Структурные принципы организации нервной системы

ЛЕКЦИЯ № 2. СТРУКТУРНЫЕ И ФУНКЦИОНАЛЬНЫЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ НЕРВНОЙ СИСТЕМЫ

Взаимодействие сенсорных, моторных и мотивационных систем в переработке информации

Представьте себе действия человека, решившего выпить стакан чаю. Он подогревает на газовой или электрической плите воду, насыпает в чайник заварку, заливает её кипятком, ждёт положенное для заваривания время, наполняет стакан, добавляет в него сахар - весь порядок этих простых действий определяет нервная система.

Чтобы совершать нужные действия, необходима информация о расположении участвующих в них предметов, о их давлении на руки, о положении самих рук и тела в пространстве. Все эти сведения собирают специализированные только на приёме информации нервные клетки (нейроны). Полученную информацию они кодируют нервными импульсами и передают её другим нейронам для дальнейшей переработки. Объединение клеток, непосредственно получающих информацию, с нейронами, занятыми её последующей переработкой, образует сенсорную или чувствительную систему.

Другие нейроны специализируются на создании команд для производства необходимых движений, удержания нужных предметов в руке, сохранения или изменения положения туловища, ног. Готовые команды в виде нервных импульсов поступают к определённым мышцам: каждое движение происходит благодаря сокращению одних и расслаблению других мышц, их совместную деятельность координируют специальные нервные клетки. Совокупность нейронов, готовящих команды для мышц, и нервных клеток, непосредственно управляющих мышцами. образует моторную или двигательную систему.

Стоит задуматься и над обстоятельствами, побуждающими человека к тому или иному действию, например, к чаепитию. Была ли это жажда, вызванная предшествующей потерей жидкости, например, при обильном потении в бане, связано ли это поведение с желанием взбодрить себя или оно обусловлено приходом случайного гостя? Во всех случаях можно найти чем-то обусловленное побуждение к действию - мотивацию поведения. Любая же мотивация возникает как результат активности определённых структур мозга, которые можно объединить в мотивационную систему.

Несомненно, что разные системы взаимодействуют друг с другом. Обычно сенсорные системы активируют мотивационную, а она, в свою очередь, побуждает моторную систему создавать необходимые команды. Одновременно происходят изменения активности вегетативной нервной системы, регулирующей деятельность внутренних органов, которая должна быть согласована с моторной деятельностью. Все системы сотрудничают при любых, даже самых простых видах деятельности.

Сенсорные, моторные и мотивационные системы образованы большим количеством нейронов, объединённых друг с другом не случайно, а в строго определённом порядке, где каждый нейрон занимает своё место, как мелкая деталь в сложном механизме. Положение отдельных нейронов определяется генетическим кодом и в основном устанавливается ещё до рождения - во время внутриутробного развития. Функция нервной системы в целом заключается в восприятии информации, её переработке и передаче исполнительным органам, которыми могут быть мышцы (в том числе мышцы внутренних органов, сердечная мышца) и железы внешней секреции; особым способом нервная система взаимодействует с железами внутренней секреции - эндокринной системой. Конечной целью всей этой деятельности является обеспечение взаимодействия организма со средой, приспособление к постоянно меняющимся условиям существования .

Спинной мозг

Спинной мозг имеет сегментарное строение и расположен в позвоночном канале, занимая в нём пространство от основания черепа до первого - второго поясничных позвонков. Рострально (от лат. rostrum - клюв, т.е. на переднем конце) он соединяется со стволом головного мозга, а каудально (от лат. cauda - хвост) не достигает конца позвоночного канала, оканчиваясь на границе первого и второго поясничных позвонков т.н. конским хвостом, образованным корешками поясничных и крестцовых сегментов. Разная длина позвоночника и спинного мозга объясняется тем, что во время развития и роста позвоночник удлиняется больше, чем спинной мозг. Отсутствие спинного мозга каудальнее второго поясничного позвонка позволяет выполнять там диагностическое пунктирование, чтобы взять для исследования спинномозговую жидкость.

Спинной мозг содержит 31 сегмент, от каждого сегмента в обе стороны идут спинномозговые нервы, образованные соединением задних чувствительных и передних двигательных корешков . Спинномозговые нервы выходят из позвоночного канала через межпозвонковые отверстия, затем их двигательные волокна направляются к мышцам, а чувствительные - к своим окончаниям в коже, мышцах, суставах и внутренних органах. Связь каждого сегмента с областью иннервации осуществляется по жёсткой топографической схеме: двигательные волокна управляют строго определёнными мышцами, а чувствительные получают информацию от определённых регионов: например, в коже это ограниченные участки или дерматомы .

