Типы нервных волокон их различия

Имеется два типа нервных волокон – миелинизированные и немиелинизированные. Оболочку немиелинизированных волокон образуют шванновские клетки (если волокно покрыто оболочкой шванновской клетки). Оболочку миелинизированных волокон в периферической нервной системе формируют шванновские клетки, а в ЦНС – олигодендроциты. Миелиновая оболочка через равные промежутки прерывается, образуя свободные от миелина участки – узловые перехваты Ранвье. Миелиновая оболочка нервных волокон выполняет изолирующую функцию, обеспечивает более экономное и быстрое проведение возбуждения.

O Классификация Эрлангера-Гассера

Является наиболее полной классификацией нервных волокон по скорости проведения нервного импульса.

Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Афферентные — мышечные веретёна, сухожильные органы; эфферентные — скелетные мышцы 10-20 60-120 +
Афферентные — тактильное чувство; коллатерали Aα волокон к интрафузальным мышечным волокнам 7-15 40-90 +
Эфферентные — мышечные веретёна 4-8 15-30 +
Афферентные — температура, быстрое проведение боли 3-5 5-25 +
B Симпатические, преганглионарные; постганглионарные волокна цилиарного ганглия 1-3 3-15 прерывистая
C Симпатические, постганглионарные; афферентные — медленное проведение боли 0,3-1 0,5-2 -

O Классификация по Ллойду

Классифицирует только афферентные нейроны.

Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Ia Мышечные веретёна 18-22 90-120 +
Ib Сухожильные рецепторы 15-18 60-90 +
II Механорецепторы кожи, вторичные мышечные веретёна 7-15 40-90 +
III Рецепторы связок 1-5 3-25 прерывистая
IV Болевые рецепторы, рецепторы соединительной ткани 0,1-1 0,5-2 -

9. Значение миелиновой оболочки и перехватов Ранвье в проведении возбуждения по нервному волокну

Дубинин –

"Если ПД (потенциал действия) возник в некоторой точке 1 мембраны (рис. 3.17, а), он начинает выполнять функцию запускающего стимула по отношению к соседним областям. При этом ток натрия, формирующий первую фазу ПД, оказывает действие, аналогичное влиянию деполяризующего электрического стимула. В результате потенциал-зависимые ионные каналы на еще не активированной мембране начинают открываться, и ПД делает первый шаг. Развившись в точке 2, ПД запускает возбуждение в точке 3 и т. д. Этот процесс можно уподобить волне, расходящейся по воде от места падения камня.


Рис. 3.17. Схемы распространения ПД по нервным клеткам: а — общая схема; б — распространение ПД по немиелинизированному (безмякотному) волокну (1, 2, 3, 4 — участки мембраны нейрона); в — распространение ПД по миелинизированному волокну

Необходимость открывания ионных каналов на последовательных участках мембраны делает проведение ПД весьма медленным — около 0,5—1 м/с (рис. 3.17, б), при этом ширина одномоментно активированной зоны (фронт ПД) составляет примерно 1 мм.

Смирнов –

"Сальтаторный типпроведениянервного импульса осуществляется в миелиновых волокнах (типа А и В), для которых характерна концентрация потенциалзависимых ионных каналов только в небольших участках мембраны "Перехваты Ранвье", где их плотность достигает 12000 на 1 мкм 2 , что примерно в 100 раз выше, чем в мембранных безмиелиновых волокон. В области миелиновых муфт (межузловые сегменты длиной 1-2 мм), обладающих хорошими изолирующими свойствами, потенциал-зависимых каналов почти нет, и мембрана осевого цилиндра там практически невозбудима. В этих условиях ПД, возникший в одном перехвате Ранвье, электротонически (без участия ионных каналов) распространяется до соседнего перехвата, деполяризуя там мембрану до критического уровня, что приводит к возникновению нового ПД, т.е. возбуждение проводится скачкообразно.

Постоянная длины мембраны миелинового волокна достигает 5 мм. Это значит, что ПД, распространяется электротонически на этом расстоянии, сохраняет 37% своей амплитуды (около 30 мВ) и может деполяриховать мембрану до критического уровня (пороговый потенциал в перехватах Ранвье равен около 15 мВ), поэтому в случае повреждения ближайших на пути следования перехватов Ранвье потенциал действия может электротонически возбудить 2-4-й и даже 5-й перехваты (фактор надежности).

