Строение нерва оболочки нервные волокна


От нервных клеток, находящихся в головном и спинном мозгу, отходят отростки, которые и являются нервными волокнами, идущими к периферии. Нервные волокна собираются в пучки разной толщины. Такое скопление нервных волокон называется нервом.

Нервы осуществляют связь между центральной нервной системой и отдельными органами нашего тела. По нервам возбуждение идет либо из центральной нервной системы к рабочему органу, либо от разных участков нашего тела в центральную нервную систему.

Нервы делятся на две группы в зависимости от того, в каком направлении они проводят возбуждение.

Рис. Схема распространения возбуждения при раздражении нерва

Одна группа нервов проводит возбуждение из центральной нервной системы к рабочим органам. Они называются эфферентными (центробежными, или двигательными) нервами. Другая группа проводит возбуждение с разных участков нашего тела и от разных органов в центральную нервную систему. В отличие от предыдущей группы нервов они получили название афферентных (центростремительных, или чувствительных) нервов. Оба рода нервных волокон часто идут в одном стволе, поэтому большинство нервов являются смешанными.

СТРОЕНИЕ НЕРВА

Нервная система состоит из нервных клеток, которые называются нейронами. Нейрон состоит из тела нервной клетки и ее отростков. Различают два вида отростков: а) отростки короткие, ветвистые — дендриты, и б) очень длинный отросток, который тянется от центральной нервной системы до рабочего органа,— а к с о н, который участвует в формировании нервов.

Наконец, имеются еще и особые образования на окончаниях нервов- так называемые концевые аппараты, при помощи которых осуществляется связь нервного волокна с мышцей, железой или другими органами, или рецепторы — окончания центростремительных нервов, воспринимающие раздражение.

Короткие отростки — дендриты — осуществляют связь между отдельными нервными клетками и почти не выходят за пределы центральной нервной системы.

Аксон же тянется из головного или спинного мозга до рабочего органа. Нервы, которые мы встречаем в организме, состоят из аксонов, несущих возбуждение в центральную нервную систему или, наоборот, из центральной нервной системы.

Нормальное протекание обмена веществ во всех отростках нервной клетки связано с ее целостностью. В этом можно убедиться, если перерезать нервное волокно и тем самым нарушить его связь с телом клетки. Деятельность такого волокна нарушается, и та часть, которая отрезана от клетки, отмирает. Совершенно иные явления наблюдаются в той части волокна, которая осталась связанной с телом клетки. Эта часть продолжает жить, нормально функционирует, обмен веществ не нарушен. Более того, такой отрезок растет и через некоторое, время может дойти до мышцы, чем и восстановится целость, нерва. Этим объясняется наблюдающееся иногда восстановле ние движений парализованной конечности через определенный промежуток времени, если паралич был вызван поражением нерва.

Такой особенностью пользуются и хирурги, которые часто производят сшивание нервов с целью восстановления деятельности парализованного органа.

Нервная клетка возбуждается под влиянием тех волн возбуждения, которые поступают с периферии по центростремительным нервам. Однако многие нервные клетки могут возбуждаться даже без поступления импульсов с рецепторов. В этих клетках возбуждение может возникнуть под влиянием гуморальных воздействий. Примером может служить деятельность теплового центра, на функции которого влияет температура крови, и др.

СВОЙСТВА НЕРВНОГО ВОЛОКНА

Нервное волокно обладает возбудимостью и проводимостью. В этом можно убедиться, если нанести электрическое раздражение какому-либо участку нерва нервно-мышечного препарата. Почти тотчас после нанесения раздражения мышца сокращается. Сокращение мышцы стало возможным потому, что при раздражении в нерве возникло возбуждение, которое, пройдя по нерву, поступило к мышце и обусловило ее деятельность.

Для проведения возбуждения необходима анатомическая целость нервного волокна. Перерезка нерва делает невозможной передачу возбуждения. Возбуждение не проводится в случае перевязки, сдавливания или нарушения целости нерва любым иным способом. Однако не только анатомические, но и физиологические нарушения вызывают прекращение про ведения. Нерв может быть целым, но он не будет проводить возбуждения, так как его функ ции нарушены.

