Основные морфологические элементы нервной системы

Основные морфологические элементы нервной системы

Одним из основных свойств живого вещества является его способность воспринимать раздражения из внешней и внутренней среды. Каждый живой организм получает раздражения из окружающего его мира и отвечает на них соответствующими реакциями, которые связывают организм с внешней средой. Обмен веществ в самом организме также обусловливает ряд раздражений, на которые организм отвечает соответствующими реакциями. Связь между участком, на который падает раздражение, и органом, отвечающим на это раздражение, осуществляется нервной системой. Проникая во все органы и ткани, нервная система связывает все части организма в единое целое. С точки зрения двигательных действий человека, нервная система, так же, как и эндокринная, относятся к системе регулирования и управления указанным видом деятельности.

Нервная система постоянно испытывает разнообразные воздействия со стороны внешней и внутренней среды организма. Это позволяет нервной системе согласовывать деятельность всех органов и определять взаимоотношения организма со средой. Исследования С. П. Боткина, И. М. Сеченова, И. П. Павлова привели к возникновению представления о нервизме, под которым Павлов понимал распространение влияния нервной системы на возможно большее количество системной физиологической деятельности организма [1] .

Под влиянием раздражения в рецепторе возникает процесс возбуждения, который проводится дендритом в тело нервной клетки (см. рис. 5.10). От тела чувствительного, рецепторного нейрона импульсы в конечном счете переходят на эффекторный нейрон (двигательный, т.е. моторный, или секреторный), в зависимости от того, в какой ткани оканчиваются его эффекторы — в мышечной или железистой. Возбуждение эффекторов вызывает специфическую реакцию. Различные виды деятельности организма, наступающие в ответ на раздражения рецепторов, при участии нервной системы, называются рефлексами. Группа нейронов, по которым осуществляется рефлекс, называется рефлекторной дугой — это структурно-функциональная единица нервной системы.

Различают двух- и трехнейронные рефлекторные дуги. Двухнейронная рефлекторная дуга регулирует сухожильно-мышечные рефлексы. Трехнейронная рефлекторная дуга — в отличие от двухнейронной, между рецепторными и эффекторными нейронами имеет вставочные нейроны. Цепь вставочных нейронов может распространять возбуждение центростремительно до коры головного мозга и затем центробежно до эффекторного нейрона.

Общее развитие нервной системы. Филогенез (изучается развитие человеческого рода в процессе эволюции животных) нервной системы в кратких чертах сводится к следующему. У простейших одноклеточных организмов (амеба) нервной системы нет. Связь с окружающей средой осуществляется при помощи жидкостей, находящихся внутри и вне организма, — это гуморальная регуляция (донервная форма регуляции). В дальнейшем, когда возникает нервная система, появляется и другая форма регуляции — нервная. По мере развития нервной системы нервная регуляция все больше подчиняет себе гуморальную, так что образуется единая нейрогуморальная регуляция при ведущей роли нервной системы.

Нервная система в процессе филогенеза проходит ряд основных этапов. Первый этап — сетевидная нервная система. На этом этапе (у кишечнополостных, например у гидры) нервная система состоит из нервных клеток, многочисленные отростки которых соединяются друг с другом в разных направлениях, образуя сеть, диффузно пронизывающую все тело животного. При раздражении любой точки тела возбуждение разливается по всей нервной сети, и животное реагирует движением всего тела. Отражением этого этапа у человека является сетсвиднос строение нервной внутриор- ганной системы (кишечник).

Второй этап — узловая нервная система. На этом этапе (высшие черви) нервные клетки сближаются в отдельные скопления или группы, причем из скоплений клеточных тел получаются нервные узлы, а из скоплений отростков — нервы. Отражением этого этапа у человека является наличие ганглий в вегетативной нервной системе.

Третий этап — трубчатая нервная система — возникла у хордовых (ланцетника) в виде метамерно построенной нервной трубки с отходящими от нее сегментарными нервами ко всем сегментам тела, включая и аппарат движения — туловищный мозг. У позвоночных и человека туловищный мозг становится спинным.

