Топография диска зрительного нерва



Содержание:

  • 1 Микроскопическое строение
  • 2 Внутриглазная часть и диск зрительного нерва
  • 3 Внутриглазничная часть зрительного нерва
  • 4 Внутриканальцевая часть зрительного нерва
  • 5 Внутричерепная часть зрительного нерва
  • 6 Оболочки зрительного нерва

Аксоны ганглиозных клеток сетчатки объединяются и выходят из глаза, образуя зрительный нерв (II черепно-мозговой нерв, n. opticus). Таким образом, зрительный нерв, является лишь частью зрительного пути.

Хотя зрительный нерв и называется нервом, к нервам периферической нервной системы он никакого отношения не имеет. Тем не менее необходимо отметить, что существующие различия в строении периферического нерва и зрительного нерва относительны. Периферические нервы окружены слоем шванновских клеток, синтезирующих миелин. В зрительном нерве, так же, как и в белом веществе головного мозга, аксоны ганглиозных клеток покрыты двойным слоем плазмолеммы олигодендроцитов, также синтезирующих миелиновую оболочку. Как в зрительном нерве, так и периферических нервах видны участки прерывания миелиновой оболочки, называемые перехватами Ранвье.

Различают несколько анатомических частей зрительного нерва (рис. 3.7.1):


    внутриглазная часть и диск зрительного нерва;

  • внутричерепная.
  • Длина зрительного нерва от заднего полюса глазного яблока до зрительного перекреста (хиазмы), где зрительный нерв завершает свой путь, равняется примерно 50 мм. Глазничная часть его при этом равна 24 мм. Расстояние от заднего полюса глаза до вхождения в зрительный канал равно всего 18 мм. Эти 6 мм разницы являются следствием хода нерва в глазнице по кривой, выпуклая поверхность которой обращена вниз и кнаружи. Наличие такого извилистого хода и обеспечивает подвижность глаза.

    Внутриглазной участок зрительного нерва наиболее короткий (0,7—1,0 мм). Часть нерва в зрительном канале имеет длину 9 мм. У вершины глазницы, т. е. в месте его вхождения в зрительный канал, зрительный нерв окружен сухожилиями мышц глаза, образующих кольцо (цинново кольцо).

    На поперечном срезе зрительного нерва (рис. 3.7.2)


    видно, что от мягкой мозговой оболочки, окружающей нерв, отделяются многочисленные соединительнотканные перегородки, проникающие в паренхиму и разделяющие аксоны ганглиозных клеток сетчатки на 800—1200 пучков. Число волокон колеблется от 1 060 000—1 130 000 до 1 190 000. Каждый аксон ограничен плазматической мембраной, к которой прилежит прослойка, состоящая из олигодендроцитов. На продольном срезе ядра глиальных клеток располагаются в виде рядов, простирающихся вдоль аксонов. Основной функцией глиальных клеток является синтез миелина. В отличие от шванновских клеток периферических нервов, разрушение глиоцитов не приводит к образованию регенерационной глиальной трубки. Именно по этой причине не происходит и регенерации аксонов ганглиозных клеток сетчатки. Многие исследователи считают, что основной причиной неудач при пересадке ткани зрительного нерва является именно это свойство глиоцитов. После импрегнации препаратов солями тяжелых металлов четко выявляется, что аксоны на своем протяжении имеют перехваты Ранвье, по строению аналогичные образованиям, обнаруживаемым в центральной нервной системе.

    Цитоплазма аксонов насыщена микротрубочками диаметром 20—25 нм, ориентированными вдоль волокна, тонкими микрофиламентами (6—7 нм), митохондриями и профилями гладкого эндоплазматического ретикулума.

    На продольном разрезе видно, что перегородки внезапно прерываются, и эти места выполнены глиальной тканью.

    Как указано выше, каждая трабекула в центре содержит сосуд. Кровеносные сосуды, проходящие в толстых септах, обладают мышечным и эластическим слоями. Снаружи они сначала окутаны слоем рыхлой соединительной ткани, а затем и плотной соединительной тканью. Наиболее кнаружи лежит слой глиальных клеток (рис. 3.7.3—3.7.6).

    - вторая пара черепно-мозговых нервов, по которым зрительные раздражения, воспринятые чувствительными клетками сетчатки, передаются в головной мозг.

    Зрительный нерв (n.opticus) представляет собой нерв специальной чувствительности, по своему развитию и строению представляет собой не типичный черепномозговой нерв, а как бы мозговое белое вещество, вынесенное на периферию и связанное с ядрами промежуточного мозга, а через них и с корой больших полушарий, он образован аксонами ганглиозных клеток сетчатки и заканчивается в хиазме. У взрослых людей его общая длина варьирует от 35 до 55 мм. Значительную часть нерва составляет глазничный отрезок (25-30 мм), который в горизонтальной плоскости имеет S-образный изгиб, благодаря чему не испытывает натяжений при движениях глазного яблока.