Сальтаторное поведение ПД по миелиновым волокнам является эволюционно более поздним механизмом, возникшим впервые у позвоночных. Оно имеет два важных преимущества оп сравнению с непрерывным проведением возбуждения. Во первых, оно более экономично в энергетическом плане, т.к. возбуждаются только перехваты Ранвье, площадь которых менее 1% мембраны, и, следовательно, надо меньше энергии для восстановления трансмембранных градиентов Na + и Ka + , уменьшающихся в процессе формирования ПД. Во вторых, возбуждение проводится с большей скоростью, чем в безмиелиновых волокнах, так как возникший ПД на протяжении миелиновых муфт распространяется электротонически, что в 10 7 раз быстрее, чем скорость физиологического проведения ПД."

Проведение нервного импульса от тела нейрона к окончанию аксона различается в немиелинизированных и имелинизированных волокнах.

Миелиновое нервное волокно. состоит из осевого цилиндра (аксона), вокруг которого шванновские клетки образуют миелин за счёт концентрического наслаивания собственной плазматической мембраны. Миелин прерывается через регулярные промежутки (от 0,2 до 2 мм) концентрической щелью шириной около 1 мкм, это узлы, или перехваты Ранвье. Таким образом, межузловые сегменты аксона, расположенные между соседними перехватами Ранвье, содержат миелин — электрический изолятор, не позволяющий проходить через него локальным токам, поэтому ПД возникают только в перехватах Ранвье. Другими словами, ПД перемещается вдоль нервного волокна скачками, от одного перехвата Ранвье к другому перехвату (скачкообразное проведение).

? Плотность потенциалозависимых Na+ каналов аксолеммы в перехватах Ранвье — до 2000 на 1 мкм2 (в перикарионе — 50–70, в начальном сегменте аксона — 2000, в межузловых сегментах Na+ каналы практически отсутствуют). В силу высокой плотности Na+ каналов перехваты Ранвье характеризуются высокой возбудимостью, а локальные токи достаточно велики для возбуждения соседнего перехвата.

? Локальные токи текут от перехвата к перехвату (через внеклеточную жидкость кнаружи от миелина и через аксоплазму внутри аксона) с минимальными потерями.

? Энергозатраты нервного волокна на проведение ПД относительно невелики, поскольку возбуждаются только перехваты Ранвье, площадь которых составляет менее 1% общей поверхности мембраны аксона. Поэтому даже после длительных ритмических пачек ПД трансмембранный градиент концентраций ионов практически не изменяется.

? В физиологических условиях ПД движутся в одном направлении от места раздражения (ортодромное проведение). ПД, проходящий по нервному волокну, возбуждает следующий, но не предыдущий участок мембраны. Это связано с рефрактерностью предыдущего участка после возбуждения. Проведение в противоположном направлении (антидромное проведение) возможно при травматическом поражении нервных волокон и в редких случаях (аксон–рефлекс).

? Нарушение миелинизации нервных волокон приводит к нарушениям проводимости (демиелинизирующие заболевания). При разрушении миелиновой оболочки происходит резкое снижение скорости и надёжности проведения возбуждения по нервам. Наиболее распространённым среди демиелинизирующих заболеваний является множественный склероз, проявляющийся различными параличами и потерей чувствительности.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Возбуждение, возникнув в одном участке мембраны возбудимой клетки, обладает способностью распространяться. Длинный отросток нейрона – аксон (нервное волокно) выполняет в организме специфическую функцию проведения возбуждения на большие расстояния.

• Закон анатомической и физиологической непрерывности – возбуждение может распространяться по нервному волокну только в случае его морфологической и функциональной целостности.

• Закон двустороннего проведения возбуждения – возбуждение, возникающее в одном участке нерва, распространяется в обе стороны от места своего возникновения. В организме возбуждение всегда распространяется по аксону от тела клетки (ортодромно).

• Закон изолированного проведения – возбуждение, распространяющееся по волокну, входящему в состав нерва, не передается на соседние нервные волокна.

• распространяется по нервным волокнам с затуханием (с декрементом ), т.е. амплитуда локального ответа быстро падает с увеличением расстояния от места его возникновения;

• вследствие затухания локальный ответ распространяется на небольшие расстояния (не более 2 см);

• местное возбуждение распространяется пассивно, без затрат энергии клетки;

• механизм распространения местного возбуждения аналогичен распространению электрического тока в проводниках; такой способ распространения возбуждения называют электротоническим .

