Роль спинного мозга и подкорковых отделов цнс в регуляции движений

Этапы формирования двигательного акта

Роль различных отделов ЦНС в регуляции движений

В осуществлении движений принимают участие, как правило, три группы мышц: основные (непосредственно обеспечивающие перемещение тела или его частей в пространстве), позные (поддерживающие позу, необходимую для данного движения, преодолевающие действие гравитационных сил) и вспомогательные (делающие движение более точным и слаженным). Так, в акте ходьбы принимают участие мышцы нижних конечностей (основные), мышцы спины (позные) и мышцы верхних конечностей (вспомогательные).

ü Формирование замысла движения в соответствии с имеющейся мотивацией. Этот процесс происходит в ассоциативной коре больших полушарий, откуда импульсы поступают в моторную зону коры.

ü Формирование программы движения. Программа двигательного акта может быть врожденной и приобретенной. Создание новой программы происходит при выработке двигательного навыка. Сформировавшиеся программы, как и врожденные, хранятся на уровне базальных ядер мозга и мозжечка. Базальные ядра также осуществляют переход от программы к ее осуществлению.

ü Осуществление движения за счет сокращения скелетных мышц благодаря импульсам, поступающим из спинного мозга.

ü Контроль происходящих движений за счет механизмов обратной афферентации.

В регуляции движений, как и в регуляции тонуса мышц, принимают участие все отделы центральной нервной системы. При этом спинной мозг имеет собственныелокомоторные генераторы и является общим конечным путем, через нейроны которого реализуют свои влияния все вышележащие отделы мозга.

Спинной мозг осуществляет ряд элементарных двигательных рефлексов:рефлексы на растяжение (миотатические и сухожильные рефлексы, например, коленный рефлекс), кожные сгибательные рефлексы (например, защитный рефлекс отдергивания конечности при уколах, ожогах), разгибательные рефлексы (рефлекс отталкивания от опоры, лежащий в основе стояния, ходьбы, бега), перекрестные рефлексы и др.

Элементарные двигательные рефлексы включаются в более сложные двигательные акты — регуляцию деятельности мышц-антагонистов, ритмических и шагательных рефлексов, лежащих в основе локомоций и других движений.

Для сгибательного движения в суставе необходимо не только сокращение мышц-сгибателей, по и одновременное расслабление мышц-разгибателей. При этом в мотонейронах мышц-сгибателей возникает процесс возбуждения, а в мотонейронах мышц-разгибателей — торможение. При разгибании сустава, наоборот, тормозятся центры сгибателей и возбуждаются центры разгибателей. Такие координационные взаимоотношения между спинальными моторными центрам и названы реципрокной (взаимосочетанной) иннервацией мышц-антагонистов. Однако реципрокные отношения между центрами мышц-антагонистов в необходимых ситуациях (например, при фиксации суставов, при точностных движениях) могут сменяться одновременным их возбуждением.

Составной частью различных сложных двигательных действий, как произвольных, так и непроизвольных, часто являются ритмические рефлексы. Это одна из форм древних и относительно простых рефлексов. Они особенно выражены при выполнении циклической работы, включаются в шагательные рефлексы. Основные механизмы шагательных движений заложены в спинном мозге. Специальные нейроны (спинальпые локомоторные генераторы) и многочисленные взаимосвязи внутри спинного мозга обеспечивают последовательную активность различных мышц конечностей, согласование ритма и фаз движений, приспособление движений к нагрузке на мышцы.

Нейроны промежуточной продольной зоны коры мозжечка согласуют позные реакции с движениями. Они выполняют также точные расчеты по ходу движений, необходимые для коррекции ошибок и адаптации моторных программ к текущей ситуации. Программирование каждого последующего шага осуществляется ими на основе анализа предыдущего. Кроме того производится согласование движений рук и ног, и особенно — регуляция активности мышц-разгибателей, обеспечивающих опорную фазу движения. Значение мозжечка в четком поддержании темпа ритмических движений объясняют геометрически правильным чередованием рядов эфферентных клеток Пуркинье и подходящих к ним афферентных волокон.

