Приборы для диагностики заболеваний нервной системы

1) Энцефалография — метод электрофизиологического объек­тивного исследования функционального состояния головного мозга, основанный на графической регистрации его биопотенци­алов. Регистрируемая кривая колебаний биопотенциалов мозга называется электроэнцефалограммой.Применяется для установления локализации патологического очага в головном мозге, диф­ференциального диагноза заболеваний центральной нервной си­стемы (ЦНС), изучения механизма эпилепсии и выявления её на ранних стадиях.

Для получения нужной информации о деятельности головного мозга применяются приборы:электроэнцефалографы(8-16-32- ка­нальные); анализаторы биопотенциалов; электроэнцефалоскопы.

В последние годы значительно возросла необходимость конт­роля психического здоровья человека, что обусловлено существен­ным ростом интеллектуальных и психоэмоциональных нагрузок, возрастанием темпа жизни, обилием стрессовых ситуаций в про­изводственной и социальной сфере. С этой целью применяются различные психофизиологические методы исследования функций ЦНС человека: восприятия, внимания, памяти, мышления, психо­моторики.

Психологические инструментальные приборы применяются не только в медицине, но и при профессиональном отборе, в педаго­гике, детской психоневрологии, в быту в профилактических и ги­гиенических целях.

В перспективе ожидается создание приборов для многопара­метрического и многофункционального мониторинга (включая профилактику, диагностику, терапию, реабилитацию) психоневро­логических нарушений.

В настоящее время разрабатываются методики и создается ап­паратура для изучения биомагнетизма мозговых структур и сер­дечно-сосудистой системы, нейромагнетизма и магнитного воз­действия (слабых полей) на функции мозга. Магнитоэнцефалограммы позволяют получать важную информацию для изучения высшей нервной деятельности.

2) Электромиография— это метод измерения функционально­го состояния скелетных мышц, основанный на регистрации воз­никающих в них электрических потенциалов. С помощью прибо­ра —электромиографаизучаются рефлекторные реакции двига­тельных систем организма, периферическогонейромоторного аппарата, а также проводится функциональная диагностика перифе­рических нервов и мышц.

Методы и приборы для диагностических исследований внешнего дыхания

1) Спирография— это метод определения объемной скорости потребления кислорода и параметров внешнего дыхания (частота, минутный объем вентиляции и др.).

2) Пульмонография — акустический метод локального исследо­вания легких, заключающийся в регистрации изменения амплиту­ды колебаний различных участков легкого в процессе дыхания.

Приборы для ФД легких подразделяют на три группы, в т.ч.:

1) для интегрального исследования легких: Метатест, Бронхо-метатест, Барометатест, Спирограф,Оксиспирограф, Пневмотахо-метр;

2) для газоаналитических исследований — газоанализаторы (предназначены для определения кислорода и углекислого газа во вдыхаемом и выдыхаемом воздухе);

3) для локальных исследований: Фонопульмограф, Фонопульмоскоп.

В настоящее время для анализа форсированного выдоха при­меняются приборы — компьютерные анализаторы с пробами бронхопровокаторов и бронхолитиков, что осуществляется с использо­ванием соответствующего программного обеспечения и дозато­ров. Они позволяют оценить бронхиальную проходимость, влия­ние на нее различных факторов, в т.ч. аллергенов и лекарственных препаратов.

Постепенно внедряются в медицинскую практику приборы для оценки комплексного сопротивления дыхания методом форсиро­ванных осцилляции, позволяющие получить объективные данные о реактивной компоненте сопротивления дыхания.

Отмечается тенденция роста производства приборов, позволя­ющих оценить качество жизни. Это системы для оценки макси­мальной скорости потребления кислорода и анаэробного порога при физической нагрузке. Они применяются в различных центрах здоровья.

ДЛЯ ТОПИЧЕСКОЙ ДИАГНОСТИКИ

По данным ВОЗ, более 75% диагнозов в настоящее время уста­навливаются с помощью лучевых методов или методов топичес­кой диагностики (высокие технологии в диагностике), к которым относятся классическая рентгенология, компьютерная рентгено­вская и магнитно-резонансная томография, ультразвуковые исследования (УЗИ), радионуклеидная диагностика. Мировой рынок этой аппаратуры превышает 12 млрд. долл. и занимает 40% в объеме продаж медицинской техники.

