Проведение возбуждения по нервному волокну скорость проведения

Возбуждение, возникнув в одном участке мембраны возбудимой клетки, обладает способностью распространяться. Длинный отросток нейрона – аксон (нервное волокно) выполняет в организме специфическую функцию проведения возбуждения на большие расстояния.

• Закон анатомической и физиологической непрерывности – возбуждение может распространяться по нервному волокну только в случае его морфологической и функциональной целостности.

• Закон двустороннего проведения возбуждения – возбуждение, возникающее в одном участке нерва, распространяется в обе стороны от места своего возникновения. В организме возбуждение всегда распространяется по аксону от тела клетки (ортодромно).

• Закон изолированного проведения – возбуждение, распространяющееся по волокну, входящему в состав нерва, не передается на соседние нервные волокна.

• распространяется по нервным волокнам с затуханием (с декрементом ), т.е. амплитуда локального ответа быстро падает с увеличением расстояния от места его возникновения;

• вследствие затухания локальный ответ распространяется на небольшие расстояния (не более 2 см);

• местное возбуждение распространяется пассивно, без затрат энергии клетки;

• механизм распространения местного возбуждения аналогичен распространению электрического тока в проводниках; такой способ распространения возбуждения называют электротоническим .

• распространяется по нервным волокнам без затухания, амплитуда потенциала действия одинакова на любом расстоянии от места его возникновения;

• расстояние, на которое распространяется потенциал действия, ограничено только длиной нервного волокна;

• распространение потенциала действия – активный процесс, в ходе которого изменяется состояние ионных каналов волокна, энергия АТФ требуется для восстановления трансмембранных ионных градиентов;

• механизм проведения потенциала действия более сложен, чем механизм распространения местного возбуждения.

Миелиновые волокна. Часть нервных волокон в ходе эмбриогенеза подвергается миелинизации: леммоциты ( шванновские клетки ) сначала прикасаются к аксону, а затем окутывают его (рис. 1, А, Б). Мембрана леммоцита наматывается на аксон наподобие рулета, образуя многослойную спираль (миелиновую оболочку) (рис. 1, В, Г). Миелиновая оболочка не является непрерывной – по всей длине нервного волокна на равном расстоянии друг от друга в ней имеются небольшие перерывы (перехваты Ранвье). В области перехватов аксон лишен миелиновой оболочки.

Рис. 1. Формирование миелиновой оболочки вокруг аксона на разных стадиях его развития (А – Г); соотношение леммоцита и безмиелиновых волокон (Д) (по Судакову, 2000)

1 – леммоцит, 2 – миелиновое волокно, 3 – миелиновая оболочка, 4 – безмиелиновое волокно

Безмиелиновые волокна. Миелинизация других волокон заканчи­вается на ранних стадиях эмбрионального развития. В леммоцит по­гружается один или несколько аксонов; он полностью или частично окружает их, но не образует многослойной миелиновой оболочки (рис. 1, Д).

В состоянии покоя вся внутренняя поверхность мембраны нервного волокна несет отрицательный заряд, а наружная сторона мембраны – положительный. Электрический ток между внутренней и наружной стороной мембраны не протекает, так как липидная мембрана имеет высокое электрическое сопротивление.

Во время развития потенциала действия в возбужденном участке мембраны происходит реверсия заряда (рис. 2, А). На границе возбужденного и невозбужденного участка начинает протекать электрический ток (рис. 2, Б). Электрический ток раздражает ближайший участок мембраны и приводит его в состояние возбуждения (рис. 2, В), в то время как ранее возбужденные участки возвращаются в состояние покоя (рис. 2, Г). Таким образом, волна возбуждения охватывает все новые участки мембраны нервного волокна.

Рис. 2. Механизм распространения возбуждения по безмиелиновому нервному волокну. Объяснения – в тексте

При развитии ПД в одном из перехватов Ранвье происходит реверсия заряда мембраны (рис. 3, А). Между электроотрицательными и электроположительными участками мембраны возникает электрический ток, который раздражает соседние участки мембраны (рис. 3, Б). Однако в состояние возбуждения может перейти только участок мембраны в области следующего перехвата Ранвье (рис. 3, В). Таким образом, возбуждение распространяется по мембране скачкообразно (сальтаторно) от одного перехвата Ранвье к другому.