К управлению ритмическими движениями непосредственное отношение имеют активирующие и угнетающие отделы ретикулярной формации, влияющие на силу и темп сокращения мышц, а также подкорковые ядра, которые организуют автоматическое их протекание и содружественные движения конечностей. Включение древних форм ритмических движений (циклоидных) в акт письма позволяет человеку перейти от отдельного начертания букв к обычной письменной скорописи. То же самое происходит при освоении акта ходьбы — с переходом от отдельных шагов к ритмической походке. Плавность ритмических движений, четкое чередование реципрокных сокращений мышц обеспечивают премоторные отделы коры.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Спинной мозг осуществляет ряд элементарных двига­тельных рефлексов: рефлексы на растяжение (миотатические и сухожильные рефлексы, например, коленный рефлекс), кож­ные сгиба тельные рефлексы (например, защитный рефлекс отдерги­вания конечности при уколах, ожогах), разгиба тельные рефлексы (рефлекс отталкивания от опоры, лежащий в основе стояния, ходь­бы, бега), перекрестные рефлексы и др.

Элементарные двигательные рефлексы вклю­чаются в более сложные двигательные акты — регуляцию деятельно­сти мышц-антагонистов, ритмических и шагательных рефлексов, лежащих в основе локомоций и других движений.

Для сгибательного движения в суставе необходимо не только со­кращение мышц-сгибателей, но и одновременное расслабление мышц-разгибателей. При этом в мотонейронах мышц-сгибателей возникает процесс возбуждения, а в мотонейронах мышц-разгибате­лей — торможение. При разгибании сустава, наоборот, тормозятся центры сгибателей и возбуждаются центры разгибателей. Такие координационные

взаимоотношения между спинальными моторными центрами названы реципрокной (взаимосочетанной) иннервацией мышц-антагонистов. Однако реципрокные отношения между центрами мышц-антагонистов в необходимых си­туациях (например, при фиксации суставов, при точностных движениях) могут сменяться одновременным их возбуждением.

Нейроны промежуточной продольной зоны коры мозжечка согла­суют позные реакции с движениями. Они выполняют также точ­ные расчеты по ходу движений, необходимые для коррекции оши­бок и адаптации моторных программ к текущей ситуации. Про­граммирование каждого последующего шага осуществляется ими на основе анализа предыдущего. Кроме того производится согласо­вание движений рук и ног, и особенно — регуляция активности мышц-разгибателей, обеспечивающих опорную фазу движения. Значение мозжечка в четком поддержании темпа ритмических движений объясняют геометрически правильным чередованием ря­дов эфферентных клеток Пуркинье и походящих к ним афферент­ных волокон.

К управлению ритмическими движениями непосредственное от­ношение имеют активирующие и угнетающие отделы ретикулярной формации, влияющие на силу и темп сокращения мышц, а также под­корковые ядра, которые организуют автоматическое их протекание и содружественные движения конечностей. Включение древних форм ритмических движений (циклоидных) в акт письма позволяет челове­ку перейти от отдельного начертания букв к обычной письмен ной скорописи. То же самое происходит при освоении акта ходьбы — с переходом от отдельных шагов к ритмической походке. Плавность ритмических движений, четкое чередование реципрокных сокраще­ний мышц обеспечивают премоторные отделы коры.

РОЛЬ РАЗЛИЧНЫХ ОТДЕЛОВ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

Функцией комплекса различных корковых областей является опре­деление целесообразности локомоций, их смысла, ориентации в про­странстве, перестройка программ движений в различных ситуациях, включение ритмических движений как составного элемента в слож­ные акты поведения. Об участии различных корковых областей в регуляции циклических движений можно судить по появлению в их электрической активности медленных потенциалов в темпе движе­ния — «меченых ритмов « ЭЭГ, а при редких движениях — по изме­нениям огибающей амплитуду ЭЭГ кривой.