Дальнейшее развитие нервной системы и возникновение головного мозга обусловлено усовершенствованием рецепторов. Так как большинство рецепторов возникает на переднем конце животного (обращенном в сторону движения), то для восприятия поступающих через них внешних раздражений развивается головной мозг, что совпадает с обособлением переднего конца тела в виде головы — цефализации. При этом вначале развиваются подкорковые ядра, а затем кора головного мозга. Кора возникает при переходе животного от водного к наземному образу жизни и отчетливо обнаруживается у амфибий и рептилий. Дальнейшая эволюция нервной системы характеризуется тем, что кора головного мозга все более и более подчиняет себе функции нижележащих центров; происходит постепенная кортикализация функций.

Дальнейшее развитие мозга у человека подчиняется иным закономерностям, связанным с его социальной природой. Кроме естественных органов тела, имеющихся и у животных, человек стал пользоваться орудиями труда. С помощью этих орудий человек приобрел возможность не только приспосабливаться самому к природе, но и приспосабливать природу к своим нуждам. Сначала труд, а затем вместе с ним и членораздельная речь явились двумя самыми главными стимулами, под влиянием которых мозг обезьяны постепенно превратился в человеческий мозг, который, при всем своем сходстве с обезьяньим, далеко превосходит его по величине и совершенству (Ф. Энгельс).

Это совершенство обусловлено максимальным развитием коры головного мозга. Кроме анализаторов, воспринимающих различные раздражения внешнего мира и составляющих материальный субстрат конкретнонаглядного мышления, свойственного животным, у человека возникла способность абстрактного, отвлеченного мышления с помощью слова, сначала слышимого (устная речь) и, позднее, видимого (письменная речь). Это составило вторую сигнальную систему.

Материальным субстратом второй сигнальной системы стали поверхностные слои коры полушарий головного мозга.

Изложенные закономерности филогенеза обусловливают эмбриогенез нервной системы человека. Нервная система происходит из наружного зародышевого листка — эктодермы. Она образует продольное утолщение, называемое медуллярной пластинкой. Медуллярная пластинка скоро углубляется в медуллярную бороздку, края которой (медуллярные валики) постепенно становятся выше и затем срастаются, образуя мозговую трубку. Задний конец трубки образует зачаток спинного мозга, передний — головной мозг.

Нервная система подразделяется на два отдела — центральный и периферический.

Центральная нервная система представлена спинным и головным мозгом. Состоит она из серого и белого вещества. Серое вещество составляют тела и отростки нейронов, белое — нервные волокна. Периферическая нервная система представлена нервами тела вне спинного и головного мозга, а также нервными узлами, скоплениями нервных клеток. Нервы состоят из пучков нервных волокон. Пучки волокон связаны друг с другом рыхлой соединительной тканыо, в которой проходят питающие нерв сосуды. Снаружи нерв одет соединительнотканной оболочкой — эииневрием. Нервную систему, иннервирующую сому — стенки туловища и конечности, называют соматической нервной системой: иннервирующую гладкие мышцы и железы — вегетативной.

Нервная система человека в зависимости от онтофилогенетических и анатомо-физиологических особенностей подразделяется на центральную (головной и спинной мозг), периферическую (нервные корешки, узлы — ганглии, сплетения, черепные и спинномозговые нервы и т. д.), а также вегетативную (автономную), регулирующую деятельность органов.


Головной мозг в свою очередь подразделяется на несколько отделов. Конечный, или большой, мозг (telencephalon, cerebrum) состоит из полушарий большого мозга, долей, боковых желудочков, мозолистого тела, свода, базальных (подкорковых) ядер, внутренней капсулы. В большом мозге доли отделены друг от друга бороздами, из которых наиболее выражены центральная (роландова), разделяющая лобную и теменную доли, латеральная (сильвиева), отграничивающая лобную и теменную доли от височной, и теменно-затылочная, разделяющая теменную и затылочную доли. Благодаря

наличию борозд и извилин общая площадь коры большой мозга составляет около 2500 см 2 .