    На значительном протяжении (от выхода из глазного яблока до входа в зрительный канал — canalis opticus) нерв, подобно мозгу, имеет три оболочки: твердую, паутинную и мягкую. Вместе с ними толщина его составляет 4-4,5 мм, без них - 3-3,5 мм. У глазного яблока твердая мозговая оболочка срастается со склерой и теноновой капсулой, а у зрительного канала - с надкостницей. Внутричерепной отрезок нерва и хиазма, находящиеся в субарахноидальной хиазматической цистерне, одеты только в мягкую оболочку.

    Подоболочечные пространства глазничной части нерва (субдуральное и субарахноидальное) соединяются с аналогичными пространствами головного мозга, но изолированы друг от друга. Они заполнены жидкостью сложного состава (внутриглазная, тканевая, цереброспинальная). Поскольку внутриглазное давление в норме в 2 раза выше внутричерепного (10-12 мм рт. ст.), направление ее тока совпадает с градиентом давления. Исключение составляют случаи, когда существенно повышается внутричерепное давление (например, при развитии опухоли мозга, кровоизлияниях в полость черепа) или, наоборот, значительно снижается тонус глаза.

    Зрительный нерв берёт начало из ганглиозных клеток (третьих нервных клеток) сетчатки. Отростки этих клеток собираются в диске (или соске) зрительного нерва, находящемся на 3 мм ближе к середине от заднего полюса глаза. Далее пучки нервных волокон пронизывают склеру в области решётчатой пластинки, окружаются менингеальными структурами, образуя компактный нервный ствол. Нервные волокна изолированы друг от друга слоем миелина. Все нервные волокна, входящие в состав зрительного нерва, группируются в три основных пучка. Аксоны ганглиозных клеток, отходящие от центральной (макулярной) области сетчатки, составляют папилломакулярный пучок, который входит в височную половину диска зрительного нерва. Волокна от ганглиозных клеток носовой половины сетчатки идут по радиальным линиям в носовую половину диска. Аналогичные волокна, но от височной половины сетчатки, на пути к диску зрительного нерва сверху и снизу "обтекают" папилломакулярный пучок.

    В глазничном отрезке зрительного нерва вблизи глазного яблока соотношения между нервными волокнами остаются такими же, как и в его диске. Далее папилломакулярный пучок перемещается в осевое положение, а волокна от височных квадрантов сетчатки — на всю соответствующую половину зрительного нерва. Таким образом, зрительный нерв четко разделен на правую и левую половины. Менее выражено его деление па верхнюю и нижнюю половины. Важной в клиническом смысле особенностью является то, что нерв лишен чувствительных нервных окончаний.

    В полости черепа зрительные нервы соединяются над областью турецкого седла, образуя хиазму (chiasma opticum), которая покрыта мягкой мозговой оболочкой и имеет следующие размеры: длина 4-10 мм, ширина 9-11 мм, толщина 5 мм. Хиазма снизу граничит с диафрагмой турецкого седла (сохранившийся участок твердой мозговой оболочки), сверху (в заднем отделе) - с дном III желудочка мозга, по бокам - с внутренними сонными артериями, сзади - с воронкой гипофиза.


    Среди пучков волокон зрительного нерва располагаются центральная артерия сетчатки (центральная ретинальная артерия) и одноимённая вена. Артерия возникает в центральной части глаза, а её капилляры покрывают всю поверхность сетчатки. Вместе с глазной артерией зрительный нерв проходит в полость черепа через зрительный канал, образованный малым крылом клиновидной кости.

    Пройдя через толщу жирового тела глазницы зрительный нерв подходит к общему сухожильному кольцу. Этот его участок носит название глазничная часть (лат. pars orbitalis). Затем он входит в зрительный канал (лат. canalis opticus) — эта часть носит название внутриканальцевая часть (лат. pars intracanalicularis), а из глазницы в полость черепа выходит внутричерепная часть (лат. pars intracranialis). Здесь в области предперекрёстной борозды клиновидной кости (лат. os sphenoidale) происходит частичный перекрёст волокон зрительного нерва — лат. chiasma opticum.

    Латеральная часть волокон каждого из зрительных нервов направляется дальше по своей стороне.

    Медиальная часть переходит на противоположную сторону, где соединяется с волокнами латеральной части зрительного нерва гомолатеральной (своей) стороны и образует вместе с ними зрительный тракт лат. tractus opticus.