• распространяется по нервным волокнам без затухания, амплитуда потенциала действия одинакова на любом расстоянии от места его возникновения;

• расстояние, на которое распространяется потенциал действия, ограничено только длиной нервного волокна;

• распространение потенциала действия – активный процесс, в ходе которого изменяется состояние ионных каналов волокна, энергия АТФ требуется для восстановления трансмембранных ионных градиентов;

• механизм проведения потенциала действия более сложен, чем механизм распространения местного возбуждения.

Миелиновые волокна. Часть нервных волокон в ходе эмбриогенеза подвергается миелинизации: леммоциты ( шванновские клетки ) сначала прикасаются к аксону, а затем окутывают его (рис. 1, А, Б). Мембрана леммоцита наматывается на аксон наподобие рулета, образуя многослойную спираль (миелиновую оболочку) (рис. 1, В, Г). Миелиновая оболочка не является непрерывной – по всей длине нервного волокна на равном расстоянии друг от друга в ней имеются небольшие перерывы (перехваты Ранвье). В области перехватов аксон лишен миелиновой оболочки.

Рис. 1. Формирование миелиновой оболочки вокруг аксона на разных стадиях его развития (А – Г); соотношение леммоцита и безмиелиновых волокон (Д) (по Судакову, 2000)

1 – леммоцит, 2 – миелиновое волокно, 3 – миелиновая оболочка, 4 – безмиелиновое волокно

Безмиелиновые волокна. Миелинизация других волокон заканчи­вается на ранних стадиях эмбрионального развития. В леммоцит по­гружается один или несколько аксонов; он полностью или частично окружает их, но не образует многослойной миелиновой оболочки (рис. 1, Д).

В состоянии покоя вся внутренняя поверхность мембраны нервного волокна несет отрицательный заряд, а наружная сторона мембраны – положительный. Электрический ток между внутренней и наружной стороной мембраны не протекает, так как липидная мембрана имеет высокое электрическое сопротивление.

Во время развития потенциала действия в возбужденном участке мембраны происходит реверсия заряда (рис. 2, А). На границе возбужденного и невозбужденного участка начинает протекать электрический ток (рис. 2, Б). Электрический ток раздражает ближайший участок мембраны и приводит его в состояние возбуждения (рис. 2, В), в то время как ранее возбужденные участки возвращаются в состояние покоя (рис. 2, Г). Таким образом, волна возбуждения охватывает все новые участки мембраны нервного волокна.

Рис. 2. Механизм распространения возбуждения по безмиелиновому нервному волокну. Объяснения – в тексте

При развитии ПД в одном из перехватов Ранвье происходит реверсия заряда мембраны (рис. 3, А). Между электроотрицательными и электроположительными участками мембраны возникает электрический ток, который раздражает соседние участки мембраны (рис. 3, Б). Однако в состояние возбуждения может перейти только участок мембраны в области следующего перехвата Ранвье (рис. 3, В). Таким образом, возбуждение распространяется по мембране скачкообразно (сальтаторно) от одного перехвата Ранвье к другому.

Рис. 3. Механизм распространения возбуждения по миелиновому нервному волокну. Объяснения – в тексте

Нервные волокна различаются по диаметру и степени миелинизации. Чем больше диаметр нервного волокна и степень его миелинизации, тем выше скорость проведения возбуждения. Волокна с разной скоростью проведения выполняют различные физиологические функции. Нервные волокна подразделяются на 6 типов, характеристики которых приведены в табл. 4.1.

Таблица 4.1. Типы нервных волокон, их свойства и функциональное назначение

Тип

Диаметр (мкм)

Миелинизация

Скорость про-ведения (м/с)

Функциональное назначение

Двигательные волокна соматической НС; чувствительные волокна проприорецепторов

Чувствительные волокна кожных рецепторов

Чувствительные волокна проприорецепторов

Чувствительные волокна терморецепторов, ноцицепторов

Преганглионарные волокна симпатической НС

Постганглионарные волокна симпатической НС; чувствительные волокна терморецепторов, ноцицепторов, некоторых механорецепторов

Нервные волокна всех групп обладают общими свойствами:

• нервные волокна практически неутомляемы;
• нервные волокна обладают высокой лабильностью, т. е. могут воспроизводить потенциал действия с очень высокой частотой.