Промежуточный мозг (diencephalon) включает эпиталамус, задний таламус, метаталамус, передний таламус, гипоталамус, III желудочек. Средний мозг (mesencephalon) состоит из ножек мозга, черного вещества; покрышки, крыши и водопровода среднего мозга (сильвиева). Мозжечок (cerebellum) состоит из средней части (червя), двух боковых частей — полушарий и трех пар ножек. В глубине белого вещества мозжечка имеется несколько ядер — зубчатое, пробковидное, шаровидное и ядро шатра. Мост (pons) — задний мозг (metencephalon) включает ретикулярную формацию, вестибулярные ядра, ядра тройничного и лицевого нервов и другие образования. Продолговатый мозг (medulla oblongata) включает оливу, вестибулярные ядра, ядро подъязычного нерва, двойное ядро, перекрест пирамид, перекрест медиальных петель и др. В области заднего мозга и продолговатого мозга формируется IV желудочек, который включает ромбовидную ямку, латеральный карман, лицевой бугорок, крышу, сосудистые сплетения и т. д.

Спинной мозг

(medulla spinalis) состоит из передних, задних и боковых рогов, переднего, бокового и заднего канатиков, центрального канала, сегментов (шейных, грудных, поясничных, крестцовых, копчиковых) и других образований. Головной мозг взрослого человека весит около 1100—1200 г, спинной мозг — 30-40 г.

Центральная нервная система состоит из серого и белого вещества, а также ретикулярной формации, студенистого вещества и эпендимы. Серое вещество образовано скоплением тел нейронов и глии, белое — покрытыми миелиновой оболочкой отростками нейронов — аксонами и дендритами (пути и пучки). Серое вещество находится в коре большого мозга и мозжечка, в ядрах подкорковых узлов и ствола мозга, в передних и задних рогах спинного мозга.

Основной анатомо-функциональной структурой всей нервной системы является нервная к летка —нейрон, который состоит из тела и отростков — дендритов и аксона (рис. 6). В соответствии с законом Рамон-и-Кахаля (динамической поляризации нервной клетки) нервный импульс может распространяться в одном направлении—по нескольким дендритам к телу клетки и от него по единственному аксону к мышце, органу или дендриту следующего нейрона. Все нейроны разделяются на афферентные (рецепторные), передающие информацию от органов чувств в центральные отделы нервной системы, эфферентные (двигательные), посылающие импульсы (команды) к мышцам, органам и тканям, и вставочные (интернейроны), служащие для переработки и передачи импульсов. Первые клетки афферентных нейронов расположены обычно в вынесенных на периферию узлах (ганглиях), т. е. вне ЦНС. Клетки последующих нейронов, воспринимающих и передающих информацию в другие центры регуляции, сгруппированы в задних рогах спинного мозга, зрительном бугре и теменной доле мозга.

Эфферентные нейроны находятся главным образом в передних рогах спинного мозга, двигательных ядрах ствола и подкорковых узлов и в передней центральной извилине. Вставочные нейроны наиболее многочисленны и расцоложены во всех отделах ЦНС.

Аксоны большинства нервных клеток имеют миелиновую оболочку, которая через каждые 2—3 мм прерывается (так называемые перехваты Ранвье). Скорость проведения импульса в миелинизированных волокнах значительно большая (до 120 мс), чем в немиелинизированных (до 1 мс). В зависимости от некоторых особенностей строения аксонов все нервные клетки делятся на два типа. Клетки первого типа характеризуются длинными аксонами, которые отдают боковые ветви (коллатерали). Клетки второго типа имеют короткий аксон, делящийся вблизи его начала на концевые разветвления. К клеткам первого типа относятся двигательные (пирамидные) клетки в коре большого мозга, клетки передних рогов спинного мозга. К клеткам второго типа принадлежат вставочные нейроны. Особое строение % имеют афферентные (рецепторные) нейроны, имеющие два длинных отростка — аксон и аксоноподобно вытянутый дендрит.