    По своему ходу ствол зрительного нерва окружён внутренним влагалищем зрительного нерва (лат. vagina interna n. optici), представляющим собой вырост мягкой оболочки головного мозга. Внутреннее влагалище щелевидным межвлагалищным пространством лат. spatia intervaginalis отделяется от наружного (лат. vagina externa n.optici), являющегося выростом паутинной и твёрдой оболочек головного мозга.

    В лат. spatia intervaginalis проходят артерии и вены.

    Каждый зрительный тракт огибает с боковой стороны ножку мозга (лат. pedunculus cerebri) и заканчивается в первичных подкорковых зрительных центрах, которые представлены с каждой стороны латеральным коленчатым телом, подушкой таламуса и ядрами верхнего холмика, где производится первичная переработка зрительной информации и формирование зрачковых реакций.

    От подкорковых центров зрения нервы веером расходятся по обе стороны височной части головного мозга — начинается центральный зрительный путь (зрительная лучистость Грациоле), Далее волокна, несущие информацию от первичных подкорковых зрительных центров собираются вместе, чтобы пройти через внутреннюю капсулу. Заканчивается зрительный путь в коре затылочных долей (зрительной зоне) головного мозга.


    Отделы зрительного нерва

    • Интраокуляриый отдел (диск, головка) — диск зрительного нерва, самый короткий: длина 0,5-1,5 мм, вертикальный диаметр 1,5 мм. Неврологическая патология в этом отделе зрительного нерва включает воспаление (папиллит), отек и аномальные отложения (друзы) .
    • Интроорбитальный отдел зрительного нерва длиной 25-30 мм распространяется от глазного яблока до зрительного канала в вершине орбиты. Из-за появления миелиновой оболочки нервных волокон диаметр зрительного нерва составляет 3-4 мм. В орбите зрительный нерв S-образно изогнут, что обеспечивает возможность движений глаза без натяжения нерва.
    • Интраканаликулярный отдел зрительного нерва имеет длину около 6 мм и проходит зрительный канал. Здесь нерв фиксирован к стенке канала, т. к. твердая мозговая оболочка сливается с надкостницей.
    • Интракраниальный отдел зрительного нерва переходит в хиазму, длинна его может составлять от 5 до 16 мм (в среднем 10 мм). Длинный интракраниальный отдел особенно уязвим при патологии прилежащих структур, таких как аденомы гипофиза и аневризмы.

    Место соединения оптических волокон сетчатки в канале, образованном оболочками глазного яблока. Поскольку слой нервных волокон и вся сетчатка по мере приближения к нему утолщаются, то это место выступает внутрь глаза в виде сосочка, отсюда и прежнее название – papilla n. optici. Общее количество нервных волокон, составляющих ДЗН, достигает 1.200.000, но с возрастом постепенно уменьшается.

    Анатомические параметры ДЗН:

    • длина – около 1 мм;
    • диаметр 1,75 – 2 мм;
    • площадь – 2-3 мм 2

    При УЗ–сканировании:

    • ширина продольного УЗ–сечения внутриглазной части ДЗН составляет 1,85±0,05 мм;
    • ширина ретробульбарной части зрительного нерва в 5 мм от ДЗН – 3,45±0,15 мм; на расстоянии в 20 мм – 5,0±0,25 мм.

    По данным трехмерной оптической томографии

    • горизонтальный диаметр ДЗН – 1,826±0,03 мм;
    • вертикальный диаметр – 1,772±0,04 мм;
    • площадь ДЗН – 2,522±0,06 мм 2 ;
    • площадь экскавации – 0,727±0,05 мм 2 ;
    • глубина экскавации – 0,531±0,05 мм;
    • объем экскавации – 0,622±0,06 мм 3 .

    Локализация: в носовой части глазного дна на расстоянии 2,5-3 мм от заднего полюса глаза и на 0,5- 1 мм книзу от него.

    По тканевой структуре ДЗН относится к безмякотным нервным образованиям. Сам он лишен всех мозговых оболочек, а составляющие его нервные волокна – миелиновой оболочки. ДЗН богато снабжен сосудами и опорными элементами. Его нейроглия состоит исключительно из астроцитов.

    Граница между безмякотным и мякотным отделами зрительного нерва совпадает с наружной поверхностью lamina cribrosa.

    В ДЗН, т. е. в безмякотном отделе зрительного нерва, можно выделить три части.

    1. Ретинальная
    2. Хориоидальная (преламинарная)
    3. Склеральная (ламинарная)

    Постламинарная часть зрительного нерва (ретроламинарная) - представляет собой часть зрительного нерва примыкающую к решетчатой пластинке. Она в 2 раза толще ДЗН и диаметр ее составляет 3–4 мм.