Рис. 3. Механизм распространения возбуждения по миелиновому нервному волокну. Объяснения – в тексте

Нервные волокна различаются по диаметру и степени миелинизации. Чем больше диаметр нервного волокна и степень его миелинизации, тем выше скорость проведения возбуждения. Волокна с разной скоростью проведения выполняют различные физиологические функции. Нервные волокна подразделяются на 6 типов, характеристики которых приведены в табл. 4.1.

Таблица 4.1. Типы нервных волокон, их свойства и функциональное назначение

Тип

Диаметр (мкм)

Миелинизация

Скорость про-ведения (м/с)

Функциональное назначение

Двигательные волокна соматической НС; чувствительные волокна проприорецепторов

Чувствительные волокна кожных рецепторов

Чувствительные волокна проприорецепторов

Чувствительные волокна терморецепторов, ноцицепторов

Преганглионарные волокна симпатической НС

Постганглионарные волокна симпатической НС; чувствительные волокна терморецепторов, ноцицепторов, некоторых механорецепторов

Нервные волокна всех групп обладают общими свойствами:

• нервные волокна практически неутомляемы;
• нервные волокна обладают высокой лабильностью, т. е. могут воспроизводить потенциал действия с очень высокой частотой.

Потенциал действия нервной клетки - Проведение возбуждения по нервным волокнам

  • Потенциал действия нервной клетки
  • Ионные механизмы потенциала действия
  • Проведение возбуждения по нервным волокнам
  • Законы проведения возбуждения
  • Типы нервных волокон и их функции
  • Все страницы

Нервные волокна — аксоны нервных клеток, окружённые оболочкой из олигодендроглиоцитов в ЦНС и шванновских [2] клеток в периферических нервах. Нервные волокна подразделяют на 2 типа — безмиелиновые и миелиновые. Основная функция нервных волокон — проведение ПД. Скорость проведения в миелиновых и безмиелиновых волокнах различна (рис. 5–8) и существенно зависит от диаметра нервных волокон.

Рис. 5–8. Скорость проведения возбуждения в миелиновых и безмиелиновых нервных волокнах разного диаметра [4]. Скорость проведения пропорциональна диаметру нервного волокна и в миелиновых волокнах выше, чем в безмиелиновых.

Безмиелиновые нервные волокна (рис. 5–9А). В покое мембрана аксона (осевого цилиндра) поляризована — положительно заряжена снаружи и отрицательно внутри. При ПД полярность изменяется, и наружная поверхность мембраны приобретает отрицательный заряд. Из-за разности потенциалов между возбуждённым и невозбуждёнными сегментами возникают локальные токи, деполяризующие соседний участок мембраны. Теперь этот участок становится возбуждённым и деполяризует следующий участок мембраны.

Рис. 5–9. Проведение возбуждения в нервных волокнах [7]. А — безмиелиновое волокно (электротоническое проведение), Б — миелиновое волокно (скачкообразное проведение). Миелин, полностью окружая аксон в межузловых промежутках, выступает в роли электрического изолятора, а межклеточная жидкость в перехватах Ранвье [3] — проводник.

Появление так называемых рефрактерных каналов (рефрактерное состояние мембраны после прохождения ПД) предупреждает распространение возбуждения в обратном направлении.

Скорость проведения возбуждения по безмиелиновому нервному волокну в основном составляет 0,5–2 м/с и зависит от диаметра волокна: чем больше диаметр, тем выше скорость проведения ПД (см. рис. 5–8).

Миелиновое нервное волокно (рис. 5–9Б) состоит из осевого цилиндра (аксона), вокруг которого шванновские клетки образуют миелин за счёт концентрического наслаивания собственной плазматической мембраны. Миелин прерывается через регулярные промежутки (от 0,2 до 2 мм) концентрической щелью шириной около 1 мкм, это узлы, или перехваты Ранвье. Таким образом, межузловые сегменты аксона, расположенные между соседними перехватами Ранвье, содержат миелин — электрический изолятор, не позволяющий проходить через него локальным токам, поэтому ПД возникают только в перехватах Ранвье. Другими словами, ПД перемещается вдоль нервного волокна скачками, от одного перехвата Ранвье к другому перехвату (скачкообразное проведение).