Места стыков (контактов) между нейронами называют синапсами. Каждый из них состоит из нескольких элементов: пресинаптической мембраны, где происходит выделение медиатора передачи нервного возбуждения, синаптической щели и постсинаптической мембраны, обладающей избирательной чувствительностью к медиаторам нервного возбуждения. Передача импульсов в синапсах нервной системы осуществляется с помощью ряда веществ (ацетил-холина, норадреналина, серотонина, дофамина, ГАМК и да.). Одни синапсы (центральная нервная система, вегетативные узлы, окончания парасимпатических и двигательных нервов) возбуждаются холинергическими, другие (центральная нервная система, постганглионарные окончания симпатических нервов) норадренергическими медиаторами. Распространение их в ЦНС неравномерное (созданы специальные карты с указанием концентрации этих веществ в различных областях мозга).

В мембране нервных клеток есть рецепторы, которые взаимодействуют только с определенными, нужными клетке медиаторами и гормонами (принцип ключ—замок). Так, в лимбической системе, подкорковых узлах, ретикулярной формации, вестибулярном аппарате и на других уровнях ЦНС обнаружены специфические рецепторы — бензодиазепиновые (взаимодействуют с транквилизаторами), опиатные (взаимодействуют с наркотическими анальгетиками), дофа-минергические (взаимодействуют с дофамином) и др.

Нервные клетки, выполняющие различные функции, имеют известные различия в размерах и строении. Пирамидные клетки коры большого мозга имеют треугольную форму, клетки межпозвоночных узлов—овальную, клетки передних рогов спинного мозга — мультиполярную и т. д. Самые крупные размеры имеют находящиеся в двигательной области коры клетки Беца (до 120 μ ). Величина находящихся в афферентных областях коры клеток-зерен около 4 μ .

Основная функция нервной клетки — генерация возбуждения, восприятие и переработка импульсов (информативных сигналов), их проведение и передача на другие нервные клетки, орган или мышцу. Каждая нервная клетка содержит ядро и протоплазму, состоящие в свою очередь из множества специальных образований (органелл). В их число входят синаптические пузырьки, транспортирующие медиаторы— переносчики нервного возбуждения и ряд других. По программе, зашифрованной в молекулах ДНК в виде последовательности определенных химических реакций, в каждой нервной клетке ежеминутно происходит синтез и деградация сотен сложнейших соединений. Образующиеся в результате этих реакций на свободных и прикрепленных полисомах белковые молекулы обладают, вероятно, способностью к фиксации следов различных раздражений и являются таким образом важнейшей материальной основой нервно-психических процессов. При этом имеется цепь взаимосвязанных электрохимических явлений. Каждая нервная клетка покрыта мембранной оболочкой, избирательно проницаемой для ионов К + и Na + . В протоплазме нервной клетки по сравнению с внеклеточной жидкостью содержится приблизительно в 40—50 раз больше ионов К + , в 8—10 раз меньше ионов Na + и в 40—50 раз меньше ионов Сl — . Разность концентрации ионов и создает так называемый мембранный потенциал покоя (около 50—70 мВ).

Эта ионная асимметрия между вне- и внутриклеточной жидкостью поддерживается так называемым натрий-калиевым насосом, обеспечивающим удаление из протоплазмы

нервных клеток избыточных ионов Na + и поступление нужного количества ионов К + . Энергетическое обеспечение этого процесса осуществляется в основном за счет гликоли-тического расщепления глюкозы с образованием молекул АТФ. В ответ на всякое раздражение нейрон деполяризуется, т.е. возникает разность потенциалов между точкой раздражения (заряжается отрицательно) и окружающими участками

(заряжаются положительно). При этом проницаемость мембраны для ионов Na + резко возрастает и приток этих ионов внутрь .нервной клетки значительно повышается. Ионная асимметрия сдвигается в сторону Na + . Затем проницаемость мембраны для ионов Na + вновь понижается, а для ионов К + повышается и происходит реполяризация мембраны и т. д. Состояние распространяющейся деполяризации и реполяризации называется потенциалом действия (около 80—100 мВ). Он может перемещаться по нервному волокну и является началом нервного импульса.