    Зрительный нерв окружен тремя мозговыми оболочками, образующими наружное и внутреннее влагалища зрительного нерва (vaginae externa et interna n. optici).

    • Наружное влагалище образовано твердой мозговой оболочкой.
    • Внутреннее влагалище зрительного нерва состоит из паутинной и мягкой мозговых оболочек и непосредственно окружает ствол зрительного нерва, отделяясь от него только слоем нейроглии. От мягкой мозговой оболочки отходят многочисленные соединительнотканные перегородки, разделяющие в зрительном нерве пучки нервных волокон.
    • Между наружным и внутренним влагалищем располагается межвлагалищное пространство. Делится паутинной оболочкой на субдуральное и субарахноидальное пространство. Заполнены цереброспинальной жидкостью.
    • Внутричерепной отрезок зрительного нерва и хиазма лежат в субарахноидальной хиазматической цистерне и покрыты только мягкой мозговой оболочкой.

    Толщина зрительного нерва с оболочками 4-4,5 мм, без них – 3-3,5 мм.

    Основным источником кровоснабжения переднего отдела зрительного нерва является система задних коротких циллиарных артерий.

    Ретинальная часть ДЗН кровоснабжается за счет a. retinae centralis. Темпоральный сектор этого слоя снабжается веточками из хориоидальных сосудов.

    Преламинарная часть снабжается кровью из капилляров перипапиллярных хориоидальных сосудов.

    Ламинарная часть ДЗН получает питание из терминальных артериол перипапиллярной хориоидеи или от круга Галлера-Цинна.

    Ретроламинарная часть зрительного нерва получает кровь в основном из ветвей сосудистого сплетения мягкой мозговой оболочки. Это сплетение образовано возвратными артериальными ветвями перипапиллярной хориоидеи, артериолами круга Галлера-Цинна и ветвями ЗКЦА.

    Глазничная часть зрительного нерва кровоснабжается a. centralis n. optici.

    Внутриканальная и околоканальная части зрительного нерва имеют особую систему кровоснабжения.

    Сосудистая сеть внутричерепной части зрительного нерва образована разветвлениями передней мозговой и непосредственно внутренней сонной артерии. В кровоснабжении принимают участие глазничная артерия и передняя соединительная артерия.

    Отток крови из переднего отдела зрительного нерва происходит в основном через центральную вену сетчатки. Из области диска в его преламинарной части венозная кровь частично оттекает в перипапиллярные хориоидальные вены, несущие кровь в вортикозные вены глаза. Во внутриканальной части зрительного нерва проходит задняя центральная вена (v. centralis posterior), которая после выхода из ствола нерва вливается в кавернозный синус. Эта вена может быть источником кровотечения в ткань нерва при его повреждениях в костном канале.

    Содержание статьи:

    Резкие изменения остроты зрения вынуждают обращаться к соответствующему специалисту. Врач-офтальмолог назначает необходимые диагностические процедуры, позволяющие установить природу выявленных симптомов. Зачастую пациенту прописывают прохождение через процедуру оптической когерентной томографии. Данное обследование по праву считается одним из наиболее современных способов диагностики.

    Результаты оптической когерентной томографии характеризуются высокой точностью и информативностью. Процедура диагностики позволяет получить наиболее полную клиническую картину. Причем обследование не приносит неприятных симптомов пациентам, что позволяет использовать при различных заболеваниях и травмах органов зрения.


    Несмотря на достоинства процедуры, у оптической когерентной томографии есть несколько противопоказаний, которые могут стать серьезной помехой на пути обследования. Кроме того, данный метод диагностики требует предварительной подготовки, который позволит получить наиболее точные результаты. Пациенту перед походом на процедуру обследования стоит ознакомиться как с противопоказаниями, так и с подготовительными мерами.

    Процедура ОКТ разработана еще в 90-х годах. Впервые использовать подобный метод обследования предложил американский ученый, занимающийся проблемами офтальмологии. Кармен Пулиафито совершил настоящую революцию, выступив с предложением этого метода для обследования глаз. С тех пор подобный тип диагностики пользуется широкой популярностью.

    Оптическая когерентная томография базируется на способности организма человека отражать световые волны. Причем время и степень отражения будут зависеть от структуры тканей. Интенсивность отраженного света позволяет получить подробную информацию о состоянии передней и задней части глаза.Причем точность приобретенных сведений модно сравнить с исследованием тканей под микроскопом.

    Все это позволяет выявить малейшие отклонения от нормы. В результаты при своевременном прохождении обследования болезнь можно устранить еще на начальных стадиях.