Диагностическая радиологияили лучевая диагностикапредстав­ляет собой науку о применении излучений для изучения строе­ния и функции нормальных и патологических измененных орга­нов и систем человека в целях профилактики и распознавания болезней.

В состав лучевой диагностики входят следующие методы:

1) рентгенодиагностика (рентгенология);

2) радионуклеидная диагностика;

3) ультразвуковая диагностика;

4) магнитно-резонансная диагностика;

5) медицинская термография (тепловидение).

РЕНТГЕНОДИАГНОСТИКА

Рентгенодиагностика— это способ изучения строения и функций различных органов и систем, основанный на качественном и/или количественном анализе пучка рентгеновского излучения, прошедшего через тело человека.

Рентгеновское излучение (РИ) было открыто в 1895 г. немецким физиком Вильгельмом Рентгеном. В 1986 французским физиком Анри Беккерелем было установлено явление естественной радиоактивности.

РИ занимает область электромагнитного спектра между гам­ма- и ультрафиолетовыми излучениями и представляет собой по­ток квантов (фотонов), распространяющихся прямолинейно со ско­ростью света (300000 км/сек). РИ возникает при торможении бы­стрых электронов в электрическом поле атомов вещества или при перестройке внутренних оболочек атомов.

К числу источников ионизирующих излучений, применяемых в радиологии, относятся рентгеновские трубки, радиоактивные нуклеиды, ускорители заряженных частиц.

Применение РИ в медицине с целью диагностики и лечения основано на его следующих способностях:

1) проникать через тела и предметы (в отличие от видимого света);

2) вызывать свечение (флюоресценцию) ряда химических соединений (сульфиды цинка, кадмия, кристаллы вольфрамата кальция, платино-синеродистый барий). На этом свойстве основа­на методика рентгеновского просвечивания;

3) оказывать фотохимическое действие: разлагать соединения серебра с галогенами и вызывать почернение фотографических слоев, в т.ч. рентгеновской пленки. Это свойство лежит в основе получения рентгеновских снимков;

4) вызывать физиологические и патологические (в зависимос­ти от дозы) изменения в облученных органах и тканях (оказывать биологическое действие). На этом свойстве основано использова­ние РИ для лечения онкологических и некоторых других заболе­ваний;

5) передавать энергию излучения атомам и молекулам окружаю­щей среды, вызывая их ионизационное действие (распад на поло­жительные и отрицательные ионы). По степени ионизации возду­ха определяется количество и качество РИ для диагностики и те­рапии.

Рентгенологические исследования подразделяют на две группы:

1) традиционные,к которым относят:

Рентгенография— способ рентгенологического исследования, при котором изображение объекта получают на рентгеновской пленке путем ее прямого экспонирования пучком излучения. Па­циент располагается между рентгеновской трубкой и пленкой. Снимки, получаемые в процессе рентгенографии, называются рентгенограммой.

Достоинства: доступность, простота, рентгенограмма является документом, который может храниться продолжительное время.

Рентгеноскопия— метод рентгенологического исследования, при котором изображение объекта получают на светящемся (флюо­ресцентном) экране. Экран представляет собой картон, покрытый особым химическим составом, который начинает светиться под влиянием рентгеновского излучения.

Флюорография— метод рентгенологического исследования, заключающийся в фотографировании изображения с рентгеновского флюоресцентного экрана на фотопленку небольшого формата.

2) нетрадиционные,к которым относят:

Рентгенотелевизионное просвечивание— современный вид рент­геноскопии, выполняемый с помощью усилителя рентгеновского изображения, в состав которого входят рентгеновский электрон­но-оптический преобразователь и замкнутая телевизионная сис­тема. При необходимости изображение может фиксироваться с помощью видеомагнитофона.

Достоинства: рентгеновское изображение на ТВ экране может рассматриваться при видимом свете; лучевая нагрузка на персо­нал и пациента значительно меньше, чем при обычной рентгено­скопии; ТВ техника обеспечивает возможность видеозаписи всех этапов исследования.