Нарушение проведения мож но наблюдать при охлаждении или нагревании нерва, прекращении его кровоснабжения, от равлении и т. д.

Проведение возбуждения по нерву подчиняется двух основ ным законам.

1. Закон двустороннего проведения. Нервное волокно обладает способностью проводить возбуждение по двум направлениям: центростремительно и центробежно. Независимо от того, какое это нервное волок но — центробежное или центростремительное, если ему нане сти раздражение, то возникшее возбуждение будет распространяться в обе стороны от места раздражения (рис.). Это свойство нервного волокна впервые открыл выдающийся русский ученый Р. И. Бабухин (1877).

2. Закон изолированного проведения. Периферический нерв состоит из большого числа отдельных нервных волокон, которые вместе идут в одном и том же нервном стволе. В нервном стволе одновременно могут проходить самые разнообразные центробежные и центростремительные нервные волокна. Однако возбуждение, которое передается по одному нервному волокну, не передается на соседние. Благодаря такому изолированному проведению возбуждения по нервному волокну возможны отдельные весьма тонкие движения человека. Художник может создавать свои полотна, музыкант — исполнять сложные музыкальные произведения, хирург — производить тончайшие операции потому, что каждое волокно изолированно передает импульс мышце, и тем самым центральная нервная система имеет возможность координировать мышечные сокращения. Если бы возбуждение могло переходить на другие волокна, стало бы невозможным отдельное мышечное сокращение, каждое возбуждение сопровождалось бы сокращением самых разнообразных мышц.

Статья на тему Строение нерва

Нервные волокна - отростки нервных клеток (нейронов), имеющие оболочку и способные проводить нервный импульс.
Главной составной частью нервного волокна является отросток нейрона, образующий как бы ось волокна. Большей частью это аксон. Нервный отросток окружен оболочкой сложного строения, вместе с которой он и образует волокно. Толщина нервного волокна в организме человека, как правило, не превышает 30 микрометров.
Нервные волокна делятся на мякотные (миелиновые) и безмякотные (безмиелиновые). Первые имеют миелиновую оболочку, покрывающую аксон, вторые лишены миелиновой оболочки.
Как в периферической так и в центральной нервной системе преобладают миелиновые волокна. Нервные волокна, лишенные миелина располагаются преимущественно в симпатическом отделе вегетативной нервной системы. В месте отхождения нервного волокна от клетки и в области перехода его в конечные разветвления нервные волокна могут быть лишены всяких оболочек, и тогда они называются голыми осевыми цилиндрами.
В зависимости от характера проводимого по ним сигнала, нервные волокна подразделяют на двигательные вегетативные, чувствительные и двигательные соматические.
Строение нервных волокон:
Миелиновое нервное волокно имеет в своём составе следующие элементы (структуры):
1) осевой цилиндр, располагающийся в самом центре нервного волокна,
2) миелиновую оболочку, покрывающую осевой цилиндр,
3) шванновскую оболочку.
Осевой цилиндр состоит из нейрофибрилл. Мякотная оболочка содержит большое количество веществ липоидного характера, известных под названием миелина. Миелин обеспечивает быстроту проведение нервных импульсов. Миелиновая оболочка покрывает осевой цилиндр не на всём промежутке, образуя промежутки, получившие название перехваты Ранвье. В области перехватов Ранвье осевой цилиндр нервного волокна примыкает к верхней - шванновской оболочке.
Промежуток волокна, расположенный между двумя перехватами Ранвье, называют сегментом волокна. В каждом таком сегменте на окрашенных препаратах можно видеть ядро шванновской оболочки. Оно лежит приблизительно посредине сегмента и окружено протоплазмой шванновской клетки, в петлях которой и содержится миелин. Между перехватами Ранвье миелиновая оболочка также не является сплошной. В толще ее обнаруживаются так называемые насечки Шмидт-Лантермана, идущие в косом направлении.
Клетки шванновской оболочки, так же как и нейроны с отростками, развиваются из эктодермы. Они покрывают осевой цилиндр нервного волокна периферической нервной системы аналогично тому, как клетки глии покрывают нервное волокно в центральной нервной системе. В результате этого они могут называться периферическими глиальными клетками.
В центральной нервной системе нервные волокна не имеют шванновских оболочек. Роль шванновских клеток здесь выполняют элементы олигодендроглии. Безмиелиновое (безмякотное) нервное волокно лишено миелиновой обкладки и состоит только из осевого цилиндра и шванновской оболочки.