Обычно по цепи из невронов в направлении от дендрина к телу нервной клетки и далее к ее аксону передаются залпы различных по частоте и продолжительности импульсов. Под их влиянием в синаптических бляшках происходит выделение медиаторов (ацетилхолина, симпатина и др.). Молекулы медиаторов взаимодействуют с рецепторами постсинаптической мембраны и в клетке открываются каналы для ионов К + и Na + . Возникающий поток ионов приводит нервную клетку в состояние возбуждения. Рождается электрический импульс, который передается следующему нейрону и т. д. В мякотных нервах распространение нервного импульса совершается скачкообразно от одного перехвата Ранвье к другому. Суммарная электрическая активность клеток мозга регистрируется с помощью электроэнцефалографа.

Глия вместе с сосудистой соединительной тканью представляет собой опорную ткань головного и спинного мозга, участвует в процессах обмена веществ в нервной системе, обладает трофической и барьерной функциями. По морфо-функциональным особенностям ее принято разделять на астроцитарную глию, олигодендроглию и микроглию (или мезоглию). Астроцитарная глия состоит из так называемых фиброзных и протоплазменных астроцитов — клеток, имеющих звездчатую или паукообразную форму. Фиброзные астроциты встречаются как в белом, так и в сером веществе мозга. Они образуют сетевидную строму (синцитий), волокна которой пронизывают всю паренхиму нервной ткани, крепко фиксируясь на кровеносных сосудах.

Протоплазменные астроциты имеют зернистую цитоплазму и более разветвленные и разнообразные по форме отростки. Встречаются преимущественно в сером веществе коры большого мозга. Они представляют собой разновидность сателитной невроглии и участвуют в заполнении пространства между элементами паренхимы. Олигодендроглия представлена мелкими округлой формы с немногочисленными отростками клетками, располагающимися около нервных клеток и сосудов. Ее роль заключается в образовании специального изолирующего материала — миелиновых оболочек отростков нервных клеток. Вне ЦНС эту функцию выполняют леммоциты (шванновские клетки). Микроглия состоит из клеток веретенообразной формы с длинными ветвящимися отростками и обладает большой спо собностью к фагоцитозу, образуя так называемые зернистые шары, или решетчатые клетки. При различных патологических состояниях глия вместе с сосудистой соединительной тканью подвергается гиперплазии и гипертрофии и активно участвует в освобождении нервной ткани от продуктов распада и процессах рубцевания.

Сложное шестислойное строение имеет кора полушарий большого мозга . Первый (I) слой —молекулярный (lamina molecularis), II —наружный зернистый (lamina granih laris externa), III — пирамидный (lamina pyramidalis), IV —внутренний зернистый (lamina granulans interna), V — ганглионар ный (lamina ganglionaris) и VI — по диморфный (lamina multiformis). В афферентных зонах преобладают II и IV слои, в эфферентных — III и V.

В соответствии с особенностями морфологического строения предложено несколько вариантов классификации корковых полей. По Бродману, поверхность большого мозга разделяется на 11 областей и 52 поля: лобная область включает поля 8—12, 44—47; прецентральная область—поля 4, 6; постцентральная область — поля 1—3, 43; теменная область — поля 5, 7, 39, 40; височная область-поля 20-22, 36-38, 41, 42, 52; затылочная область—поля 17—19; островок — по ля 13—16; поясная область—поля 23—25, 31—33; ретроспленальная область—поля 26, 29, 30; область гиппокампа — поля 27, 28, 34, 35, 48; обонятельная область—поле 51 (рис.).

Нервная система человека содержит несколько сот миллиардов нервных и глиозных клеток. Только в коре полушарий большого мозга имеется около 15 млрд нервных и до 130 млрд глиозных клеток.

Статья на тему Морфология нервной системы

Нервная система состоит из извилистых сетей нервных клеток, составляющих различные связанные между собой структуры и контролирующих всю деятельность организма, как желаемые и сознательные действия, так и рефлексы и автоматические действия; нервная система позволяет нам взаимодействовать с внешним миром, а также отвечает за умственную деятельность.