Нервная ткань развивается из эктодермы, является основным компонентом нервной системы. Основными свойствами нервной ткани являются возбудимость и проводимость.

Нервная ткань состоит из нервных клеток (нейронов) и межклеточного вещества (нейроглии). Нейроны способны воспринимать, анализировать раздражение, приходить в состояние возбуждения, генерировать нервные импульсы и передавать их другим нейронам либо рабочим органам.

Нейроны представляют собой отростчатые клетки, размеры которых колеблются в значительных пределах. По форме нервные клетки также различны. Отростки являются проводниками нервных импульсов. Различают два вида отростков:

· аксон – длинный отросток, обеспечивает проведение импульса от нервной клетки к рабочему органу или другой клетке; каждая нервная клетка имеет только один аксон;

· дендрит – короткий, древовидно-ветвящийся отросток, воспринимает импульсы и проводит к телу нейрона; количество дендритов у разных нейронов различное.

Нейрон имеет типичное клеточное строение. В цитоплазме клеток присутствуют специфические органеллы:

· нейрофибриллы – участвуют в проведении нервного импульса;

· тигроидное (базофильное) вещество – представляет собой зернистость, образующую нерезко отграниченные глыбки, лежащие в теле клетки и дендритах. Оно меняется в зависимости от функционального состояния клетки. В условиях перенапряжения, травмы (перерезка отростков, отравление, кислородное голодание и др.) глыбки распадаются и исчезают. Этот процесс получил название хроматолиза, или тигролиза, т.е. растворения тигроидного вещества. По морфологическим изменениям базофильного вещества можно судить о состоянии нервных клеток в условиях патологии и эксперимента.

Нейрон является структурно-функциональной единицей нервной ткани. С помощью своих отростков он взаимодействует с другими нейронами, образуя рефлекторные дуги – нейронные цепи, из которых построена нервная система.

В организме человека нервный импульс обычно передается от одного нейрона к другому либо на рабочий орган не напрямую, а через химический посредник – медиатор.

Нейроны классифицируют по трем основным группам признаков: морфологическим, функциональным и биохимическим.

Морфологическая классификация (по особенностям строения):

ü по количеству отростков нейроны делятся на:

- униполярные (с одним отростком) – встречаются в эмбриогенезе;

- биполярные (с двумя отростками) – некоторые нейроны сетчатки глаза, нейроны спирального и вестибулярного ганглиев;

- псевдоуниполярные (ложно униполярные) – к ним относятся все рецепторные нейроны спинальных и краниальных ганглиев. Аксон и дендрит начинается от общего выроста тела клетки с последующим Т-образным делением;

- мультиполярные (имеют три и более отростка) – преобладают во всех отделах ЦНС и в вегетативных ганглиях периферической нервной системы;

ü по форме – описано до 80 вариантов нейронов (звездчатые, пирамидальные, грушевидные, веретеновидные и др.).

Функциональная классификация (в зависимости от выполняемой функции и места в рефлекторной дуге различают нейроны):

- рецепторные (чувствительные, афферентные) – с помощью дендритов воспринимают воздействия внешней или внутренней среды, генерируют нервный импульс и передают его другим типам нейронов; встречаются только в спинальных ганглиях и чувствительных ядрах черепно-мозговых нервов;

- эффекторные (эфферентные) – передают возбуждение на рабочие органы (мышцы или железы); располагаются в передних рогах спинного мозга и вегетативных нервных ганглиях;

- вставочные (ассоциативные) – располагаются между рецепторными и эффекторными нейронами; по количеству их больше всего, особенно в ЦНС;

- секреторные (нейроэндокриноциты) – специализированные нейроны, по своей функции напоминающие эндокринные клетки. Они синтезируют и выделяют в кровь нейрогормоны, расположены в гипоталамической области головного мозга; регулируют деятельность гипофиза, а через него и многие периферические эндокринные железы.

Медиаторная классификация (по химической природе выделяемого медиатора):

- холинергические (медиатор ацетилхолин);

- аминергические (медиаторы – биогенные амины, например, норадреналин, серотонин, гистамин);

- ГАМК-эргические (медиатор – гамма-аминомасляная кислота);

- пептидергические (медиаторы – пептиды, например, опиодные пептиды, субстанция Р, холецистокинин и др.);

- пуринергические (медиаторы – пуриновые нуклеотиды, например, аденозин) и др., а также нейроны, которые в качестве медиатора используют аминокислоты (глицин, глутамат, аспартат).