В спинном мозгу различают серое и белое вещество. В расположенном центрально сером веществе преобладают тела нервных клеток, тогда как белое вещество состоит преимущественно из множества отростков нейронов: по ним передаётся информация от одних сегментов спинного мозга к другим, от спинного мозга - к головному (восходящие пути) и наоборот, от головного мозга - к спинному (нисходящие пути).

Спинной мозг - филогенетически самая старая структура мозга и большинство нейронных соединений в нём очень устойчивы, разные в функциональном отношении нейроны идеально подогнаны друг к другу. Это позволяет спинному мозгу самостоятельно регулировать простейшие двигательные и вегетативные реакции, такие, например, как отдёргивание руки от горячего предмета или опорожнение мочевого пузыря при значительном растяжении его стенок Но даже при выполнении таких стандартных реакций спинной мозг находится под постоянным контролем головного мозга. Ему спинной мозг поставляет сенсорную информацию, а от него получает большинство двигательных программ и указания по части вегетативной регуляции.

Ствол мозга

Ствол мозга включает в себя три анатомические структуры: продолговатый мозг, мост и средний мозг . Рострально от спинного мозга находится продолговатый мозг, его прямым продолжением является мост, отграниченный резко очерченным выступом - он образован многочисленными волокнами, служащими для связи с мозжечком. Средний мозг расположен рострально от моста и включает в себя четверохолмие и ножки мозга, выходящие из моста и погружающиеся в большие полушария. В сером веществе ствола содержатся скопления нейронов, представляющих собой ядра двенадцати пар черепномозговых нервов, каждая из которых имеет свой порядковый номер

Таблица

Мозжечок

Расположен дорсально относительно моста и продолговатого мозга, непосредственно над ним находятся затылочные доли большого мозга. Мозжечок получает сенсорную информацию от всех систем, возбуждающихся во время движения, а также от других регионов мозга, которые участвуют в создании двигательных программ. Передача информации к мозжечку и от него осуществляется по многочисленным нервным волокнам, образующим ножки мозжечка: три пары таких ножек анатомически и функционально соединяют мозжечок со стволом мозга.

Строение мозжечка довольно сложное: он имеет собственную кору, состоящую из огромного количества клеток нескольких разновидностей, а под корою, среди белого вещества проводящих волокон, располагаются несколько пар ядер мозжечка. Функция мозжечка состоит, в первую очередь, в формировании двигательных программ, необходимых для поддержания равновесия, регуляции силы и объёма движений: особенно важна роль мозжечка в регуляции быстрых движений.

Промежуточный мозг

Объединяет две соседние структуры мозга: зрительные бугры или таламус и гипоталамус (подбугорье). Зрительные бугры расположены по обе стороны третьего желудочка мозга и содержат большое количество переключательных ядер. Таламус является исключительно важным центром переработки почти всей сенсорной информации, это главная переключательная станция на пути передачи информации к коре мозга. Некоторые ядра таламуса получают сенсорную информацию с периферии, перерабатывают её и передают к определённым топографическим областям коры, которые специализируются на анализе только одного вида информации - зрительной, слуховой, соматосенсорной (воспринимающей сигналы от поверхности тела и от скелетных мышц). Таламические ядра такого типа называются специфическими или проекционными. Ядра другого типа, неспецифические, получают сигналы в основном от нейронов ретикулярной формации, такая информация не несёт сведений о специфических качествах действующих на организм раздражителей. Нейроны неспецифических ядер таламуса влияют на различные области коры. В свою очередь нейроны коры больших полушарий способны влиять на активность таламических нейронов, связи между таламусом и корой можно назвать двусторонними.

Наряду с сенсорными в таламусе существуют и моторные ядра: с помощью нейронов этих ядер устанавливаются связи между моторной корой, мозжечком и подкорковыми ядрами - три эти структуры мозга формируют двигательные программы. Ещё одна группа ядер таламуса необходима для того, чтобы обеспечить взаимодействие различных регионов коры друг с другом и с подкорковыми структурами. Такие ядра можно назвать ассоциативными, они нередко связаны друг с другом с помощью отростков своих нейронов. Благодаря своим многочисленным связям с различными регионами мозга таламус вовлекается в осуществление многих функций: например, при его участии лимбическая система формирует эмоции, гипоталамус управляет работой внутренних органов, а различные области коры осуществляют деятельность, связанную с психическими процессами.