В высшей регуляции произвольных движений важнейшая роль при­надлежит передне-лобным областям (передним третичным полям). Здесь помимо обычных вертикальных колонок нейронов су­ществует принципиально новый тип функциональной единицы — в форме замкнутого нейронного кольца. Циркуляция импульсов в этой замкну­той системе обеспечивает кратковременную память. Она сохраняет в коре возбуждение между временем прихода сенсорных сигналов и формированием ответной эфферентной команды. Такой механизм служит основой сенсомоторной интеграции при программировании движений, при осуществлении зрительно-двигательных реакций.

Функцией передне-лобной (третичной) области коры является со­знательная оценка текущей ситуации и предвидение возможного бу­дущего, выработка цели и задачи поведения, программирование про­извольных движений, их контроль и коррекция. Соответствие выполняемых

действий поставленным задачам придает движениям чело­века определенную целесообразность и осмысленность. При пораже­нии лобных долей движения человека становятся бессмысленными.

РЕЧЕВАЯ РЕГУЛЯЦИЯ ДВИЖЕНИЙ

Спецификой регуляции движений у человека является то, что они подчинены речевым воздействиям, т. е. могут программироваться лобными долями в ответ на поступающие из­вне словесные сигналы, а также благодаря участию внешней или внутренней речи (мышления) самого человека. В этой функции при­нимают участие расположенные в левом полушарии человека сен­сорный центр речи Вернике и моторный центр речи — центр Брока. Считают, что афферентная импульсация от речевой мускулатуры яв­ляется важным ориентиром, дополняющим проприоцептивные сиг­налы от работающих мышц, а формирующиеся на речевой основе изби­рательные связи в коре облегчают составление моторных программ.

Эта управляющая система еще не развита у ребенка 2-3 лет. Она появляется лишь к 3-4 годам. Внешняя речь, сменяясь постепенно шепотом и переходя затем во внутреннюю речь, становится важным регулятором моторных действий взрослого человека.

НИСХОДЯЩИЕ МОТОРНЫЕ СИСТЕМЫ

Высшие отделы головного мозга осуществляют свои влияния на деятельность нижележащих отделов, в том числе спинного мозга, че­рез нисходящие пути, которые группируют обычно в две основные нисходящие системы — пирамидную и экстрапирамидную.

В настоящее время предлагают подразделять основные нисходя­щие пути, исходя из расположения нервных окончаний в спинном мозге и функциональных различий, на следующие 2 системы: более молодую латеральную, волокна которой оканчиваются в боковых (латеральных) частях спинного мозга и связанную преиму­щественно с мускулатурой дистальных звеньев конечностей (сюда от­носят корково-спинномозговую и красноядерно-спинномозговую системы), и древнюю медиальную, волокна которой оканчива­ются во внутренних (медиальных) частях белого вещества, связан­ную главным образом с мускулатурой туловища и проксимальных звеньев конечностей, состоящую из вестибуло-спинномозговой и ретикуло-спинномозговой систем.

Пирамидная система выполняет 3 основные функции:

• посылает мотонейронам спинного мозга импульсы — команды к движениям (пусковые влияния);

• изменяет проведение нервных импульсов во вставочных спиральных нейронах, облегчая протекание нужных в данный мо­мент спинномозговых рефлексов;

• осуществляет контроль за потоками афферентных сигналов в нервные центры, выключая постороннюю информацию и обеспечивая обратные связи от работающих мышц.

Волокна пирамидной системы вызывают преимущественно воз­буждение мотонейронов мышц-сгибателей, особенно влияя на от­дельные мышцы и даже части мышц верхних конечностей, в частности на мышцы пальцев рук.

Таким образом, среди нисходящих моторных систем, осуществ­ляющих функцию контроля активности мотонейронов спинного


Рис. 15. Схема основных нисходящих путей регуляции двигательной

деятельности

I — быстрая подсистема и 2 — медленная подсистема корково-спиномозго-вого пути (пирамидного тракта); 3 — корково-красноядерно-спшомозго-

вой путь. Латеральная система — 1, 2, 3. Медиальная система — 4, 5. М — мотонейрон спинного мозга, получающий фазные (Фазы.)

и тонические (Тонич.) возбуждающие (+) и тормозящие (—) влияния.