Нейроглия(межклеточное вещество) органически связана с нервными клетками, имеет клеточное строение и осуществляет трофическую, секреторную, защитную, разграничительную и опорную функцию. Она поддерживает постоянство среды вокруг нейронов. Клетки нейроглии делятся на две группы: макроглию и микроглию.

Макроглия. Клетки макроглии бывают трех типов:

· эпендимоциты – выстилают каналы и желудочки спинного и головного мозга, по которым циркулирует спинномозговая жидкость (ликвор). В желудочках мозга находятся сосудистые сплетения. Они покрыты специализированными секреторными эпендимоцитами, участвующими в образовании ликвора.

· астроциты – различают протоплазматические и волокнистые астроциты. Протоплазматические астроциты имеют короткие толстые отростки. Они расположены в сером веществе мозга, выполняют разграничительную и трофическую функции. Волокнистые астроциты находятся в белом веществе, имеют многочисленные тонкие длинные отростки, которые оплетают кровеносные сосуды мозга, образуя периваскулярные глиальные пограничные мембраны. Их отростки также изолируют синапсы. Таким образом, они изолируют нейроны и кровеносные сосуды и участвуют в образовании гематоэнцефалического барьера, обеспечивают обмен веществ между кровью и нейронами. Они также участвуют в образовании оболочек мозга и выполняют опорную функцию (образуют каркас мозга).

· олигодендроциты – имеют мало отростков, окружают нейроны, выполняя трофическую (участие в питании нейронов) и разграничительную функции. Олигодендроциты, расположенные вокруг тел нейронов, называются мантийными глиоцитами. Олигодендроциты, расположенные в периферической нервной системе и образующие оболочки вокруг отростков нейронов, называют леммоцитами (шванновскими клетками).

Нервные волокна – это отростки нейронов, покрытые глиальными оболочками. Отростки нейронов лежат внутри нервных волокон и называются осевыми цилиндрами. Их окружают глиальные клетки – олигодендроциты, которые здесь называются леммоцитами (оболочечными клетками), или шванновскими клетками.

По гистологическому строению нервные волокна бывают миелиновые (мякотные) и безмиелиновые (безмякотные).

Миелиновые нервные волокна имеют оболочку из двух слоев: внутренний называется миелиновым (мякотным) и представлен липопротеидным веществом – миелином; наружный – шванновскими клетками и называется нейролеммой. Миелин служит для защиты, питания и изоляции нервных волокон. Через равные промежутки миелиновая оболочка прерывается, образуя перехваты Ранвье. Такие волокна образуют белое вещество спинного и головного мозга, входят в периферические нервы.

Безмиелиновые (безмякотные) нервные волокна преимущественно входят в состав вегетативной нервной системы. Оболочка состоит из клеток нейроглии – шванновских клеток, плотно прилегающих друг к другу.

По функции нервные волокна бывают двигательные и чувствительные.

Нервные волокна заканчиваются нервными окончаниями. По функции нервные окончания делятся на:

· рецепторы – чувствительные нервные окончания образованы концевыми разветвлениями дендритов чувствительных нейронов. Они воспринимают раздражения из внешней среды – экстерорецепторы и из внутренних органов – интерорецепторы.

· эффекторы – двигательные нервные окончания являются концевыми разветвлениями аксонов двигательных клеток, посредством которых импульс передается на ткани рабочих органов. Двигательные нервные окончания скелетных мышц называются моторными бляшками.

Особую группу нервных окончаний образуют соединения (контакты) между нервными клетками – межнейрональные синапсы.

Классификация нервных волокон основана на различиях их строения и функции (скорости проведения нервных импульсов). Выделяют три основных типа нервных волокон:

1. Волокна типа А - толстые, миелиновые, с далеко отстоящими узловыми перехватами. Проводят импульсы с высокой скоростью (15-120 м/с); подразделяются на 4 подтипа (α, β, γ, δ) с уменьшающимися диаметром и скоростью проведения импульса.

2. Волокна типа В - средней толщины, миелиновые, меньшего диаметра, чем волокна тина А, с более тонкой миелиновой оболочкой и более низкой скоростью проведения нервных импульсов (5-15 м/с).