Гипоталамус расположен в вентральной части промежуточного мозга непосредственно над гипофизом. Он является высшим центром регуляции вегетативных функций и координирует деятельность симпатического и парасимпатического отделов вегетативной нервной системы , согласует её с двигательной активностью. Он также управляет секрецией гормонов гипофиза, контролируя тем самым эндокринную регуляцию внутренних процессов. Некоторые из многочисленных ядер гипоталамуса регулируют водно-солевой баланс организма, температуру тела, чувство голода и насыщения, половое поведение. Гипоталамус является важнейшей мотивационной структурой мозга, в связи с этим он имеет прямое отношение к формированию эмоций и к организации целенаправленного поведения. Функции гипоталамуса обеспечиваются благодаря его двусторонним связям со многими регионами головного мозга и со спинным мозгом. Кроме того, многие нейроны гипоталамуса способны непосредственно реагировать на изменения внутренней среды организма.

Конечный мозг (полушария)

Симметрично расположенные полушария мозга соединяются друг с другом приблизительно 200 миллионами нервных волокон, образующих т.н. мозолистое тело. В каждом полушарии различают кору мозга и находящиеся в глубине полушарий подкорковые ядра: базальные ганглии, гиппокамп и миндалины мозга.

Базальные ганглии - объединяют полосатое тело, состоящее из хвостатого ядра и скорлупы, и бледный шар. Они получают входную информацию от всех областей коры и от ствола мозга, а через ядра таламуса и от мозжечка, и используют её для формирования двигательных программ. Помимо этого базальные ганглии принимают участие в познавательной деятельности мозга.

Гиппокамп и миндалины являются важными компонентами лимбической системы мозга, формирующей эмоции. Гиппокамп необходим для образования следов памяти, для трансформации кратковременной памяти в долговременную. Миндалины координируют вегетативные и эндокринные реакции, связанные с эмоциональными переживаниями

Наружная поверхность полушарий представлена корой - по количеству нервных клеток это самый большой регион мозга. Площадь этой поверхности, вписанной в ограниченное черепом пространство, увеличена за счёт многочисленных складок, выглядящих как извилины, разделённые бороздами. Толщина серого вещества мозговой коры варьирует между 1,5 - 5 мм, нейроны расположены в ней слоями. В большей части коры есть шесть слоёв, различающихся между собой по составу образующих каждый слой клеток.

На поверхности каждого полушария принято различать четыре доли . Кпереди от глубокой центральной борозды расположены лобные доли, позади неё - теменные. Латеральные или сильвиевы борозды отделяют от лобных и теменных долей височные доли, а затылочно-теменные борозды отделяют затылочные доли от теменных и височных. Различные области коры взаимодействуют друг с другом посредством прямых связей или с помощью ядер таламуса. Существует хорошо развитая сеть проводящих путей, которые позволяют коре больших полушарий получать сигналы от подкорковых структур и, в свою очередь, передавать им необходимую информацию.

В зависимости от выполняемых функций различные области коры подразделяются на сенсорные, моторные и ассоциативные. К сенсорным областям относятся: соматосенсорная кора, занимающая задние центральные извилины, зрительная кора, находящаяся в затылочных долях и слуховая кора, занимающая часть височных долей. Моторная кора находится в передних центральных извилинах и в примыкающих к этим извилинам регионах лобных долей. Ассоциативная кора занимает всю остальную поверхность мозга и подразделяется на префронтальную кору лобных долей, теменно-височно-затылочную (парието-темпорально-окципитальную) и лимбическую, к которой относят внутренние и нижние поверхности лобных долей, внутренние поверхности затылочных долей и нижние отделы височных долей. Префронтальная кора создаёт планы комплекса моторных действий, теменно-височно-затылочная интегрирует всю сенсорную информацию, а лимбическая участвует в формировании памяти, эмоций и определяет мотивационные аспекты поведения.

Резюме

Содержащий огромное количество нейронов мозг человека анатомически и функционально очень чётко организован. Различные популяции нейронов, как и различные регионы мозга решают различные функциональные задачи. Межнейронные связи всегда топографически упорядочены и дублируются, что повышает их надёжность. Все функциональные системы мозга (сенсорные, моторные, мотивационные) постоянно взаимодействуют: на основе этой интеграции создаются самые разные формы поведения. Психические процессы тоже можно рассматривать как комплекс элементарных операций, выполняемых в разных регионах мозга, причём деятельность отдельных регионов постоянно координируется множеством межнейронных связей.