Функция нервных волокон.
Главная функция нервных волокон – передача нервного импульса. В настоящее время изучено два типа нервной передачи: импульсная и безимпульсная. Импульсная передача обеспечивается электролитными и нейротрансмиттерными механизмами. Скорость передачи нервного импульса в миелиновых волокнах значительно выше, чем в безмякотных. В её осуществлении важнейшая роль принадлежит миелину. Данное вещество способно изолировать нервный импульс, в результате чего передача сигнала по нервному волокну происходит скачкообразно, от одного перехвата Ранвье к другому. Безимпульсная передача осуществляется током аксоплазмы по специальным микротрубочкам аксона, содержащим трофогены – вещества, оказывающие на иннервируемый орган трофическое влияние.

5. Строение нервного волокна.(второй вариант)

Отросток нервной клетки, покрытый оболочками, называют нервным волокном. Центральную часть любого отростка нервной клетки (аксона или дендрита) называют осевым цилиндром.Осевой цилиндр располагается в аксоплазме и состоит из тончайших волокон — нейрофибрилл и покрыт оболочкой — аксолеммой (цвет. табл. III, В). При рассмотрении под электронным микроскопом установлено, что каждая нейрофибрилла состоит из еще более тонких волокон разного диаметра, имеющих трубчатое строение. Трубочки диаметром до 0,03 мкм называютнейротубулями, а диаметром до 0,01 мкм — нейрофиламентами. По нейротубулям и нейрофиламентам поступают к нервным окончаниям вещества, образующиеся в теле клетки и служащие для передачи нервного импульса.

В аксоплазме содержатся митохондрии, количество которых особенно велико в окончаниях волокон, что связывают с передачей возбуждения с аксона на другие клеточные структуры. В аксоплазме мало рибосом и РНК, чем объясняется низкий уровень обмена веществ в нервном волокне.

Аксон покрыт миелиновой оболочкой до места его разветвления у иннервируемого органа, она располагается вдоль осевого цилиндра не сплошной линией, а сегментами длиной 0,5—2 мм. Пространство между сегментами (1—2 мкм) называют перехватом Ранвье. Миелиновая оболочка образуется шванновскими клетками путем их многократного обкручивания вокруг осевого цилиндра. Каждый ее сегмент образован одной шванновской клеткой, скрученной в сплошную спираль. В области перехватов Ранвье миелиновая оболочка отсутствует и концы шванновских клеток плотно прилегают к аксолемме. Наружная мембрана шванновских клеток, покрывающая миелин, образует самую верхнюю оболочку нервного волокна, которую называют шванновской оболочкой или неврилеммой (цвет. табл. III, В). Шванновским клеткам придают особое значение, их считают клетками- спутниками, которые дополнительно обеспечивают обмен веществ в нервном волокне. Они принимают участие в процессе регенерации нервных волокон. Различаютмякотные, или миелинизированные, и безмякотные, или немиелинизированные, нервные волокна. К миелинизированным относят волокна соматической нервной системы и некоторые волокна вегетативной нервной системы. Безмякотные волокна отличаются тем, что в них не развивается миелиновая оболочка и их осевые цилиндры покрыты только шванновскими клетками (шванновской оболочкой). К ним относится большинство волокон вегетативной нервной системы.

Периферические нервы имеют вид тяжей разной толщины, беловатого цвета с гладкой поверхностью, округлой или уплощенной формы. Они состоят из миелиновых и безмиелиновых волокон, сгруппированных в пучки, и соединительнотканных оболочек.


Рисунок 1. Нервный ствол (в поперечном разрезе) состоит из миелиновых и безмиелиновых нервных волокон и соединительнотканных оболочек. Миелиновые нервные волокна (1) имеют вид округлых профилей, центральная часть которых занята осевым цилиндром. Эпиневрий (2) — соединительная ткань, покрывающая нерв с поверхности. Полутонкий срез, фиксация осмиевой кислотой.