3. Волокна типа С - тонкие, безмиелиновые, проводят импульсы со сравнительно малой скоростью (0,5-2 м/с).

Регенерация нервных волокон в ПНС

Регенерация нервных волокон в ПНС включает закономерно развертывающуюся сложную последовательность процессов, в ходе которых отросток нейрона активно взаимодействует с глиальными клетками. Собственно регенерация волокон следует за рядом реактивных изменений, обусловленных их повреждением.

Реактивные изменения нервного волокна после его перерезки. В течение 1 -й недели после перерезки нервного волокна развивается восходящая дегенерация проксимальной (ближайшей к телу нейрона) части аксона, на конце которой формируется расширение (ретракционная колба). Миелиновая оболочка в области повреждения распадается, тело нейрона набухает, ядро смещается к периферии, хроматофильная субстанция растворяется.

В дистальной части волокна после его перерезки отмечается нисходящая дегенерация с полным разрушением аксона, распадом миелина и последующим фагоцитозом детрита макрофагами и глией.

Структурные преобразования при регенерации нервного волокна. Через 4-6 нед. структура и функция нейрона восстанавливаются, от ретракционной колбы в направлении дистальной части волокна начинают отрастать тонкие веточки (конусы роста). Шванновские клетки в проксимальной части волокна пролиферируют, образуя ленты (Бюкгнера), параллельные ходу волокна. В дистальной части волокна шванновские клетки также сохраняются и митотически делятся, формируя ленты, соединяющиеся с аналогичными образованиями в проксимальной части.

Регенерирующий аксон растет в дистальном направлении со скоростью 3-4 мм/сут. вдоль лент Бюнгнера, которые играют опорную и направляющую роль; шванновские клетки образуют новую миелиновую оболочку. Коллатерали и терминали аксона восстанавливаются в течение нескольких месяцев.

Условиями регенерации являются: отсутствие повреждения тела нейрона, небольшое расстояние между частями нервного волокна, отсутствие соединительной ткани, которая может заполнить промежуток между частями волокна. При возникновении преграды на пути регенерирующего аксона формируется травматическая (ампутационная) неврома, которая состоит из разрастающихся аксона и шванновских клеток, впаивающихся в соединительную ткань.

Регенерация нервных волокон в ЦНС отсутствует: хотя нейроны ЦНС обладают способностью к восстановлению своих отростков, этого не происходит, по-видимому, вследствие неблагоприятного влияния микроокружения. После повреждения нейрона микроглия, астроциты и гематогенные макрофаги фагоцитируют детрит в участке разрушенного волокна, на его месте пролиферирующие астроциты образуют плотный глиальный рубец.

НЕРВНЫЕ ОКОНЧАНИЯ

Нервные окончания - концевые аппараты нервных волокон. По функции они разделяются на три группы:

1) межнейронные контакты (синапсы) - обеспечивают функциональную связь между нейронами;

2) эфферентные (эффекторные) окончания - передают сигналы из нервной системы на исполнительные органы (мышцы, железы), имеются на аксонах;

3) рецепторные (чувствительные) окончания воспринимают раздражения из внешней и внутренней среды, имеются на дендритах.

МЕЖНЕЙРОННЫЕ КОНТАКТЫ (СИНАПСЫ)

Синапс состоит из З-х компонентов:пресинаптической части, постсинаптической части и синаптической щели.

Межнейронные контакты (синапсы) подразделяются на электрические и химические.

Электрические синапсыв ЦНС млекопитающих редки; они имеют строение щелевых соединений, в которых мембраны синаптически связанных клеток (пре- и постсинаптическая) разделены промежутком шириной 2 нм, пронизанным коннексонами (см.раздел 2). Последние представляют собой трубочки, образованные белковыми молекулами и служащие водными каналами, через которые мелкие молекулы и ионы могут транспортироваться из одной клетки в другую. Когда потенциал действия, распространяющийся по мембране одной клетки, достигал области щелевого соединения, электрический ток пассивно протекал через щель от одной клетки к другой. Импульс способен передаваться в обоих направлениях и практически без задержки.

Химические синапсы – наиболее распространенный тип у млекопитающих. Их действие основано на преобразовании электрического сигнала в химический, который затем вновь преобразуется в электрический. Химический синапс состоит из трех компонентов: npecunanmuческой части, постсинаптической части и синаптической щели (рис.8.16, 8.17.).