СЕНСОРНЫЕ СИСТЕМЫ

Сложные акты поведения человека во внешней среде требуют постоянного анализа окружающего мира, а также осведомленности нервных центров о состоянии внутренних органов. Специальные нервные аппараты, служащие для анализа внешних и внутренних раздражений, И. П. Павлов назвал анализаторами. Современ­ное представление об анализаторах как сложных многоуровневых системах, передающих информацию от рецепторов к коре и вклю­чающих регулирующие влияния коры на рецепторы и нижележа­щие центры, привело к появлению более общего понятия сенсор­ные системы.

ОБЩИЙ ПЛАН ОРГАНИЗАЦИИ И ФУНКЦИИ СЕНСОРНЫХ СИСТЕМ

В составе сенсорной системы различают 3 отдела: 1)периферический, состоящий из рецепторов, воспринимающих определенные сигналы, и специальных образований, способствующих работе рецепторов (эта часть представляет собой органы чувств — глаз, ухо и др.); 2) проводниковый, включающий проводящие пути и подкорковые нервные центры; 3) корковый —- области коры больших полушарий, которым адресуется данная информация.

Нервный путь, связывающий рецептор с корковыми клетками, обычно состоит из четырех нейронов: первый, чувствительный ней­рон расположен вне ЦНС — в спинномозговых узлах или узлах черепномозговых нервов (спиральном узле улитки, вестибулярном узле и др.); второй нейрон находится в спинном, продолговатом или среднем мозге; третий нейрон — в релейных (переключательных), ядрах таламуса (промежуточный мозг); четвертый нейрон представ­ляет собой корковую клетку проекционной зоны коры больших по­лушарий.

Основные функции сенсорных систем:

• сбор и обработка информации о внешней и внутренней среде организма;

• осуществление обратных связей, информирующих нервные центры о результатах деятельности;

• поддержание нормального уровня (тонуса) функционального со­стояния мозга.

Разложение сложностей внешнего и внутреннего мира на отдель­ные элементы и их анализ И. П. Павлов считал основной функцией сенсорных систем (анализаторов). Помимо первичного сбора инфор­мации важной функцией сенсорных систем является также осуще­ствление обратных связей о результатах деятельности организма. Для уточнения и совершенствования различных действий человека, в первую очередь двигательных, ЦНС должна получать информа­цию о силе и длительности выполняемых сокращений мышцами, о скорости и точности перемещений тела или рабочих снарядов, об из­менениях темпа движений, о степени достижения поставленной цели и т. п.Без этой информации невозможно формирование и совершен­ствование двигательных навыков, в том числе спортивных, затрудне­но совершенствование техники выполняемых упражнений.

Наконец, сенсорные системы вносят свой вклад в регуляцию функ­ционального состояния организма. Импульсация, идущая от различ­ных рецепторов в кору больших полушарий как по специфическим, так и по неспецифическим путям, является существенным условием поддержания нормального уровня ее функционального состояния. Искусственное выключение органов чувств в специальных экспери­ментах на животных приводило к резкому снижению тонуса коры и засыпанию. Такое животное просыпалось лишь во время кормления и при позывах к мочеиспусканию или опорожнению кишечника.

Последнее изменение этой страницы: 2016-04-08; Нарушение авторского права страницы

Время – 2 часа

Мотивационно-воспитательная характеристика темы: Движения человека- это сложная психофизиологическая функция, в регуляции которой принимают участие высшие центры ЦНС, разрабатывающие программы движений и контролирующие их реализацию. Знание механизмов регуляции двигательной активности необходимы при изучении клинических дисциплин (хирургии, травматологии, нервных болезней, ЛФК) для выявления нормы и патологии опорно-двигательного аппарата, механизмов нарушения двигательных функций, в спортивной медицине и практической деятельности врача – для определения функциональных возможностей двигательных систем при различных физических нагрузках.