ЛЕКЦИЯ № 2. СТРУКТУРНЫЕ И ФУНКЦИОНАЛЬНЫЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ НЕРВНОЙ СИСТЕМЫ

Последнее изменение этой страницы: 2017-02-07; Нарушение авторского права страницы

Лекция 8. Координационная деятельность и интегрирующая роль ЦНС

Координационная деятельность ЦНС

Координационная деятельность ЦНС – согласование деятельности различных отделов ЦНС с помощью упорядочивания распространения возбуждения между ними. Ее основа – взаимодействие процессов возбуждения и торможения.

Так, заблокируем эфиром процесс возбуждения – отсутствие реакций организма. Однако стрихнин (блокада постсинаптического торможения) также приведет к нарушению деятельности.

Значение координационной деятельности ЦНС: За счет координации происходит согласованное проявление отдельных рефлексов, отдельных функций, обеспечивающих выполнение целостных физиологических актов.

Например, ходьба или бег, это координирование в нервных центрах не только отдельных двигательных рефлексов, но и приспособление к этой деятельности вегетативных проявлений (особенности работы сердца, дыхательной системы и т.д.) → улучшение приспособления к окружающей среде

Факторы, определяющие приспособительный характер координационной деятельности:

Фактор структурно-функциональной связи.

а) Прямая связь (известные нам конвергенция и иррадиация возбуждения).

в) Реципрокная связь (например, торможение работы мышцы-разгибателя при возбуждении мышцы-сгибателя).

г) Принцип модульной (ансамблевой) структурно-функциональной организации ЦНС. Каждый модуль – совокупность повторяющихся локальных нейронных сетей, обрабатывающих информацию. Один модуль может входить в разные функциональные образования. Доказательство этого: наличие общей реакции возбуждения нейронов центральной части ансамбля и окружающей их зоны заторможенных нейронов (А.Б. Коган, О.Г. Чароян).

2. Фактор субординации. Подчинение нижележащих отделов вышележащим. Например, цефализация (усиленное развитие головного отдела тела у билатерально-симметричных животных в процессе их эволюции). Причем, нисходящие влияния – преимущественно тормозные. Восходящие – возбуждающие.

3. Фактор силы. Известен принцип общего конечного пути – к центру подходят различные чувствительные пути. В случае их одномоментной активации центр реагирует на более сильное возбуждение.Например, если слабое раздражение вызовет чесательный рефлекс у собаки, то более сильное, отдергивание лапы, оборонительный рефлекс. Если дать оба раздражения – победит более сильное (только отдергивание лапы).

4. Одностороннее проведение возбуждения.

5. Синаптическое облегчение(позволяет выделить из всех видов рефлексов те, которые в последнее время наиболее часто происходили; где синапсы больше работали и скопился кальций в клетке).

6. Доминанта. Доминантный очаг возбуждения способен притягивать (привлекать) к себе нервные импульсы от других нервных центров, менее возбужденных в данный момент. За счет этих импульсов активность доминанты еще больше увеличивается, а деятельность других нервных центров подавляется. Так организм концетрируется на той деятельности, которая сейчас наиболее важна.

Интегрирующая роль ЦНС

Интегрирующая роль ЦНС – соподчинение и объединение тканей и органов в центрально-периферическую систему, деятельность которой направлена на достижение полезного для организма приспособительного результата.

Это возможно из-за: обширной афферентации ЦНС, управление опорно-двигательным аппаратом через соматическую НС, регуляции функций всех тканей и органов через вегетативную н.с.

Выделяют 4 уровня ЦНС, обеспечивающих интеграцию:

1. Нейрон(взаимодействие возбуждающих и тормозных входов Þ ПД другим нейронам или их отсутствие).

2. Нейронный ансамбль.

3. Нервный центр (за счет прямых, обратных, реципрокных связей в ЦНС) может выступать как автономное командное устройство.

4. Объединение всех центров в единую регулирующую систему–мозг. Это высший уровень интеграции Þ единая физиологическая система – организм. За счет взаимодействия главных систем: лимбическая система, ретикулярная формация, подкорка и неокортекс.