Нервная система состоит из различных взаимосвязанных структур, которые вместе составляют анатомическую и физиологическую единицу. состоит из органов, расположенных внутри черепа (головного мозга, мозжечка, мозгового ствола) и позвоночника (спинной мозг); отвечает за интерпретацию состояния и различных потребностей организма на основе полученной информации, чтобы затем генерировать команды, предназначенные для получения целесообразных ответов.

состоит из множества нервов, которые идут к головному мозгу (мозговые пары) и спинному мозгу (позвоночные нервы); действует как передатчик сенсорных стимулов мозгу и команд от мозга к органам, ответственным за их выполнение. Автономная нервная система контролирует функции многочисленных органов и тканей через антагонистические эффекты: симпатическая система активируется во время тревоги, а парасимпатическая — в состоянии покоя.



Центральная нервная система Включает в себя спинной мозг и структуры головного мозга.

Спинной мозг Расположен внутри позвоночника, соединяет высшие нервные центры с периферической нервной системой: передает команды от мозга к нервам, ответственным за их выполнение, и сенсорные стимулы из организма и окружающей среды в мозг.

Головной мозг Часть центральной нервной системы, объединяющая органы, находящиеся в черепной коробке: мозг, мозжечок, мозговой ствол.

Кора головного мозга Контролирует произвольную деятельность и большую часть автоматических, бессознательных функций организма. Является местом, где происходят все ментальные процессы.

Мозжечок Принимает участие в контроле над равновесием тела и моделирует произвольные движения.

Мозговой ствол Состоит из мозговых ножек, варолиева моста и продолговатого мозга, является соединительным звеном между головным и спинным мозгом, в котором находятся нервные центры, контролирующие такие жизненно важные функции, как дыхание и сердечная активность.

Автономная нервная система Автономно и бессознательно регулирует различные функции тела, такие как поддержание температуры, дыхание, пищеварение. Она же вегетативная нервная система.

Периферическая нервная система Нервы человека относятся к периферической нервной системе. Они передают команды центральной нервной системы нервам органов, ответственным за их выполнение (двигательные нервы), и сенсорные стимулы из организма и окружающей среды центральной нервной системе (сенсорные нервы).



Все структуры нервной системы состоят из ткани одного вида, включающей особые клетки, которые генерируют и передают нервные импульсы, — нейроны, и клетки, обеспечивающие нейронам поддержку, питание и защиту, — нейроглии. В организме присутствуют миллионы нейронов различной формы, вида и размера, схожих по строению. Каждый нейрон имеет клеточное тело, от которого исходят окончания, предназначенные получать и передавать нервные импульсы от одних нейронов к другим: дендриты, ветвистые короткие отростки, получающие импульсы от нервных клеток, и аксон, или цилиндрический отросток, различной длины, заканчивающийся маленькими отростками и отвечающий за передачу нервных импульсов другим нервным клеткам.

Нейроны передают сигналы посредством сложного физико-химического механизма в форме нервных импульсов. В нейроне происходят биохимические изменения, которые высвобождают электрический импульс, проходящий по нервной клетке и аксону, ветви которого передают его прилегающим нейронам. Нервный импульс передается по прилегающим нейронам не прямо, а посредством специального соединения — синапса. Ветви аксонов находятся очень близко от соседних нейронов, но всегда отделены синаптической щелью. Нервный импульс пересекает это пространство посредством химических веществ, называемых медиаторами.

Каждый нейрон вырабатывает специфический медиатор, который хранится в синаптических пузырьках ветвей аксона. Перед тем как нервный импульс достигнет конца аксона, эти пузырьки сбросят свое содержимое в синаптическую щель. Пересекая это пространство, медиатор соединяется с рецепторами, присутствующими на поверхности прилегающих нейронов, и генерирует биохимические изменения в его мембране, — результаты этих изменений зависят от типа медиатора: можно высвободить электрический импульс (синапс-возбудитель) или, наоборот, уменьшить возбудимость (синапс-ингибитор).

