапсы (связи), настраивать входы и выходы.
Изначально создаются безусловные рефлексы, на базе которых происходит обучение. Человек рождается с уже готовым набором безусловных рефлексов, которые старательно подготовила и подобрала эволюция. Этот набор рефлексов и предопределяет вариативность нашего обучения.

Это только начало пути, еще предстоит множество работы. Сейчас я планирую работу над новой версией программы, которая позволит мне разобраться в некоторых деталях, касательно торможения в нервной системе. Планирую расширить возможности входных сигналов, более развернутую и разнообразную систему чувств, а так же учесть специфические химические информационные сигналы, которые позволят смоделировать подобие эмоций.

Отработав на подобных моделях, все аспекты работы нейронов, можно будет переходить к созданию системы, позволяющей создавать, как в редакторе структуры имитирующих работу мозга животных. На этом этапе будут так же востребованы знания специалистов в области физиологии мозга.
Способность к самоидентификации личности и самосознании являются неотъемлемыми элементами интеллекта, как известно, все это заложено в структурах мозга. И не возможно создание мыслящей машины без копирования структур и принципов работы мозга.

P.S.
Исследования в области искусственного интеллекта, как и написание статей на эту тему не является основным видом моей деятельности, поэтому не судите строго. Буду благодарен любому содействию в работе, помощи, совету, напутствию. Ваше мнение и конструктивная критика для меня очень важны.

Ой, у вас баннер убежал!

Присылаем лучшие статьи раз в месяц

Скоро на этот адрес придет письмо. Подтвердите подписку, если всё в силе.

  • Скопировать ссылку
  • Facebook
  • Twitter
  • ВКонтакте
  • Telegram
  • Pocket


Похожие публикации

  • 19 октября 2016 в 20:47

Заказы

AdBlock похитил этот баннер, но баннеры не зубы — отрастут

Комментарии 12



в математическом нейроне анализируются и подсчитываются коэффициенты весов входных сигналов, а в биологическом нейроне происходит анализ силы выходных.

Успехов в начинании!


Я думаю, начинать с этой концепции плохо, и вот почему:



Спасибо, очень круто!

Я также интересуюсь созданием нейросетей с динамическим образованием нейронов (считаю, что основное преимущество, которое цифровые модели имеют перед биологическими — это то, что цена создания новой ноды (нейрона) в графе — сравнима с ценой передачи нервного импульса. Мозг себе такого в физической реализации позволить не может, только создаёт новые синапсы, и то очень медленно по сравнению со скоростью передачи информации. Я думаю в этой области для цифровых моделей — огромный потенциал)



Думаю вам будет интересно как ведет себя живой нейрон.
Вот что происходит с дентритом / синапсом за 23 мин.


Спасибо, подобные видео вдохновляют

Есть неплохая серия статей на хабре, в которой описана интересная теория работы мозга: Логика мышления

Мне кажется, вместо поиска центров удовольствия лучше искать замкнутые пути, в том числе и через внешний мир: удовольствие получается от связанности результата действия и ожидаемого результата. Тут могу ошибаться, просьба высказать альтернативные предложения.

И еще вопрос: чем у вас входы от выходов отличаются, ведь для образования ассоциативной связи требуется активность обоих?


К сожалению в окружающем мире не существует абсолютных истин, придерживаясь которых можно обучаться. Какой результат поведения более ожидаемый, как определить? В реальных условиях, иногда даже не существует учителей, которые укажут, подскажут, что истинно, а что нет. Организм обучается с позиции того, что удовлетворяет его внутренним целям, получение пищи защита и удовлетворение в потребности к размножению.

Спасибо, за ссылку на статью. Я начал работу над подобной, но опишу используемую здесь модель нейрона.

Доктор физико-математических наук А. ЖДАНОВ, заведующий Отделом имитационных систем Института системного программирования РАН.

Однако увлекательность проблемы оказала ей дурную услугу. Неоднократно эта тема страдала от некомпетентных или недобросовестных интерпретаторов, претерпевая необоснованные, но весьма захватывающие дух взлеты, обескураживающие и тяжелые своими последствиями спады, периоды забвения. Кажется, лишь в последние десять лет волнение улеглось и исследования в этой области протекают в сравнительно деловой и спокойной обстановке.

В действительности оба подхода дополняют друг друга. Как правило, основные идеи и направления появляются в стане имитаторов, после чего скрупулезные прагматики доводят их до стадии практически полезных разработок.

Разрабатываемую нами имитационную модель нервной системы мы называем системой автономного адаптивного управления (ААУ).

НЕРВНАЯ СИСТЕМА КАК АВТОНОМНАЯ АДАПТИВНАЯ СИСТЕМА УПРАВЛЕНИЯ

Договоримся о терминах. Обычно при моделировании нервных систем в точных науках пользуются следующими синонимами биологических объектов.