Функциональные принципы организации нервной системы

Дата добавления: 2018-04-05 ; просмотров: 268 ;

Основная задача организма человека — это поддержание постоянства внутренней среды (т.е. гомеостаза), а так же адаптация (т.е. приспособление) к окружающей среде.
Эти задачи выполняют 3 системы организма:
1. Иммунная система, которая отвечает за защиту от чужеродной генетической информации.
2. Гуморальная (эндокринная) система, отвечает за медленную регуляцию деятельности отдельных органов и тканей организма.
3. Нервная система, которая появилась позднее, чем две предыдущие; отвечает за быструю и точную регуляцию деятельности отдельных органов и тканей.

Содержание

  • Функции нервной системы
  • Отделы НС
  • Рефлекс как основной принцип работы нервной системы

Нейрофизиология рассматривает нервную систему как часть живой системы, которая специализируется на передаче, анализе и синтезе информации, а нейропсихология — как материальный субстрат сложных форм психической деятельности, формирующихся на основе объединения различных отделов мозга в функциональные системы.

Нервная система (НС) — это совокупность анатомически и функционально взаимосвязанных нервных структур, обеспечивающих регуляцию и координацию деятельности организма человека и его взаимодействие с окружающей средой.

Структурной единицей НС является клетка с отростком (нейрон, или нейроцит). Нервная система — это совокупность нейронов, которые контактируют между собой посредством синапса.

Функции нервной системы

Нервная система занимает особое положение среди других систем организма. Она обеспечивает взаимосвязь организма с окружающей средой. Рецепторы реагируют на любые сигналы внешней и внутренней среды, преобразуя их в потоки нервных импульсов, которые поступают в центральную нервную систему. На основе анализа потоков нервных импульсов, кодирующих информацию, мозг формирует адекватный ответ.

Вместе с эндокринными железами нервная система регулирует работы всех органов. Эта регуляция осуществляется благодаря тому, что спинной и головной мозг связаны нервами со всеми органами двусторонними связями. От органов в ЦНС поступают сигналы об их функциональном состоянии, а нервная система, в свою очередь, посылает сигналы к органам, корректируя их функции и обеспечивая все процессы жизнедеятельности — движение, питание, выделение и др. НС обеспечивает координацию деятельности клеток, тканей, органов, систем органов. При этом организм функционирует как единое целое.

Нервная система является материальной основой психических процессов: внимания, памяти, речи, мышления и др., с помощью которых человек не только познает окружающую среду, но и может активно ее изменять.

Таким образом, можно выделить несколько функций нервной системы:
1. Осуществляет связь организма с окружающей средой (восприятие и передача).
2. Обеспечивает взаимодействие тканей органов и систем организма и их регуляцию.

Отделы НС

По топографическому принципу нервную систему подразделяют на центральную и периферическую.
В состав центральной нервной системы (ЦНС) входят те отделы, которые заключены в полости черепа и позвоночном канале, т.е. головной и спинной мозг. Спинной мозг представляет собой трубку с небольшим каналом посредине, окруженную нейронами и их отростками. Головной мозг является расширением спинного мозга. Топографической границей со спинным мозгом является плоскость, проходящая через нижний край большого затылочного отверстия. Средняя масса головного мозга составляет 1400 г с индивидуальными вариациями от 1100 до 2000 г.

В состав периферической нервной системы (ПНС) входят все нервные структуры, расположенные за их пределами. Это узлы и пучки волокон, соединяющие центральную нервную систему с органами чувств и различными эффекторами (мышцы, железы и др.), т.е ганглии и нервы. Периферическая нервная система связывает спинной и головной мозг с рецепторами и эффекторами. Она состоит из 12 пар черепно-мозговых и 31-33 пар спинальных (спинномозговых) нервов.

Согласно классификации по функциональному признаку нервная система подразделяется на соматическую НС и автономную (вегетативную). Как соматическая, так и автономная НС включают в себя центральный и периферический отделы.

Соматическая нервная система включает отделы нервной системы, регулирующие работу скелетных мышц. Отвечает за связь организма с внешней средой, обеспечивает чувствительность и движение, вызывая сокращение скелетной мускулатуры. Она регулирует преимущественно функции произвольного движения. Ее нейроны находятся в передних рогах спинного мозга, а их аксоны через передние корешки спинного мозга направляются к скелетным (поперечно-полосатым) мышцам.

Автономная (вегетативная) нервная система — это совокупность нервов и нервных узлов, посредством которых регулируются сердце, кровеносные сосуды, внутренние органы, железы и т.д. Внутренние органы получают двойную иннервацию (снабжение органов и тканей нервами, что обеспечивает их связь с ЦНС) — от симпатического и парасимпатического отделов вегетативной нервной системы. Эти два отдела оказывают возбуждающие и тормозные влияния, определяя уровень активности органов.