Оболочки нерва

К оболочкам нерва относятся эндоневрий (endoneurium), периневрий (perineurium) и эпиневрий (epineurium).

Эндоневрий

Эндоневрий — рыхлая соединительная ткань между отдельными нервными волокнами.

Периневрий

Периневрий содержит наружную часть — плотную соединительную ткань, окружающую каждый пучок нервных волокон, и внутреннюю часть — несколько концентрических слоёв плоских периневральных клеток, снаружи и изнутри покрытых исключительно толстой базальной мембраной, содержащей коллаген типа IV, ламинин, нидоген и фибронектин.

Периневральный барьер необходим для поддержания гомеостаза в эндоневрии, его образует внутренняя часть периневрия — эпителиоподобный пласт периневральных клеток, соединённых при помощи плотных контактов. Барьер контролирует транспорт молекул через периневрий к нервным волокнам, предотвращает доступ в эндоневрий инфекционных агентов.

Эпиневрий

Эпиневрий — волокнистая соединительная ткань, объединяющая все пучки в составе нерва.

Кровоснабжение

Периферический нерв содержит разветвлённую сеть кровеносных сосудов. В эпиневрии и в наружной (соединительнотканной) части периневрия — артериолы и венулы, а также лимфатические сосуды. Эндоневрий содержит кровеносные капилляры.

Иннервация

Периферический нерв имеет специальные нервные волокна — nervi nervorum — тонкие чувствительные и симпатические нервные волокна. Их источник: сам нерв или сосудистые нервные сплетения. Терминали nervi nervorum прослежены в эпи-, пери- и эндоневрии.

Сквозь наружную оболочку нерва видны белые пучки нервных волокон. Толщина нерва обусловлена количеством и калибром образующих его пучков, которые представляют значительные индивидуальные колебания в числе и величине на разных уровнях строения нерва. В седалищных нервах человеках на уровне седалищного бугра число пучков колеблется от 54 до 126; в большеберцовом нерве, на уровне верхней трети голени — от 41 до 61. Небольшое число пучков обнаруживается в крупнопучковых нервах, наибольшее количество пучков содержат мелкопучковые стволы.

Представление о распределении пучков нервных волокон в нервах подвергалось изменению в течение последних десятилетий. Сейчас твердо установлено существование сложного внутриствольного сплетения пучков нервных волокон, меняющихся на разных уровнях в количественном отношении.

Большие колебания в количестве пучков в одном нерве на разных уровнях показывают сложность внутриствольного строения нервов. В одном из исследованных срединных нервов на уровне верхней трети плеча был обнаружен 21 пучок, на уровне средней трети плеча — 6 пучков, на уровне локтевой ямки — 22 пучка, в средней трети предплечья — 18 пучков и в нижней трети предплечья — 28 пучков.

В строении нервов предплечья обнаружено или увеличение количества пучков в дистальном направлении при уменьшении их калибра, или же увеличение размера пучков благодаря их слиянию. В стволе седалищного нерва количество пучков в дистальном направлении постепенно уменьшается. В ягодичной области количество пучков в нерве достигает 70, в большеберцовом нерве вблизи деления седалищного нерва их — 45, во внутреннем подошвенном нерве — 24 пучка.

В дистальных отделах конечностей ветви к мышцам кисти или стопы содержат значительное количество пучков. Например, в ветви локтевого нерва к мышце, приводящей большой палец, содержится 7 пучков, в ветви к четвертой межкостной мышце — 3 пучка, во втором общем пальцевом нерве — 6 пучков.

Внутриствольное сплетение в строении нерва возникает главным образом за счет обмена группами нервных волокон между соседними первичными пучками внутри периневральных оболочек и реже между вторичными пучками, заключенными в эпиневрий.

В строении нервах человека имеется три типа пучков нервных волокон: пучки, выходящие из передних корешков и состоящие из довольно толстых параллельно расположенных волокон, изредка анастомозируют друг с другом; пучки, образующие сложное сплетение благодаря множеству соединений, встречающихся в задних корешках; пучки, выходящие из соединительных ветвей, идут параллельно и не образуют анастомозов.