Плотность потенциалозависимых Na+?каналов аксолеммы в перехватах Ранвье — до 2000 на 1 мкм2 (в перикарионе — 50–70, в начальном сегменте аксона — 2000, в межузловых сегментах Na+?каналы практически отсутствуют). В силу высокой плотности Na+?каналов перехваты Ранвье характеризуются высокой возбудимостью, а локальные токи достаточно велики для возбуждения соседнего перехвата.

Локальные токи текут от перехвата к перехвату (через внеклеточную жидкость кнаружи от миелина и через аксоплазму внутри аксона) с минимальными потерями.

Энергозатраты нервного волокна на проведение ПД относительно невелики, поскольку возбуждаются только перехваты Ранвье, площадь которых составляет менее 1% общей поверхности мембраны аксона. Поэтому даже после длительных ритмических пачек ПД трансмембранный градиент концентраций ионов практически не изменяется.

В физиологических условиях ПД движутся в одном направлении от места раздражения (ортодромное проведение). ПД, проходящий по нервному волокну, возбуждает следующий, но не предыдущий участок мембраны. Это связано с рефрактерностью предыдущего участка после возбуждения. Проведение в противоположном направлении (антидромное проведение) возможно при травматическом поражении нервных волокон и в редких случаях (аксон–рефлекс).

Нарушение миелинизации нервных волокон приводит к нарушениям проводимости (демиелинизирующие заболевания). При разрушении миелиновой оболочки происходит резкое снижение скорости и надёжности проведения возбуждения по нервам. Наиболее распространённым среди демиелинизирующих заболеваний является множественный склероз, проявляющийся различными параличами и потерей чувствительности.

1885 г. - Л. Герман - между возбужденными и невозбужденными участками нервного волокна возникают круговые токи.

При действии раздражителя имеется разность потенциалов между наружной и внутренней поверхностями ткани (участки несущие различные заряды). Между этими участками возникает электрический ток (движение ионов Nа+). Внутри нервного волокна возникает ток от положительного полюса к отрицательному полюсу, т. е. ток направлен от возбужденного участка к невозбужденному. Этот ток выходит через невозбужденный участок и вызывает его перезарядку. На наружной поверхности нервного волокна ток идет от невозбужденного участка к возбужденному. Этот ток не изменяет состояние возбужденного участка, т. к. он находится в состоянии рефрактерности.

Доказательство наличия круговых токов: нервное волокно помещают в раствор NaCl и регистрируют скорость проведения возбуждения. Затем нервное волокно помещают в масло (повышается сопротивление) - скорость проведения уменьшается на 30 %. После этого нервное волокно оставляют на воздухе - скорость проведения возбуждения уменьшается на 50 %.

Особенности проведения возбуждения по миелиновым и безмиелиновым нервным волокнам:

1) миелиновые волокна - имеют оболочку обладающую высоким сопротивлением, электрогенные свойства только в перехватах Ранвье. Под действием раздражителя возбуждение возникает в ближайшем перехвате Ранвье. Соседний перехват в состоянии поляризации. Возникающий ток вызывает деполяризацию соседнего перехвата. В перехватах Ранвье высокая плотность Nа-каналов, поэтому в каждом следующем перехвате возникает чуть больший (по амплитуде) потенциал действия, за счет этого возбуждение распространяется без декремента и может перескакивать через несколько перехватов. Это сальтаторная теория Тасаки. Доказательство теории - в нервное волокно вводили препараты, блокирующие несколько перехватов, но проведение возбуждения регистрировалось и после этого. Это высоко надежный и выгодный способ, т. к. устраняются небольшие повреждения, увеличивается скорость проведения возбуждения, уменьшаются энергетические затраты;

2) безмиелиновые волокна - поверхность обладает электрогенными свойствами на всем протяжении. Поэтому малые круговые токи возникают на расстоянии в несколько микрометров. Возбуждение имеет вид постоянно бегущей волны. Этот способ менее выгоден: большие затраты энергии (на работу Nа-К-насоса), меньшая скорость проведения возбуждения.

Классификация нервных волокон

Нервные волокна классифицируются по:

  • длительности потенциала действия;

  • строению (диаметру) волокна;

  • скорости проведения возбуждения.