Вегетативная НС обеспечивает обмен веществ, дыхание, выделение. Влияя на активность обмена веществ в различных органах и тканях в соответствии с меняющимися условиями их функционирования и внешней среды, она осуществляет адаптационно-профическую функцию.

Вегетативная нервная система иннервирует гладкую мускулатуру, ее еще называют висцеральной НС. Деление периферической нервной системы на соматическую и вегетативную достаточно условно, поскольку в ЦНС существует значительное перекрытие проекций той и другой, и соматические и вегетативные реакции являются равноправными компонентами любой поведенческой реакции.

В автономной нервной системе выделяют 2 отдела, являющихся функциональными антагонистами: симпатический и парасимпатический. Они различаются локализацией центров в мозге и периферических узлов, а также характером влияния на внутренние органы.

1. Волокна симпатической нервной системы выходят из грудного и поясничного отделов спинного мозга, где лежит первый симпатический нейрон. Затем они сходятся к симпатическим ганглиям, расположенным вдоль позвоночника, где находится второй симпатический нейрон.
Волокна парасимпатической нервной системы начинаются в спинном мозге выше или ниже места выхода симпатических нервов (пара — около, лат.) из черепного и крестцового отдела, а затем сходятся в ганглиях, расположенных не вдоль позвоночного столба, а вблизи от иннервируемого органа.

2. Особенности расположения ганглиев этих двух систем предполагают различие оказываемого ими эффекта. Действие симпатической нервной системы более диффузно, а парасимпатической — более специфично, поскольку связано только с изменениями в органе, рядом с которым находится ганглий.

3. Эти системы различаются и медиаторами, участвующими в синаптической передаче. Основным медиатором для симпатической нервной системы является адреналин, а для парасимпатической — ацетилхолин.

4. Результаты активности этих двух систем во многом противоположны. Если основная функция симпатической нервной системы состоит в мобилизации организма на борьбу или бегство, то парасимпатическая нервная система преимущественно обеспечивает поддержание гомеостаза.

5. Активация симпатической нервной системы лежит в основе поведения человека, рвущегося в бой. Возбуждение парасимпатической нервной системы обеспечивает пищеварение у человека, лежащего на диване после сытного обеда.

Симпатическая нервная система возбуждает, а парасимпатическая — тормозит деятельность сердца, первая ослабляет двигательную активность кишечника, вторая ее усиливает. В то же время они могут действовать и заодно: вместе увеличивают двигательную активность слюнных и желудочных желез, хотя состав секретируемого сока в зависимости от доли участия каждой системы меняется.

Рефлекс как основной принцип работы нервной системы

Рефлекс — это ответная реакция организма на раздражение при участии ЦНС.
Рефлексы подразделяют на:
1) безусловные рефлексы: врожденные (наследственные) реакции организма на раздражения, осуществляемые с участием спинного мозга или ствола головного мозга;
2) условные рефлексы: приобретенные на основе безусловных рефлексов временные реакции организма, осуществляемые при обязательном участии коры полушарий большого мозга, составляющие основу высшей нервной деятельности.

Для каждого рефлекса имеется своя рефлекторная дуга — это путь, по которому возбуждение проходит от рецептора до эффектора (исполнительного органа).

Рефлекторная дуга представлена цепью нейронов, обеспечивающих восприятие раздражения, трансформацию энергии раздражения в нервный импульс, проведение нервного импульса до нервных центров, обработку поступившей информации и реализацию ответной реакции.

1. Рецептор — это специализированная клетка, предназначенная для восприятия раздражителя (звуковой, световой, химический и др.).
2. Афферентный путь, который представлен афферентными нейронами.
3. Участок ЦНС, представленный спинным или головным мозгом;
4. Эфферентный путь состоит из аксонов эфферентных нейронов, выходящих за пределы ЦНС.
5. Эффектор — это рабочий орган (мышца, железа и др.).

Простейшая рефлекторная дуга включает 2 нейрона и называется моносинаптической (по числу синапсов). Более сложная представлена 3 нейронами и называется трехнейронной или дисинаптической. Однако большинство рефлекторных дуг включает большое количество вставочных нейронов, и называется полисинаптическими.

Рефлекторные дуги могут проходить только через спинной мозг (например, отдергивание руки при прикосновении к горячему предмету) или только головной мозг (например, закрывание век при струе воздуха, направленной в лицо), или как через спинной, так и через головной мозг.