Электрорентгенография (ксерография)— метод получения рент­геновского изображения на полупроводниковых пластинах с последующим перенесением его на бумагу. Рентгенографическое исследование проводят так же, как при обычной рентгенографии, только вместо кассеты с пленкой используют кассету с металли­ческой пластиной, покрытой селеновым полупроводниковым слоем. Изображение с пластины переносится на бумагу, чаще писчую.

Недостатки: лучевая нагрузка выше, чем при рентгенографии; на электрорентгенограммах часто возникают пятна, полосы.

Достоинства: не требует дорогостоящей рентгеновской пленки и фотопроцесса; рентгеновское исследование не требует затемне­ния; быстрота действия; удобное хранение информации (на маг­нитных носителях: диски, ленты); лучевая нагрузка по сравнению с обычной рентгенографией уменьшается в десять и более раз.

Томография— это метод рентгенографии отдельных слоев чело­веческого тела. Эффект томографии достигается посредством непрерывного движения во время съемки 2-х или 3-х компонен­тов рентгеновской системы — излучателя, пациента и пленки. Чаще всего перемещают излучатель (трубку) и пленку, в то время как пациент остается неподвижным. Рентгеновский пучок, пройдя че­рез объект, воспринимается пленкой и сразу образует на ней скры­тое изображение, которое становится видимым после фотообра­ботки пленки. Натомограмме всегда надписана цифра, обознача­ющая глубину исследуемого слоя (чаще всего в см от поверхности тела больного). Врач перед томографией выбирает не только глу­бину залегания выделяемого слоя, но и толщину слоя, изображе­ние которого он желает получить.

Для проведения рентгенодиагностики выпускаются следующие аппараты (РДА):

Стационарные РДА

По назначению и конструктивным особенностям подразделя­ются на две группы: 1) общего (многопланового) назначения и 2) специального (узкоцелевого) назначения (ангиография, мам­мография и др.).

Палатные и переносные РДА

Применяются в ЛПУ, но вне рентгенологического отделения: в госпитальных палатах, реанимационном отделении, операционно-перевязочном блоке для обследования тяжелобольных. Обладают значительной маневренностью, мобильностью трубки и мощнос­тью, обеспечивающей возможность съемки с короткой выдержкой.

Полевые и корабельные РДА

Флюорографы

Могут быть стационарного и передвижного типа. В зависимос­ти от ширины используемой пленки и получаемого изображения их подразделяют на: мелкокадровые (ширина пленки 35 мм), среднеформатные (70 мм) и крупнокадровые (105 мм).

Томографы

В зависимости от конструкции выделяют:

• томографы для традиционной рентгеновской томографии в виде отдельных рентгеновских аппаратов,

• томографические приставки к обычным рентгеновским установкам,

С учетом плоскости получаемого изображения производятся следующие типы томографов итомографических приставок:

• продольные — выполняют послойные рентгенограммы в про­дольной по отношению к телу человека плоскости;

• поперечные — выполняют поперечные послойные рентге­нограммы;

• панорамные — выполняют развернутое изображение слож­ных слоев цилиндрической и овальной формы.

В последние годы появились компьютерные рентгеновские томографы (КРТ) со спиральной разверткой изображения со сверх­быстрым получением кадра изображения (до 0,05 сек), что позволя­ет диагностировать с высокой степенью достоверности на ранней стадии сердечно-сосудистые и легочные аномалии; кроме того КРТ широко применяются для функциональных исследований.

РАДИОНУКЛЕИДНАЯ ДИАГНОСТИКА

Основу радионуклеидной диагностики составляют аппараты на основе ядерно-магнитного резонанса (ЯMP) и ассортимент радиофармацевтических препаратов. Метод позволяет получать ди­агностическую информацию, недоступную другим техническим способам, о функциональном состоянии и метаболизме сердца, головного мозга, почек, печени и др. органов.

УЛЬТРАЗВУКОВАЯ ДИАГНОСТИКА

Ультразвуковой (УЗ)метод — это способ дистантного опреде­ления положения, формы, величины, структуры и движений орга­нов и тканей, а также патологических очагов с помощью ультра­звукового излучения.