Приведенные примеры большой изменчивости во внутриствольном строении нерва не исключают некоторой закономерности в распределении проводников в его стволе. При сравнительно-анатомическом исследовании строения грудобрюшного нерва установили, что у собаки, кролика и мыши этот нерв имеет выраженное кабельное расположение пучков; у человека же, кошки, морской свинки преобладает сплетение пучков в стволе этого нерва.

Изучение распределения в строении нерва волокон также подтверждает закономерность в распределении проводников разного функционального значения. Исследование методом перерождения взаимного расположения чувствительных и двигательных проводников в седалищном нерве лягушки показало расположение чувствительных проводников по периферии нерва, а в центре его — чувствительных и двигательных волокон.

Расположение мякотных волокон на разных уровнях в пучках седалищного нерва человека показывает, что образование двигательных и чувствительных ветвей происходит на значительном протяжении нерва путем перехода мякотных волокон разного калибра в определенные группы пучков. Поэтому известные участки нерва имеют топографическое постоянство в отношении распределения пучков нервных волокон, определенного функционального значения.

Таким образом, несмотря на всю сложность, разнообразие и индивидуальную изменчивость во внутриствольном строении нерва, намечается возможность изучения хода проводящих путей нерва. Относительно калибра нервных волокон периферических нервов имеются следующие данные.

Миелин – очень важное в строении нервов вещество, имеет жидкую консистенцию и образован смесью очень нестойких веществ, которые подвержены изменению под влиянием различных воздействий. В состав миелина входят белковое вещество нейрокератин, который является склеропротеином, содержит 29% серы, не растворяется в спиртах, кислотах, щелочах и сложная смесь липоидов (собственно миелин), состоящая из лецитина, кефалина, протагона, ацетальфосфатидов, холестерина и небольшого количества веществ белковой природы. При исследовании мякотной оболочки в электронном микроскопе обнаружено, что она образована пластинками разной толщины, лежащими одна над другой, параллельно оси волокна, и образующими концентрические слои. Более толстые слои содержат пластинки, состоящие из липоидов, более тонкими являются лейрокератиновые пластинки. Количество пластинок меняется, в самых толстых мякотных волокнах их может быть до 100; в тонких волокнах, которые считаются безмякотными, они могут быть в количестве 1—2.

Миелин, как жироподобное вещество, окрашивается в бледно-оранжевый цвет, Суданом и осмиевой кислотой — в черный цвет с сохранением прижизненной гомогенной структуры.

После окраски по Вейгерту (хромирование с последующей окраской гематоксилином) мякотные волокна приобретают разные оттенки серо-черного цвета. В поляризованном свете миелин обладает двойным лучепреломлением. Протоплазма шванновской клетки обволакивает мякотную оболочку, переходя на поверхность осевого цилиндра на уровне перехватов Ранвье, где миелин отсутствует.

Осевой цилиндр, или аксон, является непосредственным продолжением тела нервной клетки и находится в середине нервного волокна, окружен муфтой из мякотной оболочки в протоплазме шванновской клетки. Он есть основой строения нервов, имеет вид тяжа цилиндрической формы и тянется без перерыва до окончаний в органе или ткани.

Калибр осевого цилиндра колеблется на разных уровнях. В месте выхода из клеточного тела аксон истончается, затем утолщается на месте появления мякотной оболочки. На уровне каждого перехвата снова истончается приблизительно вдвое. Осевой цилиндр содержит многочисленные нейрофибриллы, тянущиеся в длину независимо друг от друга, окутанные перифибриллярным веществом — аксоплазмой. Исследования строения нервов в электронном микроскопе подтвердили прижизненное существование в аксоне субмикроскопических нитей толщиной от 100 до 200 А. Подобные нити имеются и в нервных клетках, и в дендритах. Нейрофибриллы, обнаруживаемые при обычном микроскопировании, возникают благодаря склеиванию субмикроскопических нитей под влиянием фиксирующих веществ, которые сильно сморщивают богатые жидкостью аксоны.