Рефлекторные дуги замыкаются в рефлекторные кольца с помощью обратных связей. Понятие обратной связи и ее функциональная роль были указаны Беллом в 1826г. Он писал, что между мышцей и ЦНС устанавливаются двусторонние связи. С помощью обратной связи в ЦНС поступают сигналы о функциональном состоянии эффектора.

Морфологической основой обратной связи являются рецепторы, расположенные в эффекторе, и афферентные нейроны, связанные с ними. Благодаря обратным афферентным связям осуществляется тонкая регуляция работы эффектора и адекватная реакция организма на изменения окружающей среды.

Нервная система регулирует и координирует деятельность всех органов и систем, обусловливая целостность функционирования организма. Благодаря ей осуществляется связь организма с внешней средой и его адаптация к постоянно меняющимся условиям. Нервная система является материальной основой сознательной деятельности человека, его мышления, поведения, речи.

К центральной нервной системе относятся головной и спинной мозг. Оба они эволюционно, морфологически и функционально связаны между собой и без резкой границы переходят друг в друга.

Функции нервной системы

1. Обеспечивает связь организма с внешней средой.

2. Обеспечивает взаимосвязь всех частей организма между собой.

3. Обеспечивает регуляцию трофических функций, т.е. регулирует обмен веществ.

4. Нервная система, в частности головной мозг, является субстратом психической деятельности.

Функционально нервная система подразделяется на соматическую и автономную (вегетативную), анатомически – на центральную нервную систему и периферическую нервную систему.

Соматическая нервная система регулирует работу скелетных мышц и обеспечивает чувствительность человеческого тела. Автономная (вегетативная) нервная система регулирует обмен веществ, работу внутренних органов и гладких мышц.

Вегетативная нервная система иннервирует все внутренние органы. Она обеспечивает также трофическую иннервацию скелетных мышц, других органов и тканей и самой нервной системы.

Периферическая нервная система образована многочисленными парными нервами, нервными сплетениями и узлами. Нервы доставляют импульсы из ЦНС непосредственно к рабочему органу – мышце – иинформацию с периферии в ЦНС.

Основными элементами нервной системы являются нервные клетки (нейроны).

Тело нейрона, которое связано с отростками, является центральной частью нейрона и обеспечивает питанием остальные части клетки. Тело покрыто слоистой мембраной, которая представляет собой два слоя липидов с противоположной ориентацией, образующих матрикс, в который заключены белки. Тело нейрона имеет ядро или ядра, содержащие генетический материал.

Нервные клетки выполняют ряд общих функций, направленных на поддержание собственных процессов организации. Это обмен веществами с окружающей средой, образование и расходование энергии, синтез белков и др. Кроме того, нервные клетки выполняют свойственные только им специфические функции по восприятию, переработке и хранению информации. Нейроны способны воспринимать информацию, перерабатывать (кодировать) ее, быстро передавать информацию по конкретным путям, организовывать взаимодействие с другими нервными клетками, хранить информацию и генерировать ее. Для выполнения этих функций нейроны имеют полярную организацию с разделением входов и выходов и содержат ряд структурно-функциональных частей.

4.Возрастные особенности строения и развития головного и спинного мозга.

Спинной мозг

Спинной мозг более древнее образование центральной нервной системы. Спинной мозг по внешнему виду представляет собой длинный, цилиндрической формы, уплощенный спереди назад тяж с узким центральным каналом внутри.

Длина спинного мозга взрослого человека в среднем 43 см, масса – около 34-38 г, что составляет примерно 2 % от массы головного мозга.

Спинной мозг имеет сегментарное строение. На уровне большого затылочного отверстия переходит в головной мозг, а на уровне 1 – 2 поясничных позвонков заканчивается мозговым конусом, от которого отходит терминальная /концевая/ нить, окруженная корешками поясничных и крестцовых спинномозговых нервов. В местах отхождения нервов к верхним и нижним конечностям имеются утолщения. Эти утолщения называют шейным и поясничным /пояснично-крестцовым/. В утробном развитии эти утолщения не выражены, шейное утолщение на уровне V - VI шейных сегментов и пояснично-крестцовое в области III – IV поясничных сегментов. Морфологических границ между сегментами спинного мозга не существует, поэтому деление на сегменты является функциональным.

От спинного мозга отходят 31 пара спинномозговых нервов: 8 пар шейных, 12 пар грудных, 5 пар поясничных, 5 пар крестцовых и пара копчиковых.