Ультразвуковые волны обладают высокой проникающей способ­ностью и проходят через ткани организма, не пропускающие видимого света; относятся к числу неионизирующих излучений и в применяемом в диагностике диапазоне не вызывают существен­ных биологических эффектов.

Метод УЗ-диагностики основан на принципе эхолокации, т.е. излучении зондирующего импульса ультразвука и приеме сигналов, отраженных от поверхности раздела тканевых сред, обладающих различными акустическими свойствами. Сама процедура УЗ-ди­агностики непродолжительна, безболезненна, может многократно повторяться.

В основе всех применяемых в медицине с диагностической целью УЗ-приборов лежит преобразование электрической энер­гии в акустическую — прямой пьезоэлектрический эффект, а так­же обратное явление, называемое обратным пьезоэлектрическим эффектом, т.е. преобразование акустической энергии в электри­ческую.

В число методов УЗ-диагностики включают следующие: эхо­графия (одномерное исследование);сонография или УЗ-сканирование(двухмерное исследование); допплерография.

Допплерографию используют в клинике для изучения движу­щихся объектов, например, скоростей кровотока в сердце и крове­носных сосудах. С ее помощью можно обнаружить сужение и тромбоз сосудов, наличие атеросклеротических бляшек в них, наруше­ния кровотока.

В последние годы используют сочетание сонографии и допплерографии. Этот метод получил названиедуплексной соногра­фии.При ней получают как изображение сосудов (анатомическая информация), так и запись кривой кровотока в них (физиологи­ческая информация).

Выпускающиеся виды УЗ-приборов можно систематизиро­вать в зависимости от различных признаков, как представлено на рис. 2.269.


Рис. 2.269. Виды ультразвуковых приборов

Способ сканирования датчика как классификационный при­знак УЗ-приборов основан на том, что зона сканирования линей­ных датчиков имеет форму прямоугольника, конвексного — тра­пеции, секторного — сектора.

Датчики могут быть наружными и внутриполостными, послед­ние называют также зондами. При этом как наружные, так и внутриполостные датчики могут выполнять различные виды ска­нирования.

Различают датчики: общего назначения и специализирован­ные. К последним относятся датчики:неонатальные и педиатри­ческие (наружные), интраоперационные, лапароскопические, транс­вагинальные,трансуретральные, трансректальные, допплеровские и др. Многие из них имеют специальную насадку для пункций и биопсий.

В соответствии с принципом действия УЗ-приборы подразде­ляют на:

1) эхоимпульсные, которые служат для определения ана­томических структур, их визуализации и измерения;

2) доппле­ровские, позволяющие получить кинематическую характеристику быстро протекающих процессов — кровотока в сосудах, сокращений сердца;

3) комбинированные.

По функциональному назначению выделяют универсальные и специализированные приборы. Большинство известных приборов относятся к универсальному типу и предназначены для примене­ния в самых различных областях медицины (в акушерстве и гине­кологии, хирургии, педиатрии, кардиологии, урологии, при абдоминальных исследованиях).

К специализированным относятся приборы для исследования определенных органов и систем, в том числе эхокардиографы (исследование сердечно-сосудистой системы), эхоофтальмоскопы,эхоофтальмометры (исследование органа зрения), эхоэнцефалографы, эхоэнцефалоскопы (исследование головного мозга) и др. В соответствии со способом регистрации эхосигнала УЗ-при-боры группируются на аппараты с одномерной регистрацией сиг­нала, двухмерной индикацией и с эффектом Допплера, причем большинство современных УЗ-приборов универсальны, т.е. могут работать в нескольких режимах:одномерном, двухмерном, допплеровском.

В последние годы УЗ-медицинская техника претерпела значи­тельные совершенствования — это цветовое кодирование УЗ-допплеровской информации и картирование, скоростные процессы.


В настоящее время в арсенале неврологов и психиатров имеется большое количество инструментальных методов исследований, позволяющих оценивать функциональное состояние как центральной, так и периферической нервной системы. Для выбора верного диагностического направления, правильного лечения, оценки перспектив терапии, прогноза течения заболевания врач-клиницист должен ориентироваться в методах функциональной диагностики, иметь представление о результатах, которые можно получить с помощью того или иного метода.