На уровне перехватов Ранвье поверхность осевого цилиндра соприкасается с протоплазмой шванновской клетки, к которой прилегает и ретикулярная оболочка эндоневрия. Этот участок аксона особенно сильно окрашивается метиленовой синью, в области перехватов происходит также активное восстановление азотнокислого серебра с появлением крестов Ранвье. Все это указывает на повышенную проницаемость нервных волокон на уровне перехватов, что имеет значение для обмена веществ и питания волокна.


Рисунок 2. Периферический нерв. Перехваты Ранвье: а — светооптическая микроскопия. Стрелкой указан перехват Ранвье; б—ультраструктурные особенности (1—аксоплазма аксона; 2— аксолемма; 3 — базальная мембрана; 4 — цитоплазма леммоцита (шванновская клетка); 5 — цитоплазматическая мембрана леммоцита; 6 — митохондрия; 7 — миелиновая оболочка; 8 — нейрофилламенты; 9 — нейротрубочки; 10 — узелковая зона перехвата; 11 - плазмолемма леммоцита; 12 — пространство между соседними леммоцитами).

Пучки нервных волокон, из которых состоит нервный ствол, заключены в соединительнотканные оболочки нерва, которые поддерживают постоянство его строения, предохраняют нервные волокна от необычных внешних воздействий и обеспечивают кровоснабжение нерва.

Все пучки нервных волокон заключены в рыхлую, богатую жировой тканью, сосудами, нервами соединительнотканную оболочку нерва, называемую эпиневрием. Коллагеновые и эластические волокна эпиневрия имеют продольное направление по ходу нервных волокон, так же как и ряды фибробластов, среди которых рассеяны гистиоциты, полибласты и тучные клетки. Прослойки эпиневрия между пучками нервных волокон называются внутренним эпиневрием.

Каждый пучок заключен в свою плотную оболочку нерва — периневрий образованную концентрически расположенными соединительнотканными пластинами. Каждая из этих пластин образована тонкими коллагеновыми волокнами, выстланными слоем покровных клеток, напоминающих клетки на поверхности мягких мозговых оболочек. Пластины периневрия содержат уплощенные фибробласты, гистиоциты, тучные клетки. Пучок нервных волокон, окруженный периневрием, называется вторичным пучком. Соединительнотканные волокна оболочки нерва периневрия переходят в тонкие перегородки внутри пучков, называемые эндоневрием, и делят их на отдельные группы нервных волокон, так называемые первичные пучки. Эндоневральные перегородки образуют футляры вокруг каждого нервного волокна. Эндоневрий состоит из наружной оболочки, образованной продольно идущими коллагеновыми волокнами, и внутренней оболочки, непосредственно прилегающей к неврилемме и состоящей из аргирофильных волокон.

По мере деления нерва пучки его истончаются и периневральные и эндоневральные оболочки или трубки сопровождают все уменьшающиеся группы волокон. Конечные разветвления нерва окружены периневральной оболочкой Генле, образованной пластинчатой соединительной тканью и эндоневральной оболочкой нерва.

При расщеплении нефиксированного нерва тонкими иглами в жидкости легко разрывается рыхлый эпиневрий и нерв распадается на группы пучков, многие из которых связаны друг с другом, переходя из одной периневральной трубки в другую. У человека пучки отличаются разнообразием калибра, а соединительнотканные оболочки нерва — значительно большим объемом. У лошади в седалищном нерве имеется около 150 пучков, которые отличаются однообразным калибром.

Поверхность мякотного нервного волокна покрыта тонким слоем протоплазмы шванновских клеток, наружная часть которой уплотняется, образуя шванновскую оболочку нерва или неврилемму, тесно прилежащую к внутреннему слою эндоневрия. По ходу мякотного волокна протоплазма шванновских клеток тянется в виде непрерывного синцития до конечных его разветвлений. Овальное или округлое ядро шванновской клетки содержит одно — два ядрышка и располагается приблизительно в середине каждого межкольцевого сегмента (участок мякотного волокна между двумя перехватами Ранвье); ядрышко окружено ячеистой протоплазмой, тонкие тяжи которой распространяются по длиннику и окружности волокна, пронизывая мякотную оболочку и окутывая осевой цилиндр в месте перехвата.