Кибернетические объекты Биологические объекты
Среда Объект управления (ОУ)
Управляющая система (УС) Датчики
Исполнители Окружающая среда
Организм Нервная система и мозг
Рецепторы Эффекторы

Прежде чем приступать к конструированию модели нервной системы, необходимо наложить ряд ограничений на нашу будущую модель.

1. Автономность.

Задача нервной системы — управлять организмом. Условие автономности означает то, что нервная система должна самостоятельно, без подсказок извне, находить способ управления. При этом нервная система заключена внутри организма и может взаимодействовать с окружающей средой лишь посредством рецепторов и эффекторов (исполняющих органов).

2. Дискретность.

3. Начальная приспособленность.

4. Минимум исходных знаний.

После рождения организма, обладающего некоторой начальной приспособленностью и избытком нейронов, его нервная система начинает накапливать знания и информацию. Этот процесс продолжается в течение всей жизни организма (хотя одновременно идет и потеря знаний, например вследствие отмирания части нейронов). Накопление информации происходит в нейронах, при этом изменяется смысл сигнала, представленного нервным импульсом. Например, до и после обучения нервная система может совершенно по-разному реагировать на одинаковые с виду нервные импульсы. Здесь мы имеем дело с информационным процессом приспособления (адаптации), который и будем называть адаптивным управлением. Именно ему живые существа обязаны своей способностью распознавать образы, вырабатывать рефлексы, обучаться, принимать решения.

КАК РАБОТАЕТ НЕРВНАЯ СИСТЕМА

Итак, выходим на связь с Демоном.

Заметим, что активность — необходимая стратегия искомого принципа управления. Альтернативную стратегию — пассивное управление, когда система только реагирует на входные воздействия, — мы отвергаем, ибо она не ведет к поиску новых возможностей для улучшения состояния.

По-видимому, именно аппарат эмоций обеспечивает активность нервной системы. Если мы его отключим, Демон не захочет ничего делать, управление прекратится и объект управления погибнет.

Итак, Демон сформулировал еще одну целевую функцию: поиск и накопление знаний. Очевидно, что, чем больше знаний будет накоплено управляющей системой, тем более надежные способы выживания она сможет найти, тем успешнее сможет улучшать свое состояние. С другой стороны, чем дольше будет существовать объект, тем больше знаний он накопит. Поэтому обе целевые функции — выживание и накопление знаний — тесно связаны между собой (по нашему мнению, главная цель существования и есть накопление знаний).

Разумно. Но может ли Демон обнаружить закономерности в беспорядочном мелькании входных сигналов? Может, если он в состоянии заметить в них неслучайные совпадения. Если в какой-то момент ему покажется, что некоторую комбинацию сигналов он видит уже не в первый раз — значит, он сформировал образ.

Ну вот, уже два образа сформированы — номер 1 и номер 2. Это первые составляющие эмпирического знания нашей управляющей системы. Демон может занести их в свою Базу Знаний.

Сформированные образы (иначе их еще называют таксонами, паттернами, классами объектов) управляющая система может распознать в те моменты, когда в поле зрения датчиков появляются их прообразы.

А что еще остается делать, если нет никаких оснований для более разумной тактики. Интересно, что произойдет раньше: Демон найдет какую-либо закономерную связь между нажатием кнопки и реакцией образа либо выявится зависимость образов от эмоционального состояния Демона?

Ну вот, в данном случае первыми сформировались эмоциональные оценки образов. База Знаний пополнилась новой информацией.

Вот управляющая система и получила первое знание: в каких условиях, каким действием и с какой вероятностью вызывается (или вытесняется) определенный образ. Назовем нажатие на кнопку номер 47 действием номер 1.

Демон постепенно расширяет свою Базу Знаний, обнаруживая новые действия и уточняя найденные ранее.

Посмотрим, как он это делает. В некоторый момент времени управляющая система распознает несколько образов из числа ранее сформированных и определяет их среднюю эмоциональную оценку. Затем она выбирает в Базе Знаний действие, которое в данных условиях обещает максимальное улучшение состояния. Если все варианты равнозначны, выбор может пасть на любой из них. Назовем такой способ первым механизмом принятия решений.

Появился второй механизм принятия решений: действия выбираются не на основе анализа текущего состояния, а по аналогии, в соответствии с обнаруженной закономерностью в последовательности ранее принятых решений.

Но это уже третий механизм принятия решений. Для него необходимо, чтобы управляющая система могла у самой себя вызвать распознавание образов — результатов действия, не совершая его.

Теперь мы можем оставить Демона на какое-то время, поскольку сообщения его будут повторять по смыслу предыдущие. Если мы вернемся к нему несколько позже, то увидим, что:

а) в руках у Демона уже довольно пухлая тетрадь, содержащая обширную Базу Знаний,

б) он умеет распознавать множество образов,

в) почти в каждый момент он знает, как ему поступать в соответствии с обстоятельствами,

г) принимая решения, Демон уже учитывает их последствия, но далеко не все, хотя бы потому, что не успевает это сделать,

д) он может пообщаться сам с собой через внешнюю среду, как бы играя в жизнь и моделируя ситуации, а может статься, что Демон даже найдет во внешней среде другой такой же объект с Демоном внутри и вступит с ним во взаимодействие.