Метод эхоэнцефалоскопии является методом ультразвуковой диагностики нарушений в головном мозге и позволяет судить о наличии и степени смещения срединных структур, что свидетельствует о присутствии дополнительного объема (внутримозговая гематома, отек полушария). В настоящее время значимость метода не столь велика, как раньше, в первую очередь он используется для скрининговой оценки показаний для экстренного проведения нейровизуализации (компьютерная томография (КТ) или магнитно-резонансная томография (МРТ). Следует отметить, что отсутствие смещения при эхоэнцефалоскопии не означает стопроцентного отсутствия патологического процесса, т.к., например, при локализации процессов в лобных отделах или в задней черепной ямке смещение структур мозга происходит только в случае больших размеров поражения. Также не очень информативен этот метод у пожилых пациентов, т.к. в результате атрофического процесса в мозге и расширения межполушарных пространств имеется достаточно внутричерепного пространства, чтобы дополнительный объем не приводил к смещению срединных структур. В настоящее время ограничено использование данного метода для диагностики внутричерепной гипертензии. Этот вопрос дискутируется.

Метод электроэнцефалографии (ЭЭГ) — метод исследования биоэлектрической активности мозга. Основным показанием для проведения данного метода является диагностика эпилепсии. Для разных форм этого заболевания характерны различные варианты изменений биоэлектрической активности мозга. Правильная интерпретация этих изменений позволяет своевременно и адекватно проводить терапию или, напротив, отказаться от проведения специфической противосудорожной терапии. Так, одним из наиболее сложных вопросов в трактовке энцефалограммы является понятие о судорожной готовности мозга. Ведущие нейрофизиологические лаборатории неоднозначно относятся к этому вопросу. Следует помнить: для того чтобы доказать готовность мозга к судорогам, необходимо проведение глубинной ЭЭГ с использованием провокационных методик. Судить же о готовности мозга к судорогам на основании только рутинной ЭЭГ в настоящее время является неверным.

Следующей областью применения ЭЭГ является диагностика смерти мозга. Для установления смерти мозга необходимо проведение 30-минутной записи, на которой отсутствует электрическая активность во всех отведениях на максимальном усилении — эти критерии определены законодательством. В диагностике всех остальных неврологических и психиатрических заболеваний метод ЭЭГ является вспомогательным. Следует помнить, что ЭЭГ не является методом топической диагностики, поэтому сомнительными являются заключения о заинтересованности срединных и стволовых структур с четким их разграничением на диэнцефальные и мезэнцефальные, каудальные или оральные стволовые и пр. О заинтересованности этих структур можно судить косвенно и относиться к подобным заключениям с настороженностью. В настоящее время во многих лабораториях возможно проведение Холтеровского мониторинга ЭЭГ — многочасовой записи биоэлектрической активности мозга. Преимуществом данной методики является несвязанность пациента с прибором и возможность вести обычный образ жизни в течение всей регистрации. Многочасовая регистрация энцефалограммы дает возможность выявить редко проявляющиеся патологические изменения биоэлектрической активности. Данная разновидность ЭЭГ показана для уточнения истинной частоты абсансов, диагностически неясных приступов, при подозрении на псевдоэпилептические приступы, а также для оценки эффективности противосудорожных средств.

Полисомнография (ПСГ) — метод длительной регистрации различных функций организма в течение всего сна. Метод включает в себя мониторинг биопотенциалов головного мозга (ЭЭГ), электроокулограммы, электромиограммы, электрокардиограммы, частоты сердечных сокращений, воздушного потока на уровне носа и рта, дыхательные усилия грудной и брюшной стенок, колебания кислорода в крови, двигательную активность во сне. Метод позволяет изучать все патологические процессы, возникающие во время сна: синдром апноэ, нарушения ритма сердца, изменения артериального давления, эпилепсию. В первую очередь метод необходим для диагностики инсомний и подбора адекватных методов терапии данного заболевания, а также при синдромах апноэ во сне и храпа. Большое значение метод имеет для выявления эпилепсии сна и различных двигательных расстройств во сне. Для адекватной диагностики этих нарушений используется ночной видеомониторинг.