Выделяют следующие группы нервных волокон:

группа А (альфа, бета, гамма, дельта) - самый короткий потенциал действия, самая толстая миелиновая оболочка, самая высокая скорость проведения возбуждения;

группа В - миелиновая оболочка менее выражена;

группа С - без миелиновой оболочки.

8. Законы проведения возбуждения по нерву.

Законы проведения возбуждения по нервам.

Нервное волокно обладает следующими физиологическими свойствами: возбудимостью, проводимостью, лабильностью.

Проведение возбуждения по нервным волокнам осуществляется по определенным законам.

Закон двустороннего проведения возбуждения по нервному волокну.Нервы обладают двусторонней проводимостью, т.е. возбуждение может распространяться в любом направлении от возбужденного участка (места его возникновения), т. е., центростремительно и центробежно. Это можно доказать, если на нервное волокно наложить регистрирующие электроды на некотором расстоянии друг от друга, а между ними нанести раздражение. Возбуждение зафиксируют электроды по обе стороны от места раздражения. Естественным направлением распространения возбуждения является: в афферентных проводниках - от рецептора к клетке, в эфферентных - от клетки к рабочему органу.

Закон анатомической ифизиологической целостности нервного волокна.Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность, т.е. передача возбуждения возможна только по структурно и функционально не измененному, неповрежденному нерву (законы анатомической и физиологической целостности). Различные факторы, воздействующие на нервное волокно (наркотические вещества, охлаждение, перевязка и т. д.) приводят к нарушению физиологической целостности, т. е., к нарушению механизмов передачи возбуждения. Несмотря на сохранение его анатомической целостности проведение возбуждения в таких условиях нарушается.

Закон изолированногопроведения возбуждения по нервномуволокну.В составе нерва возбуждение по нервному волокну распространяется изолированно, без перехода на другие волокна, имеющиеся в составе нерва. Изолированное проведение возбуждения обусловлено тем, что сопротивление жидкости, заполняющей межклеточные пространства, значительно ниже сопротивления мембраны нервных волокон. Поэтому основная часть тока, возникающего между возбужденным и невозбужденным участками нервного волокна, проходит по межклеточным щелям, не действуя на рядом расположенные нервные волокна. Изолированное проведение возбуждения имеет важное значение. Нерв содержит большое количество нервных волокон (чувствительных, двигательных, вегетативных), которые иннервируют различные по структуре и функциям эффекторы (клетки; ткани, органы). Если бы возбуждение внутри нерва распространялось с одного нервного волокна на другое, то нормальное функционирование органов было бы невозможно.

Возбуждение (потенциал действия) распространяется по нервному волокну без затухания.

Периферический нерв практически неутомляем.

Механизм проведения возбуждения по нерву.

Возбуждение (потенциал действия - ПД) распространяется в аксонах, телах нервных клеток, а также иногда в дендритах без снижения амплитуды и без снижения скорости (бездекрементно). Механизм распространения возбуждения у различных нервных волокон неодинаков. При распространении возбуждения по безмиелиновому нервному волокну механизм проведения включает два компонента: раздражающее действие катэлектротона, порождаемое локальным ПД, на соседний участок электровозбудимой мембраны и возникновение ПД в этом участке мембраны. Локальная деполяризация мембраны нарушает электрическую стабильность мембраны, различная величина поляризации мембраны в смежных ее участках порождает электродвижущую силу и местный электрический ток, силовые линии которого замыкаются через ионные каналы. Активация ионного канала повышает натриевую проводимость, после электротонического достижения критического уровня деполяризации (КУД) в новом участке мембраны генерируется ПД. В свою очередь этот потенциал действия вызывает местные токи, а они в новом участке мембраны генерируют потенциал действия. На всем протяжении нервного волокна происходит процесс новой генерации потенциала действия мембраны волокна. Данный тип передачи возбуждения называется непрерывным.

Скорость распространения возбуждения пропорциональна толщине волокна и обратно пропорциональна сопротивлению среды. Проведение возбуждения зависит от соотношения амплитуды ПД и величины порогового потенциала. Этот показатель называется гарантийный фактор(ГФ) и равен 5 - 7, т.е. ПД должен быть выше порогового потенциала в 5- 7 раз. Если ГФ = 1 проведение ненадёжно, если ГФ 2+ в миофибриллах при большой частоте раздражений.