Учебная цель:Уяснить значение подкорковых ядер, коры больших полушарий и мозжечка в регуляции сложных скоординированных целенаправленных двигательных актов

Содержание занятия

Этапы занятия Цель данного этапа Время
1. Вводный контроль Проверка исходного уровня знаний с помощью тестового контроля 10 мин.
2. Опрос-беседа Разбор темы по предложенным вопросам с коррекцией исходного уровня 25 мин.
3. Самостоятельная работа студентов с консультациями преподавателя Закрепление теоретических знаний при выполнении практических заданий, анализ полученных результатов, формулировка выводов, оформление протоколов практических работ 45 мин.
4 Завершающий этап Оценка знаний и умений при решении ситуационных задач и проверке протоколов 10 мин.

Вопросы для самоподготовки

  1. Стриапаллидарная система. её компоненты.
  2. Роль базальных ядер в регуляции мышечного тонуса и фазных движений
  3. Двигательные центры коры больших полушарий.
  4. Пирамидная система, её компоненты и функции
  5. Роль мозжечка в регуляции тонуса мышц и целенаправленных движений.
  6. Афферентные и эфферентные связи мозжечка

Домашнее задание

  1. Зарисовать схему связей мозжечка
  2. Составить таблицу сравнительной характеристики регуляции двигательных функций на разных уровнях ЦНС

Самостоятельная работа на занятии

Задание Объект Программа действия Ориентировочные основы действия
Исследование роли мозжечка в регуляции двигательной активности 1. Пробы на атаксию Человек: А) Положение тела в позе Ромберга: Испытуемому предлагают постоять со сдвинутыми ногами и вытянутыми вперед руками сначала с открытыми, а затем с закрытыми глазами. Наблюдают за удержанием равновесия. Б) Походка: Испытуемому предлагают пройти по прямой линии вперёд и назад с открытыми и закрытыми глазами. Наблюдают за походкой В норме человек сохраняет равновесие в позе Ромберга (проба на атаксию отрицательная) В норме у здорового человека походка обычная, без шатаний в стороны и без широкого расставления ног (проба на атаксию отрицательная)
2. Проба на дисметрию Человек Испытуемому предлагают взять со стола и затем поставить на прежнее место какой-либо предмет (например, книгу). Отмечают место, где лежал предмет и куда его вернул испытуемый (при необходимости измеряют линейкой разницу в положении предмета) В норме человек ставит предмет на то же место с ошибкой не более +_ 2 см (проба на дисметрию отрицательная).
3. Речь (проба на дизартрию) Человек Испытуемому предлагают повторить несколько трудных для произношения слов (землетрясение, самолетостроение, администрирование и др.) Отмечают, нет ли замедления, растянутости или толчкообразия в речи Изменения речи (скандированная речь) является одним из проявлений поражения мозжечка.
4. Пальценосовая проба (на дисметрию и тремор) Человек Испытуемому предлагают отвести руку в сторону на уровне плеча и затем медленно перемещать её обратно, чтобы указательным пальцем (сначала левой, а затем правой руки) дотронуться до кончика носа с открытыми и закрытыми глазами. В норме человек осуществляет плавные движения руки, дотрагивается до кончика носа (с точностью +-1 см) без дрожи пальцев рук. При заболеваниях мозжечка наблюдается промахивание и дрожание пальца при выполнении пальценосовой пробы (т.е. проба на дисметрию и тремор становится положительной). На основании полученных данных сделать вывод о состоянии мозжечкового контроля двигательной активности у испытуемого и в целом о роли мозжечка в управлении движениями (однако следует помнить, что данные пробы отражают не только состояние мозжечкового и стволового контроля двигательной активности, но и состояние контроля вышележащих структур мозга, прежде всего КБП)

Вопросы для самоконтроля

1. Какие отделы ЦНС участвуют в разработке программы движений?

2. Какое влияние оказывает чёрная субстанция на красное ядро?

3 .Какие двигательные нарушения могут наблюдаться при поражении базальных ядер?

4. Какие двигательные нарушения наблюдаются при повреждении мозжечка?

5. Где локализуются главные двигательные зоны КБП?

6. Какой медиатор синтезируют клетки чёрного вещества?

7. Какие нисходящие пути формируют пирамидную и экстрапирамидную системы?

8. Сохранятся ли двигательные функции при повреждении мозжечка?

9. Какая информация поступает в мозжечок по афферентным путям?

10.Какие клетки мозжечка являются эфферентными? Какой медиатор они синтезируют?