Рис. 8.16. Строение химического синапса. Пресинаптическая часть (ПРСЧ) имеет вид концевого бутона (КБ) и включает: синаптические пузырьки (СП), митохондрии (МТХ), нейротрубочки (НТ), нейрофиламенты (НФ), пресинаптическую мембрану (ПРСМ) с пресинаптическим уплотнением (ПРСУ). В постсинаптическую часть (ПОСЧ) входит постсинаптическая мембрана (ПОСМ) с постсинаптическим уплотнением (ПОСУ). В синаптической щели (СЩ) находятся интрасинаптические филаменты (ИСФ).


Рис. 8.17 Аксодендрический синапс в ЦНС (х22000). Три терминальных расширения (В) образуют синапс с дендритом (D). Дендрит идентифицируется по наличию рибосом (R) и эндоплазматической сети (rER), которых нет в аксоне. В терминалях аксона много синаптических пузырьков (V), митохондрий.

1. Пресинаптическая часть образуется аксоном по его ходу (проходящий синапс) или представляет собой расширенную конечную часть аксона (концевой бутон). В ней содержатся митохондрии, аЭПС, иейрофиламенты, нейротрубочки и синаптические пузырьки диаметром 20-65 нм, в которых находится нейромедиатор. Форма и характер содержимого пузырьков зависят от находящихся в них нейромедиаторов. Круглые светлые пузырьки обычно содержат ацетилхолин, пузырьки с компактным плотным центром - норадреналин, крупные плотные пузырьки со светлым подмембранным ободком - пептиды. Нейромедиаторы вырабатываются в теле нейрона и механизмом быстрого транспорта переносятся в окончания аксона, где происходит их депонирование. Частично синаптические пузырьки образуются в самом синапсе путем отщепления от цистерн аЭПС. На внутренней стороне плазмолеммы, обращенной к синаптической щели (пресинаптической мембраны) имеется пресинаптическое уплотнение, образованное фибриллярной гексагональной белковой сетью, ячейки которой способствуют равномерному распределению синаптических пузырьков по поверхности мембраны.

2. Постсинаптическая часть представлена постсинаптической мембраной, содержащей особые комплексы интегральных белков - синаптические рецепторы, связывающиеся с нейромедиатором. Мембрана утолщена за счет скопления под ней плотного филаментозного белкового материала (постсинаптическое уплотнение). В зависимости от того, является ли постсинаптической частью межнейронного синапса дендрит, тело нейрона или (реже) его аксон, синапсы подразделяют на аксо-дендритические, аксо-соматические и аксо-аксоналъные, соответственно.

3. Синаптическая щель шириной 20-30 нм иногда содержит поперечно расположенные гликопротеиновые интрасинаптические филаменты толщиной 5 нм, которые являются элементами специализированного гликокаликса, обеспечивающими адгезивные связи пре- и постсинаптической частей, а также направленную диффузию медиатора.

Механизм передачи нервного импульса в химическом синапсе. Под действием нервного импульса происходит активация потенциал-зависимых кальциевых каналов пресинаптической мембраны; Са 2+ устремляется в аксон, мембраны синаптических пузырьков в присутствии Са 2+ сливаются с пресинаптической мембраной, а их содержимое (медиатор) выделяется в синаптическую щель механизмом экзоцитоза. Воздействуя на рецепторы постсинаптической мембраны, медиатор вызывает либо ее деполяризацию, возникновение постсинаптического потенциала действияи образование нервного импульса, либо ее гиперполяризацию, обусловливая реакцию торможения. Медиаторами, опосредующими возбуждение, например, служат ацетилхолин и глутамат, а торможение опосредуется ГАМК и глицином.

После прекращения взаимодействия медиатора с рецепторами постсинаптической мембраны большая часть его эндоцитозом захватывается пресинаптической частью, меньшая рассеивается в пространстве и захватывается окружающими глиальными клетками. Некоторые медиаторы (например, ацетилхолин) расщепляются ферментами на компоненты, которые далее захватываются пресинаптической частью. Мембраны синаптических пузырьков, встроенные в пресинаптическую мембрану, в дальнейшем включаются в эндоцитозные окаймленные пузырьки и повторно используются для образования новых синаптических пузырьков.

В отсутствие нервного импульса пресинаптическая часть выделяет отдельные небольшие порции медиатора, вызывая в постсинаптической мембране спонтанные миниатюрные потенциалы.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.