Пессимум частоты раздражения (снижение амплитуды сокращения до нуля) возникает потому, что каждый последующий стимул попадает в фазу абсолютной рефракторности, когда мышца невозбудима (рис. 18).

В условиях целостного организма от мотонейронов идёт постоянный приток нервных импульсов к мышце. При увеличении частоты нервных импульсов возрастает сила мышечных сокращений; при уменьшении - наоборот.



Таким образом, сокращение скелетных мышц носят гладкотетанический характер, а его сила регулируется изменением частоты импульсации мотонейронов.

Рис.18. Оптимум и пессимум (по Н. Введенскому) 1— кривые мышечных сокращении; 2 раздражения различной частоты.

Следует отметить, что сокращение волокон носят асинхронный характер, поскольку импульсы от одних мотонейронов приходят быстрее, от других - медленнее. Поэтому часть волокон сокращается, другая - расслабляется, но мышца в целом находится в состоянии сокращения. Сила же сокращения целой мышцы будет зависеть от количества возбужденных нейромоторных единиц и повышения частоты нервной импульсации от мотонейронов.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.



Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

1. Двустороннее проведение возбуждения, т.е. способность возбуждения распространяться по нервному волокну в обе стороны от места возникновения. В условиях целого организма, в норме, возбуждение всегда распространяется по аксону от тела клетки (ортодромно). Двустороннее проведение наблюдается в аксонном холмике нейрона, возникающий в этом месте потенциал действия, переходит не только на аксон, но и на тело нейрона, но из-за отсутствия потециалчувствительных каналов, распространяться по телу клетки не может.

2. Изолированное проведение возбуждения в отдельных нервных волокнах. Обычно оно не передается с одного нервного волокна на другое. Это обусловлено тем, что петли тока в межклеточной жидкости ствола, имеющей низкое сопротивление, почти не проникают в невозбужденные волокна нерва вследствие высокого сопротивления их оболочек. Изолированное проведение импульсов по нервным волокнам обеспечивает высокую точность регуляторной деятельности ЦНС на другие нервные клетки и клетки эффекторы рабочего органа.

Полная изолированность достигается за счет миелинизации нервных волокон, которая завершатся в основном к 3 году жизни, но окончательно только к 30 - 40.

3. Неутомляемость нервного волокна. Н.Е. Введенский (1883) обнаружил, что нерв сохраняет способность к проведению возбуждения в течение 6 – 8 ч непрерывного раздражения. Это обусловлено тем, что при проведении ПД по нервным волокнам используется 1/1 000 000 часть запасов трансмембранных ионных градиентов и, следовательно, нужны небольшие количества АТФ для восстановления ионных градиентов. Расход энергии в нерве примерно в 16 раз меньше, чем на соответствующую единицу массы в целом организме в условиях покоя.

4. Большая скорость проведения возбуждения, достигающая 120м/с. Скорость проведения возбуждения по нервному волокну, является основной функциональной характеристикой его работы. У разных волокон, эта скорость различна, она прямо пропорциональна диаметру волокна: с утолщением аксонов она увеличивается и всегда выше в миелинизированных нервных волокнах.

Скорость проведения по нервному волокну можно определить путем сложного расчета, зная зависимость ионных токов от потенциала и времени, а также условия, определяющие электротоническое распространение - диаметр волокна, сопротивление мембраны и емкость мембраны. Результаты такого расчета близки к экспериментальным данным, что подтверждает справедливость ионной теории возбуждения и электротона.

Здесь мы обсудим только качественные факторы, влияющие на скорость проведения.

Одним из таких факторов является амплитуда входящего Nа + -тока, поскольку, чем больше ток после возбуждающего разряда мембраны, тем больше ток, который потечет через соседние, еще не возбужденные участки, и деполяризация этих участков произойдет быстрее.

Электротоническое распространение мембранных токов также является очень важным для скорости проведения. Поскольку сопротивление и емкость элементарного участка мембраны практически одинакова во всех возбудимых клетках, электротоническое распространение определяется главным образом диаметром волокна.