Вызванные потенциалы (ВП) — это метод, позволяющий получить объективную информацию о состоянии различных сенсорных систем как ЦНС, так и периферических отделов. Он связан с регистрацией электрической активности в ответ на различные стимулы — звуковые, зрительные, сенсорные. ВП, получаемые в ответ на эти стимулы, выделяются легко и надежно, поэтому используются наиболее часто. Сущностью метода является получение ответа, обусловленного приходом афферентного стимула в различные ядра и кору головного мозга, в зону первичной проекции соответствующего анализатора, а также ответов, связанных с обработкой информации. Таким образом, получаемые начальные компоненты отражают физические свойства стимула, а более поздние — условия его обработки. Используются такие характеристики сигнала ВП, как время задержки ответа, латентный период основных пиков, амплитуда основных пиков, межпиковые латентности.

Учитывая, что 70% информации доставляет нам зрительный анализатор, 15% — слуховой, а 10% — тактильный, то раннее определение степени дисфункции этих наиболее важных сенсорных систем является необходимым для диагностики, а также выбора метода терапии и оценки прогноза заболевания нервной системы. Показаниями для назначения метода ВП являются: исследование функций слуха и зрения, оценка состояния сенсомоторной коры, когнитивных функций мозга уточнение нарушений ствола мозга, выявление нарушений периферических нервов и нарушения проведения путей спинного мозга, оценка комы и смерти мозга.

Транскраниальная магнитная стимуляция (ТМС) — метод, в основе которого лежит возбуждение нервной системы с помощью магнитного стимулятора. Преимущество метода перед электрической стимуляцией заключается в том, что магнитное поле способно без изменений проходить через любые анатомические структуры (т.е. сигнал не ослабевает при прохождении через различные среды) и возбуждать нервные ткани, кроме того, магнитное воздействие является безболезненным. Метод позволяет возбуждать как клетки моторной коры, так и моторные корешки и периферические нервы. Таким образом, метод ТМС позволяет выявить нарушения в проведении нервного импульса на протяжении от коры до мышцы и используется для объективной оценки повреждения двигательных путей. Показаниями для проведения данного обследования являются поражения моторного тракта на любом уровне. Сюда относятся двигательные расстройства при различных неврологических заболеваниях, обусловленных страданием пирамидного тракта (инсульты), причем с помощью ТМС можно локализовать очаг поражения до появления визуализации при КТ или МРТ; процессы демиелинизации различного генеза, травматические поражения и опухолевые процессы. ТМС можно использовать для тестирования высших психических функций, в частности функциональной локализации речи. Кроме диагностического использования метод ТМС может применяться в терапевтических целях для лечения болезни Паркинсона, эпилепсии, дистонических расстройств, поражений периферических нервов, мигрени, а в психиатрической практике — при депрессивных расстройствах, синдромах навязчивых идей, шизофрении.

Электронейромиография (ЭНМГ) — метод диагностики, изучающий функциональное состояние возбудимых тканей (нервов и мышц). Пожалуй, данный метод является наименее известным практическим врачам-неврологам, поскольку до последнего времени использовался только в специализированных центрах.

При проведении ЭНМГ оценивается состояние мышцы, нейромышечного синапса, периферического нерва, сплетения, корешка, переднего рога спинного мозга. При этом данную методику можно разделить на две: первая — в основном посвящена регистрации спонтанной и вызванной мышечной активности (ЭМГ), вторая — регистрации потенциалов действия (ПД) периферических сенсорных волокон. Получаемая с помощью этих двух методов информация способствует выявлению типа нарушений, помогает определению степени его тяжести, а также позволяет оценить достигнутое улучшение в ходе лечения.

ЭМГ. Для исследования спонтанной и произвольной мышечной активности используют игольчатую стимуляцию — регистрацию ПД двигательной единицы (совокупности мышечных волокон, иннервируемых одним аксоном). Обращают внимание на такие параметры, как спонтанная активность, амплитуда ПД двигательной единицы (повышение или снижение). Так, в случае патологии мышечного волокна мышца перестает иннервироваться аксоном и начинает работать в собственном режиме, в результате регистрируется спонтанная активность в покое. Первично-мышечные заболевания приводят к гибели мышечных волокон, в результате чего снижается их количество в двигательной единице, как следствие, уменьшается амплитуда ПД двигательной единицы и длительность ПД. Данная методика информативна в случае подозрения на первичное мышечное поражение, для диагностики поражения мотонейрона и аксонального поражения.