11.К каким двигательным центрам направлены эфферентные пути мозжечка?

12. Какое влияние оказывает мозжечок на другие двигательные центры?

Тестовый контроль:

1. Какие рефлексы и отделы ЦНС обеспечивают поддержание нормального положения тела при движении? 1) рефлекс растяжения; 2) рефлексы позы; 3) выпрямительные рефлексы; 4) статокинетические рефлексы; 5) спинной мозг; 6) средний мозг.

2. Какие отделы ЦНС принимают участие в коррекции движений в процессе их выполнения и координации движений? 1) спинной мозг; 2) продолговатый мозг; 3) средний мозг; 4) промежуточный мозг; 5) мозжечок; 6) базальные ядра.

3. Какие эфферентные пути обеспечивают произвольную регуляцию движений? 1) спиномозжечковые пути; 2) пирамидные пути; 3) экстрапирамидные пути.

4. Какое влияние оказывает мозжечок на двигательные центры ствола мозга? 1) возбуждающее; 2) тормозное; 3) корригирующее.

5. Какие отделы ЦНС регулируют движение в мелких суставах и движения мимической мускулатуры? 1) спинной мозг; 2) ствол мозга; 3) базальные ядра; 4) мозжечок; 5) черная субстанция.

6. С каких рецепторов возникают статокинетические рефлексы? 1) экстерорецепторы; 2) рецепторы растяжения мышц; 3) рецепторы вестибулярного аппарата; 4) сухожильные рецепторы Гольджи.

7. На каком уровне ЦНС замыкаются статокинетические рефлексы? 1) спинной мозг; 2) продолговатый мозг; 3) средний мозг.

8. При каких условиях возникает децеребрационная ригидность? 1) перерезка мозга между продолговатым и спинным мозгом; 2) нарушение связи между базальными ядрами и красным ядром; 3) нарушение связи между красным ядром и вестибулярным ядром Дейтерса.

9. Какое влияние оказывает красное ядро на ядро Дейтерса? 1) возбуждающее; 2) тормозное; 3) корригирующее.

10. Какие отделы ЦНС принимают участие в разработке программы движений? 1) спинной мозг; 2) продолговатый мозг; 3) средний мозг; 4) базальные ядра (стриапаллидарная система); 5) мозжечок; 6) таламус; 7) КБП.

Ответы:1- 4,6; 2 – 5; 3-2; 4-3; 5-3; 6- 3; 7-3; 8-3; 9-2; 10-4,5,7.

Ситуационные задачи:

Ответы:

1.Этот факт следует объяснить пластичностью центров головного мозга. Ведущее место в организации пластичности после удаления мозжечка принадлежит коре больших полушарий. В: мозжечке нет каких-либо специфических центров, однако благодаря множеству двусторонних связей с другими нервными центрами, он оказывает существенное влияние на координацию рефлекторной деятельности, прежде всего - движений.

2. Подобная картина наблюдается при поражении полосатого тела, которое в норме тормозит активность нижерасположенных ядер бледного шара. При поражении полосатого тела функция бледного шара становится преобладающей, что проявляется в повышенной двигательной активности мышц лица и конечностей (гиперкинезы) и понижении мышечного тонуса.

3.Утомление мышц возникает, когда мышцы испытывают недостаток энергии или она тратится неэффективно. Нарушение функций мозжечка сопровождается расстройством мышечного тонуса и координации движений, поэтому для осуществления даже простого движения приходится выполнять целую серию вспомогательных сокращений мышц, прежде чем будет достигнут нужный результат. Эти излишние движения и приводят к астении.

4.Недостаток кислорода в помещении приводит к гипоксии. Наиболее чувствительны к гипоксии нервные клетки, в первую очередь грушевидные клетки мозжечка. Мозжечок обеспечивает координацию быстрых и медленных целенаправленных движений, поддержание мышечного тонуса, вегетативные реакции за счет многочисленных связей с другими отделами мозга.

5. В данном случае в результате клещевого энцефалита в большей степени пострадала область полосатого тела, при поражении которого развиваются гипотония мыщц и гиперкинезы.