УСТРОЙСТВО УПРАВЛЯЮЩЕЙ СИСТЕМЫ

Каждая подсистема решает свою задачу, учитывая результаты работы других подсистем.

Поясним подробнее работу последней подсистемы. Очевидно, что, чем хуже состояние и чем быстрее оно ухудшается, тем скорее требуется принять решение. Если просмотр всей Базы Знаний требует слишком больших затрат времени, управляющая система может просматривать лишь ее часть, учитывая только наиболее важные последствия того или иного решения. Неучтенные факторы будут реализовываться случайным для управляющей системы образом.

Например, увидев быстро наезжающий грузовик, мы принимаем решение отпрыгнуть в сторону, чтобы сохранить себе жизнь, и не учитываем второстепенных последствий: как мы будем выглядеть в глазах проходящей мимо дамы, не уроним ли шляпу, не наступим ли на газон и т. д. Если же мы распознали образ грузовика вдали, то, уходя в сторону, учтем и даму, и шляпу.

МОДЕЛИ ИСКУССТВЕННЫХ НЕЙРОНОВ

На практике обычно строят такие управляющие системы, которые решают лишь часть задач из вышеперечисленных, обычно одну-две. Например, системы распознавания, как правило, не принимают самостоятельных решений: им заранее известно, что следует делать при распознавании того или иного образа. Экспертные системы, напротив, строятся на базе уже готовых знаний, и им требуется только принимать решения. Некоторые системы занимаются решением исключительно поисковых и оптимизационных задач (так называемые генетические алгоритмы и другие подходы).

Гораздо сложнее создать систему управления, в которой решения всех перечисленных задач были бы взаимосвязаны, а исходные знания о свойствах объекта управления и среды допускали бы значительную неопределенность. Трудность построения такой системы объясняется тем, что все ее части — подсистемы — должны учитывать результаты работы других подсистем в качестве своих исходных условий.

Поскольку наша научная группа придерживается имитационного подхода к моделированию нервной деятельности, мы строим модель управляющей системы по аналогии с естественными нервными системами. Подобно нервной системе, представляющей собою сеть нейронов, управляющая система тоже должна состоять из отдельных нейроноподобных элементов.

Оказалось, что на базе таких нейронов можно конструировать сети, выполняющие функции всех перечисленных подсистем. При этом требуется определенный избыток нейронов, и он действительно существует в живых организмах: более 90% нейронов человека остаются незадействованными в течение его жизни. Избыток искусственных нейронов в управляющей системе можно уменьшить и тем значительнее, чем более сложные связи между сигналами они способны обнаруживать, то есть за счет усложнения нейрона.

СИСТЕМА АВТОНОМНОГО АДАПТИВНОГО УПРАВЛЕНИЯ

Система автономного адаптивного управления — саморазвивающаяся система. В ее поведении можно увидеть детерминированную и случайную компоненты. Первая опирается на уже накопленные знания и стремится улучшить состояние системы, наличие второй связано с отсутствием знаний и стремлением их накопить. По мере накопления знаний поведение управляющей системы становится более детерминированным, что и отражает ее развитие. Пример саморазвития ААУ — последовательное появление у Демона трех механизмов принятия решения, каждый из которых вытекает из предыдущих и повышает эффективность управления.

Важно то, что в системе ААУ качество управления неуклонно растет, причем происходит это автоматически.

Как отмечалось выше, современная техника еще удовлетворяется управляющими системами, построенными либо только на основе системы распознавания, либо только на основе оптимизационных подходов и т. п. Каждый из этих частных методов глубоко развит и способен давать результаты, с которыми трудно конкурировать любому новому подходу. Однако решение задачи управления в более общем виде с помощью метода автономного адаптивного управления имеет свои преимущества, которые проявляются со временем. Это и обнадеживает нас в наших исследованиях.

ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ — АВТОНОМНЫЙ И ПОДЧИНЕННЫЙ

Есть одно, на первый взгляд, странное обстоятельство. Предположим, сильно размечтавшись, что создана некая замечательная система автономного адаптивного управления, не уступающая по своим функциям пусть не человеку, не кошке, но хотя бы мышке (пока что и эта задача совершенно недостижима). Какую же практическую пользу мы сможем извлечь из такой мышки? Заставим ее копать нору? Она скажет: отпустите меня, я хочу есть, пить, гулять и меньше всего хочу работать на вас. И она будет права, так как цель описанной управляющей системы — улучшение своего (а не нашего) состояния.

Все это убеждает нас в необходимости исследования Автономного Искусственного Интеллекта и поиска возможностей его приложения.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.