Стимуляционная электромиограмма используется для тестирования синапса (периферическое звено нервно-мышечной системы). При этом регистрируют активность мышцы в ответ на электрическое раздражение периферического нерва. Измеряют скорость проведения возбуждения, латентные периоды моторного ответа мышцы. Данная методика является информативной для демиелинизирующих заболеваний, в случае плексопатий, полинейропатий (в т.ч. острой полинейропатии Гийена — Барре), демиелинизирующих заболеваний.

Электронейрография позволяет регистрировать ответы периферических нервов на их стимуляцию. С помощью данного метода тестируются чувствительные волокна, возможна дифференциальная диагностика аксоно- и миелинопатии.

Ультразвуковая допплерография — метод исследования состояния кровотока с помощью допплера. Метод незаменим для диагностики нарушений кровообращения. В неврологии наиболее используемой является допплерография интра- и экстракраниальных сосудов. Состояние кровотока оценивается путем измерения скорости кровотока. Так, при стенозе скорость кровотока возрастает пропорционально степени стеноза. В случае окклюзии сосуда может происходить как изменение направления кровотока, так и явление “ампутации” сосуда на картах кровотока. Следует отметить, что диагностические возможности данного метода при исследовании позвоночных артерий ограничены вследствие большой индивидуальной вариабельности позвоночных артерий и особенностей прохождения этих сосудов в костных каналах и тканях шеи.

Методы дуплексного и триплексного сканирования являются наиболее современными методами исследования кровотока, а также состояния сосуда. В условиях двух- и трехмерного изображения возможно увидеть артерию, ее форму и ход, оценить состояние ее просвета, увидеть бляшки, тромбы, а также зону стеноза. Методы незаменимы при подозрении на наличие атеросклеротических поражений.

Следует помнить, что зачастую клиницист ждет от врача функциональной диагностии конкретного диагноза, а тот в свою очередь не имеет права постановки диагноза. Из этого следует, что любой клиницист должен сам обладать определенным уровнем знаний, необходимых для интерпретации полученных результатов. Также нельзя забывать, что методы функциональной диагностики являются вспомогательными и должны оцениваться врачом-клиницистом применительно к конкретному пациенту. При этом врач-невролог должен опираться на имеющуюся клиническую картину, анамнез и течение заболевания.

А.И. МАЧУЛИНА, врач-невролог отделения неврологии ГКБ № 33 (Москва)


Нервная система является самой сложной и важнейшей сетью управления и связи в организме человека. Она важна для зрения и слуха, ощущения боли и удовольствия, а также для двигательного контроля и для развития мышления, речи и памяти. Кроме того, нервная система отвечает за регулирование таких функций организма, как пищеварение и дыхание. Поэтому нарушения в работе нервной системы отрицательно сказываются на жизни человека в целом.


Стимуляционное ЭНГМ исследование проводится электродами, которые закрепляются на поверхность кожи. Активный электрод ставится на мышцу, пассивный в основном на сухожилие. Третий электрод – датчик стимуляции, ставится на проекцию нервов. Постепенно увеличивая силу импульсов электрического тока, врач-невролог добивается наибольшего сигнала с мышцы.


Такая методика позволяет исследовать состояние нерва на всем его протяжении, а также определить характер и уровень поражения.

Игольчатая ЭНМГ представляет собой электрофизический метод исследования, который основан на регистрации электрической активности мышц с помощью игольчатых электродов, вставляемых в мышцы. Стоит отметить, что через электрод никакие лекарства не вводятся, а сам электрод никакого воздействия не производит. Во время обследования мышцу расслабляют или немного напрягают по указанию врача.


Показания для проведения электронейромиографии:

  • Синдромы сдавления нервов;
  • Поражение различных нервов верхних и нижних конечностей;
  • Поражение нервов плечевого и пояснично-крестцового сплетения;
  • Множественные поражения нервов и мышц.

Зачастую данные поражения имеют схожие симптомы, и вероятность правильной клинической оценки без ЭНМГ составляет от 20 до 70 %. Данный метод является незаменимым в работе врача для успешной и точной диагностики заболеваний.