Аксоны многих нейронов покрыты обопочками, состоящими из нескольких слоев, сформированных жирным белым веществом с изоляционными свойствами, очень важными для правипьной передачи нервных импульсов. Эти оболочки называются миелиновыми и состоят из особых клеток олигодендроцитов, которые также называются шванновскими клетками. В органах нервной системы есть зоны, состоящие в основном из тел нейронов, и другие, состоящие только из нервных нитей, соответствующих отросткам нервных клеток — аксонам. В первом случае речь идет о сером веществе, поскольку это доминирующий цвет тел нейронов. Скопление же нервных нитей, каждая из которых окружена миелиновой оболочкой белого цвета, называется белым веществом. Подробнее узнать о клетках нервной системы вы можете в статье: "СТРОЕНИЕ И ФУНКЦИИ НЕЙРОНОВ".

Гистологически нервная система состоит из:
– нейронов – нервных клеток, основных структурно-функциональных единиц нервной ткани;
– нейроглии – элемента нервной ткани, обеспечивающего функционирование нейронов;
– нервных волокон – отростков нервных клеток;
– мезенхимальных элементов – сосудов и оболочек мозга.

Нейроны располагаются в сером веществе головного и спинного мозга, ганглиях (узлах). В самом общем виде функции нейронов – это генерирование управляющих импульсов, восприятие импульсов от рецепторного аппарата и других нейронов, переработка и передача импульсов на исполнительный орган или другие нейроны. Функционально нейроны объединены в нейрональные комплексы.

Принята классификация нейронов по количеству отростков и по форме тела.

Различают униполярные нейроны, имеющие один отросток (нейроны сетчатки глаза и обонятельных луковиц); биполярные нейроны – имеющие аксон и дендрит, располагающиеся на противоположных полюсах тела клетки (чувствительные нейроны). К этому же типу относят псевдоуниполярные нервные клетки, у которых аксон и дендрит начинаются с одного отростка, разделяясь на два после выхода его из нейрона (нейроны межпозвонковых ганглиев). Мультиполярные нейроны имеют один аксон и больше одного дендрита (по преимуществу это двигательные и ассоциативные нейроны).

Величина тела нейрона варьирует от 10 до 150 мкм. По форме тела различают овальные, веретенообразные, грушевидные, треугольные, многоугольные нейроны.

По функциональной принадлежности нейроны делят на чувствительные, двигательные и ассоциативные.

По виду медиаторного обмена различают нейроны холинергические (вещество-нейромедиатор – ацетилхолин), адренергические (адреналин, дофамин, серотонин), ГАМК-ергические (γ-аминомасляная кислота), аминокислотные (глицин и др.), пептидергические (эндорфины, энкефалины и др.), пуринергические (аденозинтрифосфат).

Органоиды. Тело нервной клетки имеет ядро с одним или несколькими ядрышками; ядро окружено пористой оболочкой для осуществления обменных процессов между ним и цитоплазмой.

В цитоплазме находится гранулярная эндоплазматическая сеть, на мембранах которой расположены рибосомы и полисомы, тесно связанные с функциями и процессами метаболизма нейрона.

Агранулярная эндоплазматическая сеть ответственна за межнейронные трофические взаимодействия.

Аппарат Гольджи (мультивезикулярные тела, пузырьки, микротрубочки, нейрофиламенты) играет важную роль в транспорте веществ внутри клетки и по ее отросткам.

Митохондрии участвуют в энергетическом обмене.

Лизосомы, содержащие гидролитические ферменты, активно участвуют в регенерации структур цитоплазмы, осуществляя автофагию.

Нервные волокна. Дендриты нервных клеток, как правило, короткие, разветвленные. В местах разветвления дендритов располагаются узлы ветвления, влияющие на проведение нервного импульса. Характерной особенностью дендритов также является наличие шипиков, которые представляют собой часть синапса. Их количество, распределение, форма зависят от функции нейрона и могут меняться как в сторону дегенерации, так и в сторону появления новых шипиков.