В протоплазме шванновских клеток обнаруживаются в большом количестве митохондрии (носители окислительных ферментов) и включения разного химического состава, являющиеся продуктами обмена веществ в мякотном волокне: гранулы Рейха отличаются метахромазией, окрашиваются в розовый и красный цвет при обработке препарата метиленовой синью или тионином; располагаясь в перинуклеарной части протоплазмы шванновской клетки в виде зерен, палочек, запятых или глыбок разной величины, достигают иногда значительных размеров в старости. По своему составу они относятся к протагону, еще недостаточно изученной смеси липоидов. Появляются П-гранулы у человека на 4—5-м году жизни, количество их увеличивается с возрастом и при патологических процессах; этим они напоминают липофусцин нервных клеток.

Тельца Эльцгольца также встречаются в протоплазме шванновских клеток оболочек нервов поблизости от ядра. Они имеют вид телец шаровидновидной формы, окрашивающихся по Марки в черный цвет с разной интенсивностью. Они постоянно находятся небольшими группами в мякотных волокнах, но при патологических состояниях нервов количество их значительно увеличивается, что является показателем распада миелина.

Мякотная оболочка нерва появляется на осевом цилиндре на некотором расстоянии от нервной клетки. На препарате нефиксированного свежего мякотного волокна, которое сильно преломляет свет, мякотная оболочка имеет вид тонкой двуконтурной линии, составляющей треть толщины светлого и широкого осевого цилиндра. После фиксации мякотная оболочка утолщается в результате набухания. На протяжении аксона мякотная оболочка прерывается, образуя так называемые перехваты Ранвье, и заканчивается куполообразными загибами.

В межкольцевом сегменте, в пространстве между двумя перехватами Ранвье, миелин прерывается насечками Лантермана, которые видны на свежих, нефиксированных препаратах. Эти перерывы образуются благодаря присутствию в миелине воронок, образованных спиралями из нитей нейрокератина (спирали Гольджи—Редзонико), которые вдвинуты друг в друга.

К периферическим нервам относят черепные и спинномозговые нервы, соединяющие центральную нервную систему (ЦНС) с периферическими органами и тканями. Спинномозговые нервы формируются при слиянии вентральных (передних) и дорсальных (задних) нервных корешков в месте их выхода из позвоночного канала. Задние нервные корешки образуют утолщения — спинальные ганглии (или задние корешковые ганглии). Спинномозговые нервы относительно короткие — их длина составляет менее 1 см. Проходя через межпозвоночное отверстие, спинномозговые нервы делятся на вентральную (переднюю) и дорсальную (заднюю) ветви.

Задняя ветвь обеспечивает иннервацию мышц, выпрямляющих позвоночник, а также кожи туловища в этой области. Передняя ветвь иннервирует мышцы и кожу передней части туловища; кроме того, от нее отходят чувствительные волокна к париетальной плевре и париетальной брюшине.


Грудной сегмент спинного мозга и нервные корешки.
Стрелками указано направление проведения импульса. Зеленым цветом обозначено симпатическое нервное волокно.

В состав спинномозгового нерва входят соматические эфферентные нервные волокна, направляющиеся к скелетной мускулатуре туловища и конечностей, и соматические афферентные нервные волокна, проводящие возбуждение от кожи, мышц и суставов. Кроме того, в спинномозговом нерве расположены висцеральные эфферентные и, в некоторых случаях, афферентные вегетативные нервные волокна.

Общие принципы внутреннего строения периферических нервов схематично изображены на рисунке ниже. Только лишь по строению нервных волокон невозможно определить, являются они двигательными или чувствительными.

Периферические нервы окружены эпиневрием — внешним слоем, состоящим из плотной неравномерной соединительной ткани и располагающимся вокруг пучков нервных волокон и сосудов, кровоснабжающих нерв. Нервные волокна периферических нервов могут переходить из одного пучка в другой.

Каждый пучок нервных волокон покрыт периневрием, представленным несколькими отчетливо различимыми эпителиальными слоями, связанными плотными щелевидными соединениями. Отдельные шванновские клетки окружены эндоневрием, образованным ретикулярными коллагеновыми волокнами.