Спинной мозг состоит из нервных клеток и волокон серого вещества, имеющего на поперечном срезе вид буквы Н или бабочки. На периферии от серого вещества находится белое вещество, образованное нервными волокнами. В центре серого вещества располагается центральный канал, содержащий спинномозговую жидкость. Верхний конец канала сообщается с IV желудочком, а нижний образует концевой желудочек. В сером веществе различают передние, боковые и задние столбы, а на поперечном срезе они соответственно передние, боковые и задние рога. В передних рогах расположены двигательные нейроны, в задних – чувствительные нейроны и в боковых – нейроны, образующие центры симпатической нервной системы.

Спинной мозг человека содержит около 13 нейронов, из них 3% - мотонейроны, а 97% - вставочные. Функция спинного мозга заключается в том, что он служит координирующим центром простых спинальных рефлексов /коленный рефлекс/ и автономных рефлексов /сокращение мочевого пузыря/, а также осуществляет связь между спинальными нервами и головным мозгом.

Спинному мозгу присущи две функции: рефлекторная и проводниковая.

У новорожденного спинной мозг составляет в длину 14 см., к двум годам – 20 см., к 10 годам – 29 см. Масса спинного мозга у новорожденного составляет 5,5 гр., к двум годам – 13 гр., к 7 годам – 19 гр. У новорожденного хорошо выражены два утолщения, а центральный канал шире, чем у взрослого. В первые два года происходит изменение просвета центрального канала. Объем белого вещества возрастает быстрее, чем объем серого вещества.

Головной мозг состоит из: продолговатого, заднего, среднего, промежуточного и конечного мозга. Задний мозг подразделяется на мост и мозжечок.

Головной мозг находится в полости мозгового черепа. Имеет выпуклую верхнелатеральную поверхность и нижнюю поверхность – уплощенную – основание головного мозга

Масса мозга взрослого человека от 1100 до 2000 грамм, от 20 до 60 лет масса и объем остаются максимальными и постоянными, после 60 лет несколько уменьшается.

. Головной мозг состоит из тел нейронов, нервных трактов и кровеносных сосудов. Головной мозг состоит из 3 частей: полушария большого мозга, мозжечок и мозговой ствол.

Большой мозг состоит из двух полушарий – правого и левого, которые связаны одно с другим толстой спайкой /комиссурой/ - мозолистым телом. Правое и левое полушария делятся с помощью продольной щели

Полушария имеют верхнелатеральную, медиальную и нижнюю поверхности.

Дорсальную и латеральную поверхность коры головного мозга принято делить на четыре доли, которые получили наименование от соответствующих костей черепа: лобная, теменная, затылочная, височная

Каждое полушарие делится на доли – лобная, теменная, затылочная, височная, островковая.

Полушария состоят из серого и белого вещества. Слой серого вещества называется корой головного мозга.

Головной мозг развивается из расширенного отдела мозговой трубки, задний отдел превращается в спинной из переднего мозга.

У новорожденного масса головного мозга весит 370 – 400 гр. В течение первого года жизни она удваивается, а к 6 годам увеличивается в 3 раза. Затем происходит медленное прибавление массы, заканчивающееся в 20 – 29 летнем возрасте.

Головной мозг окружен тремя оболочками:

1. Наружная – твердая.

2. Средняя – паутинная.

3. Внутренняя – мягкая /сосудистая/.

Продолговатый мозг находится между задним мозгом и спинным мозгом. Длина продолговатого мозга у взрослого человека составляет 25 мм. Имеет форму усеченного конуса или луковицы.

Функции продолговатого мозга:

Мозжечок - помещается под затылочными долями полушария большого мозга и лежит в черепной ямке. Максимальная ширина – 11,5 см., длина – 3-4 см. На долю мозжечка приходится около 11% от веса головного мозга. В мозжечке различают: полушария, а между ними – червь мозжечка.

Средний мозг в отличие от других отделов головного мозга устроен менее сложно. В нем выделяют крышу и ножки. Полостью среднего мозга является водопровод мозга.

Промежуточный мозг в процессе эмбриогенеза развивается из переднего мозгового пузыря. Образует стенки третьего мозгового желудочка. Промежуточный мозг расположен под мозолистым телом, состоит из таламуса, эпиталамуса, метаталамуса и гипоталамуса.

Кора головного мозга представляет собой филогенетически наиболее молодой и вместе с тем сложный отдел мозга, предназначенный

для обработки сенсорной информации, формирования поведенческих

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.