Поверхность мембраны нервного волокна пропорциональна его диаметру, а поперечное сечение волокна возрастает пропорционально квадрату диаметра. Поэтому при увеличении диаметра волокна продольное сопротивление его внутренней среды, определяемое площадью поперечного сечения, снижается относительно сопротивления мембраны. В результате электротонические токи распространяются более широко (увеличивается постоянная длины) и возрастает скорость проведения. Хотя с увеличением диаметра волокна емкость мембраны тоже возрастает пропорционально площади мембраны (что ведет к уменьшению скорости проведения), преобладает эффект снижения продольного сопротивления. В конечном результате скорость проведения возрастает пропорционально корню квадратному от диаметра волокна.

5. Необходимость анатомической и физиологической целостности нервного волокна. Проведение возбуждения по нервному волокну возможно лишь в том случае, если сохранена его анатомическая и физиологическая целостность. Различные факторы, воздействующие на нервное волокно (наркотические вещества, охлаждение, перевязка и т. д.) приводят к нарушению физиологической целостности, т. е. к нарушению механизмов передачи возбуждения. Несмотря на сохранение его анатомической целостности проведение возбуждения в таких условиях нарушается. Такое нарушение известно как парабиоз.

Н. Е. Введенский обнаружил, что в ответ на действие различных повреждающих агентов приводящих к нарушению физиологической непрерывности нервных волокон, которые можно наблюдать при действии на нерв анестетиков, различных ядов, растворов солей, новокаина, при гипоксии или охлаждении возбудимые ткани отвечают своеобразной фазной, одинаковой во всех случаях реакцией, которую он назвал парабиозом. При этом на раздражаемом участке формируется функциональный блок, через который не проходит нервный импульс. Причиной блока являются специфические расстройства работы ионных каналов мембраны под влиянием альтерирующих агентов, в результате чего изменяются физиологические свойства ткани, в первую очередь резко снижается ее лабильность. Для создания блока протяженность парабиотического участка должна превысить постоянную длины мембраны, иначе ПД может распространиться через этот участок электротонически.

Классические опыты Н. Е. Введенского по изучению парабиоза были выполнены на нервно-мышечном препарате лягушки. Нерв на небольшом участке подвергали повреждению (альтерация) химическими веществами (кокаин, хлороформ, фенол, хлорид калия), сильным фарадическим током, механическим фактором, Затем наносили раздражение электрическим током на альтерированный участок нерва или же выше его. Таким образом, импульсы должны были или возникать в альтерированном отрезке нерва, или проходить через него на своем пути к мышце. Сокращение мышцы свидетельствовало о проведении возбуждения по нерву.

Развитие парабиоза протекает в три стадии: провизорную, парадоксальную и тормозную.

Первая стадия парабиоза провизорная, уравнительная, или стадия трансформации. Эта стадия предшествует остальным, отсюда ее название провизорная. Уравнительной ее называют потому, что в этот период развития парабиотического состояния мышца отвечает одинаковыми по амплитуде сокращениями на сильные и слабые раздражения, наносимые на участок нерва, расположенный выше альтерировянного. В первую же стадию парабиоза наблюдается трансформация (переделка, перевод) частых ритмов возбуждеиия в более редкие. Все описанные изменения ответной реакции мышцы и характера возникновения волн возбуждения в нерве под влиянием раздражения являются результатом ослабления функциональных свойств, особенно лабильности, в альтерированном участке нерва.

Вторая стадия парабиоза парадоксальная. Эта стадия возникает в результате продолжающихся и углубляющихся изменений функциональных свойств парабиотического отрезка нерва. Особенностью этой стадии является парадоксальное отношение альтерированного участка нерва к слабым (редким) или сильным (частым) волнам возбуждения, приходящим сюда с нормальных участков нерва. Редкие волны возбуждения проходят через парабиотический отрезок нерва и обусловливают сокращение мышцы. Частые же волны возбуждения либо совсем не проводятся, как бы затухают здесь, что наблюдается при полном развитии этой стадии, либо вызывают такой же сократительный эффект мышцы, как и редкие волны возбуждения, или менее выраженный.

Третья стадия парабиоза тормозная. Характерной особенностью этой стадии является то, что в парабиотическом участке нерва не только резко снижены возбудимость и лабильность, но он также теряет способность проводить к мышце и слабые (редкие) волны возбуждения.