Литература:

1. Физиология человека. Учебник. /Под ред. В.М.Покровского, Г.Ф.Коротько.- М.: Медицина, 2003, с.113-155

2. Физиология человека. / Под ред. Н.А. Агаджаняна, В.И.Циркина.- СПб: СОТИС, 1998, 2000, 2002, с 50-61.

3. Физиология человека..Учебник. /Под ред. В.М.Смирнова. М.:Медицина, 2002, с.114-147

5. Руководство к практическим занятиям по физиологии / Под ред. Г.И.Косицкого и В.А Полянцева.- М.: Медицина, 1988.,с.106-120

6 Физиология человека / под. ред. В.М.Покровского и Г.Ф.Коротько/ М., 1998, т 1, с.134-206

Б) Дополнительная:

1 Основы физиологии человека. /Под ред. Б.И.Ткаченко.- СПб,1994, т.2

.2 Физиология человека. /Под ред. Г.И.Косицкого.- М.: Медицина, 1985, .

3 Физиология человека. /Под ред. Р.Шмидта, Г.Тевса,- М.: Мир, 1996, т.1, 4.Руководство к практическим занятиям по физиологии / Под ред. К.В.Судакова- М, 2002, с.83-104; 109-118.

5.Основы физиологии человека / Под ред. Н.А.Агаджаняна- М: изд-во РУДН, 2001, с.57-86

6.Орлов Р.С., Ноздрачев А.Д. Нормальная физиология. Учебник - ГЭОТАР-Медиа,2005,с.194-218

7.Физиология. Основы и функциональные системы: курс лекций / Под ред. К.В.Судакова – М., Медицина, 2000

8.Избранные вопросы клинической психологии / Под ред. Ю.В.Каминского. Т.1.: Нормальная анатомия, физиология и патология нервной системы.- Владивосток, Медицина ДВ,2006, с258-260.

Краткое теоретическое содержание темы:

6.9 Роль базальных ядер и двигательной коры в регуляции двигательных функций.

Особое значение для целенаправленных движений имеют двигательная кора и подкорковые ядра – полосатое тело, бледный шар, субталамическое ядро, черное вещество. Тесную связь между двигательной корой и базальными ядрами обеспечивает таламус. Большая часть афферентных сигналов, приходящих к базальным ядрам, поступает в полосатое тело ( более новое образование по сравнению с другими подкорковыми ядрами). Эти сигналы несут информацию из 3-х основных источников: а)от всех областей КБП; б) от ядер таламуса; в)от черной субстанции. Эфферентные волокна от полосатого тела идут к бледному шару, черной субстанции (оказывая на них тормозное влияние) и к коре больших полушарий.. Бледный шар тесно связан с черной субстанцией, их функции идентичны и обусловлены влиянием медиатора дофамина. При поражении бледного шара снимается тормозное влияние на красное ядро, что приводит к гипертонусу сгибателей передних конечностей, снижению двигательной активности ( трудно начать и завершить движение), шаркающей походке, тремору в покое ( исчезает при движении), нарушению функции мимических мышц ( маскообразное лицо). Данный симптомокомплекс известен как болезнь Паркинсона, связанный с нарушением функции дофаминергических нейронов черной субстанции. Поражение полосатого тела снимает тормозное влияние на бледный шар, что приводит к противоположным явлениям- понижению тонуса и к непроизвольным движениям ( гиперкинезам), в частности, мимической мускулатуры. Базальные ядра играют главным образом роль промежуточного звена в цепи, связывающей двигательную область коры со всеми другими её областями. Информация о замысле движения , поступающая в базальные ядра от ассоциативных зон коры, преобразуется в них в программу движения, которая поступает в двигательные зоны коры через таламус.

Двигательная кора ( прецентральная извилина) – это последний супраспинальный центр, в котором образованный в коре замысел движения преобразуется в его программу, и это первое звено в цепи структур, обеспечивающих выполнение движения. Полагают, что главная функция двигательной области коры состоит в выборе мышц, отвечающих за реализацию движения.

6.10 Двигательные функции мозжечка.