Несмотря на то, что электронейромиография является безвредным и безопасным методом обследования, он все же имеет ряд противопоказаний:

  • Инфекционные заболевания острого характера;
  • Сердечно-сосудистые нарушения в остром периоде;
  • Наличие кардиостимулятора;
  • Присутствие поврежденных кожных покровов;
  • Наличие эпилепсии;
  • Низкий болевой порог;
  • Заболевания, связанные с нарушением свертываемости крови (при игольчатой ЭНМГ);
  • Носители ВИЧ, гепатита и т.д. (при игольчатой ЭНМГ);
  • Наличие психических заболеваний.

Стоит отметить, что проведение методики ЭНМГ имеет ряд преимуществ:

  • Возможность многоразового проведения;
  • Не нужно специально готовится к процедуре;
  • Точность диагностики;
  • Методика полностью изучена и проверена;
  • Обследование безопасно и проводится даже у маленьких детей;
  • Результат известен в день обращения.


Обычно на ЭНМГ направляет лечащий врач, однако часто пациенты сами решаются на обследование при появлении болей и онемения в руках или ногах, при слабости в мышцах непонятной природы.


ТМС – это неинвазивная (т.е. без проникновения в органы) безболезненная методика, которая применяется для стимуляции структур головного мозга.

ТМС выполняется с помощью специального аппарата, который преобразует ток в сфокусированное магнитное поле. Оно позволяет воздействовать на определенные участки головного мозга. При воздействии магнитного поля локально на определенные участки, в них происходит зарождение особых электрических разрядов, которые и обладают лечебным эффектом.


Существует два типа ТМС: стимуляция одиночными стимулами и ритмическая стимуляция.

Стимуляция одиночными стимулами применяется для диагностики заболеваний центральной нервной системы (диагностическая ТМС). Ритмическая (лечебная) стимуляция проводится сериями магнитных импульсов и используется только для лечения. Стимуляция с низкой частотой замедляет работу клеток головного мозга, а стимуляция с высокой частотой – ускоряет их работу.

Например, ритмическая стимуляция поможет человеку, который мучается от постоянных приступов мигрени, сократить количество ежедневных приступов до одного в месяц. Также данная методика поможет пациентам с клинической депрессией справится с болезнью без медикаментов

Показания для применения диагностической ТМС:

  • Инсульт;
  • Рассеянный склероз;
  • Заболевание нервных клеток спинного мозга;
  • Болезнь Паркинсона;
  • Болезнь Альцгеймера;
  • Радикулопатия;
  • Заболевания спинного мозга;
  • Исследование черепных нервов, диафрагмального нерва;
  • Полиневропатии;
  • Нарушение мочеиспускания;
  • Нарушение координации движения;
  • Определение участков головного мозга, ответственных за речь и движения.

Показания для проведения лечебной ТМС:

  • Депрессия;
  • Невропатическая боль;
  • Инсульт;
  • Тревожные расстройства;
  • Тиннитус (шум в голове);
  • Болезнь Паркинсона;
  • Мигрень;
  • Лечение психических расстройств;
  • Эссенциальный тремор;
  • Тики.

Лечение различных заболеваний с помощью ТМС проходит курсом. При первом посещении врач-невролог определяет все необходимые параметры, в том числе и нужную область головного мозга, на которую будет воздействовать магнитное поле. Для точного определения области пациенту выдается специальная индивидуальная шапочка, на которой врач делает пометки.


Общепризнано, что ТМС является абсолютно безопасным методом. Однако, как и для любой методики, при проведении диагностической и лечебной ТМС существует ряд противопоказаний:

  • Наличие в теле пациента любых металлических устройств и инородных тел, особенно в голове;
  • Эпилепсия или эпилептические приступы в анамнезе, а также случаи эпилепсии в семье пациента;
  • Острые очаговые изменения вещества головного мозга (опухоли, менингит и т.д.)
  • Нейрохирургические вмешательства на головном мозге в анамнезе;
  • Злоупотребление алкоголем и наркотиками с последующим резким прекращением их потребления;
  • Беременность;
  • Депривация сна (лишение сна или бессонница).

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.