Парабиоз явление обратимое. При устранении причины, вызвавшей парабиоз, физиологические свойства нервного волокна восстанавливаются. При этом наблюдается обратное развитие фаз парабиоза тормозная, парадоксальная, уравнительная.

Наличие электроотрицательности в альтерированном участке нерва позволило Н. Е. Введенскому рассматривать парабиоз как особый вид возбуждения, локализованный в месте его возникновения и не способный распространяться.

Нервные волокна -- это отростки нервных клеток. В состав нерва входят длинные отростки нервных клеток (аксоны), которые несут возбуждение в центральную нервную систему или от нее на периферию. Нервы, как правило, являются смешанными. В их состав входят двигательные и чувствительные волокна.

Нервные волокна, как и все возбудимые структуры, обладают следующими физиологическими свойствами: возбудимостью, проводимостью, рефрактерностью, лабильностью. При сравнении основных, физиологических свойств нервной и мышечной ткани установлено, что возбудимость и лабильность нервного волокна выше, а рефрактерный период короче, чем в мышечной ткани. Это связано с более высоким уровнем обменных процессов в нерве.

Проводимость - способность живой ткани проводить волны возбуждения - биоэлектрические импульсы.

Для обеспечения гомеостатического единства все структуры организма (клетки, ткани, органы и т.д.) должны иметь возможность пространственного взаимодействия. Распространение возбуждения от места его возникновения до исполнительных органов - один из основных способов такого взаимодействия. Возникший в месте нанесения раздражения потенциал действия является причиной раздражения соседних, невозбужденных участков нервного (или мышечного) волокна. Благодаря этому явлению волна потенциала действия создает ток действия, который распространяется по всей длине нервного волокна. В безмиелиновых нервных волокнах возбуждение проводится с некоторым затуханием - декрементом, а в миелиновых нервных волокнах - без затухания. Проведение возбуждения также сопровождается изменением обмена веществ и энергии.

Проведение возбуждения, или нервных импульсов, является специализированной функцией нервных волокон. Скорость проведения возбуждения в основном зависит от диаметра и гистологических особенностей строения нервных волокон. Чем больше диаметр нервного волокна, тем скорость распространения возбуждения в нем выше. Так, скорость распространения возбуждения по нервному волокну с диаметром 12--22 мкм составляет 70--120 м/с, а с диаметром 8--12 мкм -- 40--70 м/с.

В зависимости от гистологического строения нервные волокна делятся на миелиновые (мякотные) и безмиелиновые (безмякотные).

Миелиновое волокно (рис. 53) состоит из осевого цилиндра и покрывающей его миелиновой и шванновской оболочек. Миелиновая оболочка состоит из жироподобных веществ, имеет высокое удельное сопротивление и выполняет роль изолятора. Миелиновая оболочка через промежутки равной длины прерывается, оставляя открытыми участки осевого цилиндра шириной около 1 мкм. Эти участки называются перехватами узла (перехваты Ранвье). Длина межперехватных участков зависит от диаметра волокна и колеблется в пределах от 0,2 до 1--2 мм. Поверхность осевого цилиндра представлена плазматической мембраной, а его содержимое аксоплазмой.

Безмякотные нервные волокна не имеют миелиновой оболочки, они покрыты только леммоцитами (шванновскими клетками).

Между леммоцитами и осевым цилиндром имеется щель в 15 нм (150 А), заполненная межклеточной жидкостью. В связи с этим поверхностная мембрана осевого цилиндра сообщается с окружающей нервное волокно средой (межклеточной жидкостью). Основоположником учения о проведении возбуждения по нервным волокнам является немецкий физиолог Герман (1385). Он полагал, что возбуждение по нервным волокнам распространяется за счет малых круговых токов, которые возникают внутри волокна и в окружающей его жидкости (рис. 54).

нерв волокно рефлекс сетчатка



Между возбужденным и невозбужденным участками нервного волокна в аксоплазме и в окружающей жидкости ток распространяется от положительно заряженного участка к отрицательно заряженному. Это приводит к возникновению так называемых малых, или круговых, токоз, которые, выходя из нервного волокна, последовательно возбуждают его участки (1, 2 и т. д.). По мере удаления от очага возбуждения (участки 3 и 4) раздражающее действие круговых токов ослабевает и они становятся неспособными вызвать возбуждение.