Аксон нейрона достигает 1 м в длину, хорошо миелинизирован. В отличие от дендритов, имеющих относительно однородное строение, отдельные части аксона значительно различаются по ультраструктурной картине и функциональной принадлежности. В части аксона, прилегающей к телу нейрона, располагается генератор нервного импульса – так называемый аксонный холмик. Следующая за ним проксимальная (начальная) часть аксона, еще не покрытая миелином, содержит аксо-аксональные синапсы, оказывающие большое влияние на функциональную активность нейрона. Последующая часть аксона имеет относительно однородное строение и содержит ультраструктуры, участвующие в передаче нервных импульсов путем аксонального транспорта различных веществ в обоих направлениях.

Межнейронные контакты и нейроэффекторные взаимодействия обеспечивают функционирование нервной системы как целого.

Межнейронные контакты делят на неспециализированные (плотные и щелевые) и специализированные (химические и электротонические синапсы).

Плотный контакт образуется телами нейронов и служит барьером для проникновения высокомолекулярных соединений.

Количество синапсов в различных отделах нервной системы значительно варьирует. Так, на гранулярных клетках коры мозжечка они практически отсутствуют, а на поверхности двигательных нейронов спинного мозга занимают 40–70 % площади и 10 % – на теле пирамидных клеток.

Различают основные типы синапсов: аксо-дендритические, аксо-соматические, аксо-аксональные, дендро-соматические, сомато-соматические и соматодендритические.

Наиболее характерны для нервной системы аксо-аксональные контакты, которые встречаются во многих отделах головного и спинного мозга. Аксоаксональные контакты играют важную регулирующую роль в функционировании нейронов.

Разновидность синаптических контактов составляют контакты нервного волокна с мышцей и секреторными элементами. При этом первые обеспечивают двигательную активность, вторые – секрецию нейрогормонов.
Глиальные клетки в нервной системе представлены астроцитами, олигодендроцитами, клетками микроглии и эпендимы.

Астроциты в виде фиброзных и протоплазматических клеток заполняют пространство между нейронами серого и проводниками белого вещества головного и спинного мозга. Астроциты играют роль электрического изолятора для тел нейронов и их отростков, а также несут опорно-механическую функцию.

Олигодендроциты располагаются также в сером и белом веществе мозга, обеспечивая миелинизацию аксонов.

Клетки микроглии принимают активное участие в фагоцитозе и в формировании фиброзных астроцитов. Клетки эпендимы выстилают полости мозговых желудочков и центрального канала спинного мозга, участвуют в образовании спинномозговой жидкости.

Таким образом, клетки глии обеспечивают механическую опору для нейронов, изоляцию нейронов и их отростков от неадекватного распространения возбуждения по нейрональным цепям, выступают в роли регулятора синаптических передач, выполняют трофическую функцию, что в конечном итоге обеспечивает нормальное функционирование нервной системы.

Гематоэнцефалический барьер имеет важное значение для сохранения оптимального ионного и осмотического баланса нервной системы. Гематоэнцефалический барьер образован эндотелием кровеносных капилляров мозга. Известно, что плотные контакты между эндотелиальными клетками служат барьером для молекул размером больше 1,5 нм, к которым относится большинство молекул белков. При патологических состояниях проницаемость гематоэнцефалического барьера может увеличиваться, что позволяет проникать в нервную систему веществам, приводящим к нарушению ее гомеостаза и развитию целого ряда патологических состояний мозга (отек, набухание, аутоиммунные процессы и др.).

Проницаемость гематоэнцефалического барьера отличается в разных отделах нервной системы; наиболее высока она в сером веществе головного мозга, что и отражается на клинической картине при ряде патологических состояний.

Практически непроницаем гематоэнцефалический барьер в области гипофиза, эпифиза, гипоталамуса, на клетках периневрия периферических нервов, что необходимо учитывать при проведении терапии различных патологических состояний этих областей лекарственными препаратами высокомолекулярных соединений.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.