Первостепенную роль в нервной регуляции позы и движений играет мозжечок. Многие движения могут оптимально осуществляться только при участии мозжечка; в то же время он не является жизненно необходимым органом: у людей с отсутствием мозжечка нет очень серьёзных двигательных нарушений, препятствующих выполнению повседневной работы. По функциональному значению мозжечок подразделяют на 3 продольные зоны, соответствующие проекциям эфферентных волокон от коры мозжечка ( состоящих из аксонов грушевидных клеток) на собственные ядра мозжечка: 1 –кора червя мозжечка посылает сигналы к ядру шатра; 2 – средняя часть коры ( латеральнее червя) – к промежуточному ядру ( включающее шаровидное и пробковидное ядра); 3- кора полушарий мозжечка – к зубчатому ядру ( наиболее поздние образования мозжечка, лучше развиты у приматов и человека). Все нейроны мозжечка ( за исключением клеток-зёрен), тела которых расположены в коре мозжечка, выполняют тормозные функции. Любое возбуждение, поступившее в мозжечок , пройдя пару синапсов, превращается в торможение, и уже через несколько миллисекунд это возбуждение угасает, и мозжечок вновь готов принять новый импульс. Такое автоматическое стирание информации играет важную роль в связи с участием мозжечка в регуляции быстрых движений. Основное назначение мозжечка состоит в дополнении и коррекции деятельности остальных двигательных центров. Он отвечает за : 1) регуляцию позы и мышечного тонуса; 2) исправление медленных целенаправленных движений в ходе их выполнения и координацию этих движений с рефлексами поддержания позы; 3) правильное выполнение быстрых целенаправленных движений, команда к которым поступает от головного мозга. Каждая из этих задач связана с деятельностью одной из 3-х продольных зон мозжечка:

1) червь мозжечка получает афферентную импульсацию преимущественно от соматосенсорной ( проприоцептивной) системы и через ядро шатра оказывает влияние на ядро Дейтерса и ретикулярную формацию продолговатого мозга и моста. При удалении червя происходит растормаживание ядра Дейтерса и повышение тонуса разгибателей ( подобно децеребрационной ригидности);

2) К промежуточной части мозжечка афферентные сигналы поступают как от соматосенсорной системы, так и от двигательной коры ( через коллатерали кортикоспинального тракта поступают копии команд на исполнение движений). Эфферентные сигналы через промежуточное ядро направляются к двигательным центрам ствола мозга (красное ядро) и частично через таламус – к двигательной коре, обеспечивая координацию позных и целенаправленных движений.

3) К полушариям мозжечка афферентная импульсация поступает от всех областей коры больших полушарий, передавая информацию о замысле движения. Эта информация в полушариях мозжечка и его зубчатом ядре преобразуется в программу движения, которая, в свою очередь, передается к двигательным областям коры ( через таламус), а также к ядрам ствола мозга.

Благодаря этим связям осуществляется координация и контроль за выполнением быстрых целенаправленных движений.

Таким образом, мозжечок , получая информацию о том , как должны выполняться движения ( от двигательной коры) и о том, как они выполняются ( от проприорецепторов), может контролировать их правильное выполнение и вовремя их исправлять через эфферентные влияния на супраспинальные двигательные центры. Эфферентные влияния мозжечка связаны с функцией главных клеток мозжечка – грушевидных ( клетки Пуркинье), которые очень чувствительны к действию различных ядов ( в частности, к алкоголю) и недостатку кислорода. При нарушении функции мозжечка наблюдаются следующие симптомы:

-асинергия – нарушения согласованной деятельности различных мышц;

- атаксия - неверная (пьяная)) походка, нарушение координации движений;

- адиадохокинез- невозможность выполнения быстрых последовательных движений мышц – антагонистов( сгибание и разгибание пальцев рук);

- тремор (дрожание рук) при движении, движения не достигают цели, так как нарушена коррекция движений в ходе их выполнения;

- гипотония – снижение мышечного тонуса, слабость и быстрая утомляемость мышц;

- нистагм – качательные движения глаз и головы;

- головокружения

- дефекты речи ( скандированная речь)

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.