Из-за гистологических особенностей строения мякотных нервных волокон (наличие миелиновой оболочки, обладающей высоким сопротивлением), электрические токи могут входить в волокна указанного типа и выходить из них только в области перехватов узла (рис. 55). Между возбужденным перехватом узла (А) и невозбужденным (Б) возникает разность потенциалов, которая обусловливается появлением круговых токов. Выход круговых токов в перехвате Б приводит к его деполяризации и возникновению потенциала действия. Далее за счет Круговых токов возбуждаются последующие перехваты. Таким образом, возбуждение в мякотных нервных волокнах передается скачкообразно (сальтаторно) от одного перехвата к другому. Сальтаторный способ передачи возбуждения более экономичен, чем распространение возбуждения по безмякотным нервным волокнам. Возбуждение по мякотным нервным волокнам распространяется без затухания. Скорость распространения возбуждения по мякотным нервным волокнам гораздо выше, чем по безмякотным. Так, скорость распространения возбуждения по двигательным нервным волокнам (мякотиые нервы) составляет 80--120 м/с, по волокнам, не покрытым миелиновой оболочкой -- от 0,5 до 2 м/с.


При нанесении раздражения на нервное волокно происходит двустороннее распространение возбуждения в центростремительном и центробежном направлениях (закон двустороннего проведения возбуждения по изолированному нервному волокну). Это доказывается следующим опытом. К нервному волокну прикладывают две пары электродов А и Б, связанных с электроизмерительными приборами (рис. 56), Раздражение наносят между электродами А и Б с помощью раздражающих электродов (стимул). В результате двустороннего проведения возбуждения вдоль клеточной мембраны приборы зарегистрируют прохождение нервных импульсов как под электродом А, так и под электродом Б.

Двустороннее проведение возбуждения по нервному волокну впервые описано русским ученым Р. И. Бабухиным (1887) и Клоне (1886). Оно не противоречит одностороннему распространению нервных импульсов в целостном организме, которое объясняется местом возникновения нервных импульсов (рецептор или нервный центр), а также наличием специальных образований -- синапсов.

Возбуждение проводится только по одному нервному волокну, не распространяясь на соседние волокна, что обусловливает осуществление строго координированной рефлекторной деятельности (закон изолированного проведения возбуждения по нервному волокну). Периферический нервный ствол обычно состоит из большого количества нервных волокон. Так, в состав седалищного нерва входят тысячи нервных волокон: мякотные и безмякотные, афферентные и эфферентные, соматические и вегетативные. В случае неизолированного проведения возбуждения наблюдалась бы хаотическая ответная реакция. Изолированное проведение возбуждения в мякотных нервных волокнах обеспечивается миелиновой оболочкой, в безмякотных -- высоким удельным сопротивлением окружающей нервное волокно жидкости. Доказать наличие изолированного проведения возбуждения можно в эксперименте на препарате задней лапки лягушки, раздражая отдельные корешки седалищного нерва. Более строгое доказательство может быть получено при отведении тока действия от отдельных нервных волокон, входящих в состав нервного ствола.

Утомление нервного волокна. Н.Е. Введенский в 1883 г. в опытах на нервно-мышечном препарате лягушки впервые установил, что нерв мало утомляем. Раздражая седалищный нерв индукционным током в течение 6--8 ч (о возбуждении нерва он судил по сокращению мышцы), он обнаружил, что нерв длительно (на протяжении многих часов) сохранял способность возбуждаться и проводить возбуждение. Данные экспериментов Н.Е. Введенского подтверждены современными исследованиями в опытах с регистрацией биотоков нерва. Малая утомляемость нервных волокон объясняется тем, что энергетические затраты в них при возбуждении незначительны, а восстановительные процессы протекают быстро.

В целостном организме малой утомляемости нервных волокон способствует их работа с постоянной недогрузкой. Так, двигательное нервное волокно обладает высокой лабильностью (может воспроизводить до 2500 импульсов в 1 с, из нервных же центров на периферию обычно проводится прерывисто не более 50--100 волн возбуждения в 1 с). Таким образом, практическая неутомляемость нервных волокон связана с низкими энергетическими затратами при возбуждении, с высокой лабильностью нервных волокон и постоянной работой их с недогрузкой [1].

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.