Менее половины нервных волокон покрыто миелиновой оболочкой. Немиелинизированные нервные волокна расположены в глубоких складках шванновских клеток.


Строение грудного спинномозгового нерва. Обратите внимание: на рисунке не указан симпатический компонент.
КП — концевая пластинка двигательного нерва на мышце; НОМВ — нервное окончание мышечного веретена; МН — мультиполярный нейрон.

а) Образование миелина. Шванновские клетки (леммоциты) — представители нейроглиальных клеток периферической нервной системы. Эти клетки образуют непрерывную цепочку вдоль периферических нервных волокон. Каждая шванновская клетка миелинизирует участок нервного волокна длиной от 0,3 до 1 мм. Видоизменяясь, шванновские клетки образуют в спинальных и вегетативных ганглиях сателлитные глиоциты, а в области нервно-мышечных соединений — клетки телоглии.

В области конечных участков миелинизированных сегментов аксона по обеим сторонам от перехватов Ранвье (промежутков между конечными участками соседних шванновских клеток) расположены паранодальные карманы.


Поперечный срез нервного ствола.
(А) Световая микроскопия. (Б) Электронная микроскопия.

Миелинизация в периферической нервной системе.
Стрелками указано направление накручивания цитоплазмы шванновской клетки.

С точки зрения физиологии периферические нервные волокна классифицируют по скорости проведения нервных импульсов, а также по другим критериям. Двигательные нервные волокна разделяют на типы А, В и С в соответствии с уменьшением скорости проведения импульсов. Чувствительные нервные волокна разделяют на группы I—IV по такому же принципу. Однако на практике эти классификации взаимозаменяемы: так, например, немиелинизированные чувствительные нервные волокна относят не к типу С, а к группе IV.

Подробная информация о диаметрах и местах локализации периферических нервных волокон представлена в таблицах ниже.


На электронно-микроскопическом изображении показаны миелинизированное периферическое нервное волокно и окружающая его шванновская клетка. На рисунках ниже представлена группа немиелинизированных нервных волокон, погруженных в цитоплазму шванновской клетки и продемонстрирован участок перехвата Ранвье аксона ЦНС.

в) Резюме. Стволы спинномозговых нервов проходят в межпозвоночных отверстиях. Эти структуры образуются при соединении вентральных (двигательных) и дорсальных (чувствительных) нервных корешков и разделяются на смешанные вентральные и дорсальные ветви. Нервные сплетения конечностей представлены вентральными ветвями.

Периферические нервы покрыты эпиневральной соединительной тканью, пучковидной периневральной оболочкой и эндоневрием, образованным коллагеновыми волокнами и содержащим шванновские клетки. Миелинизированное нервное волокно включает аксон, миелиновую оболочку и цитоплазму шванновской клетки — нейролемму. Миелиновые оболочки формируются шванновскими клетками и обеспечивают сальтаторное проведение импульсов со скоростью, прямо пропорциональной диаметру нервного волокна.



а - Миелинизированное нервное волокно. Десять слоев миелина окружают аксон от внешнего к внутреннему мезаксону шванновской клетки (указано стрелками). Базальная мембрана окружает шванновскую клетку.
б - Немиелинизированные нервные волокна. Девять немиелинизированных волокон погружены в цитоплазму шванновской клетки. Мезаксоны (некоторые указаны стрелками) визуализируются при полном погружении аксонов.
Два неполностью погруженных аксона (сверху справа) покрыты базальной мембраной шванновской клетки.

Область перехвата Ранвье ЦНС. Доходя до области перехвата Ранвье, миелиновая оболочка сужается и заканчивается, закручиваясь в области паранодальных карманов цитоплазмы олигодендроцита.
Длина области перехвата Ранвье составляет около 10 нм; на этом участке отсутствует базальная мембрана.
Микротрубочки, нейрофиламенты и удлиненные цистерны гладкой эндоплазматической сети (ЭПС) формируют продольные пучки.

Область перехода центральной нервной системы (ЦНС) в периферическую нервную систему (ПНС).

Редактор: Искандер Милевски. Дата публикации: 12.11.2018

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.