    В целом, у процедуры ОКТ можно выявить несколько основных особенностей:

    • комфорт - отсутствуют ослепляющие вспышки и другие воздействия, вызывающие дискомфортные ощущения;
    • скорость - проведение процедуры может уложиться в срок от 5 до 10 минут, причем включая подготовку результатов и их последующую расшифровку;
    • безопасность - обследование проходит неинвазивным способом, не причиняя никого вреда пациенту и не подвергая его риску.

    В целом, ОТК весьма напоминает другое обследование. Процедура УЗИ схожа по принципу действия с диагностикой с использованием томографа. Однако она уступает оптической когерентной томографии в точности исследования. Подобное обстоятельство играет большую роль в правильной постановке диагноза и назначении лечения.

    Показания ОКТ

    Обследование позволяет изучить состояние зрительного аппарата и выявить возможные патологии. Любые аномалии роговицы, сетчатки, компонентов передней камеры и зрительного нерва будут отражены в результатах исследования.

    Показания оптической когерентной томографии существуют, если пациент жалуется на следующие симптомы:

    • резкое падение зрения;
    • эффект пелены перед глазами;
    • повышенное давление, внутри глаза;
    • болезненные ощущения в области глаз;
    • синдром мушек перед глазами;
    • полная потеря зрения;
    • экзофтальм.

    Оптическая томография позволяет изучить угол передней камеры. Кроме того, обследование дает возможность оценить состояние дренажной системы и ее функционирование. Все это является необходимым элементом диагностики глаукомы. ОКТ назначают в обязательном порядке при подготовке к операционному вмешательству. К примеру, перед установкой хрусталика или лазерной коррекцией. К тому же, томография позволяет изучить результаты вмешательства, определив степень эффективности.

    ОКТ назначают для постановки диагноза, если существуют подозрения на следующие заболевания:

    • отслоение сетчатки глаза и другие патологические изменения;
    • различные виды опухолей, затрагивающие зрительный аппарат;
    • стремительно развивающаяся миопия;
    • тромбоз и иные сосудистые патологии;
    • повреждения макулы различного типа;
    • ретинопатия диабетической природы;
    • язва, затрагивающая состояние роговицы;
    • кератит, глубокого типа;
    • пролиферативная витреоретинопатия;
    • различные патологии, затрагивающие диск зрительного нерва;
    • эпиретинальная мембрана;
    • отек макулы, кистозной природы.

    Оптическая томография позволяет выявить даже небольшие изменения в состоянии органов зрения. В результате становится возможным: быстрая и правильная постановка диагноза, определение степени поражений элементов зрительного аппарата, разработка действенной терапевтической схемы.

    ОКТ проводят и в целях профилактики, при наличии болезней, которые могут спровоцировать изменения в состоянии органов зрения, среди заболеваний:

    • гипертония;
    • диабет, сахарного типа;
    • болезни сосудистой системы.

    Противопоказания ОКТ

    Противопоказания оптической когерентной томографии существуют:

    • при наличии заболеваний, не позволяющих сосредоточить взгляд на одной точке в течение 2-3 секунд;
    • если у пациента наблюдаются патологии психического типа;
    • при нахождении обследуемого в бессознательном состоянии;
    • если у пациента регистрируют спутанность сознания.

    Кроме того, процедуру обследования с использованием томографа, не проводят при наличии иных диагностических процедур. Офтальмологи специально выделяют для ОКТ отдельный день. Ведь контактная среда, весьма чувствительна к внешнему воздействию. Поэтому врачи стремятся не подвергать органы зрения излишней нагрузке, предпочитая выбирать для оптической когерентной томографии отдельный день.

    Подготовка к оптической когерентной томографии

    Процедура оптической когерентной томографии не требует особой подготовки. Однако для получения наиболее полной клинической картины требуется искусственно расширить зрачок. Как правило, прибегают к использованию специальных капель, дающий кратковременный эффект увеличения.

    Среди используемых препаратов, выделяют два основных типа:

    • Оказывающие прямое воздействие. Лекарства подобного типа провоцируют сокращение радиальных мышц. В результате зрачок увеличивается в диаметре. К препаратам такого типа можно отнести: Тропикамид и Ирифрин.
    • Воздействующие непрямым образом. Подобные препараты оказывают влияние на мышцы другого типа.Они воздействуют на диаметр значка опосредовано. К подобным лекарствам относят: Цикломед и Атропин.

    Перед применением лекарств необходимо тщательно ознакомится с инструкцией. В день использования мидриатика нельзя садиться за руль машины.

    Как проводится оптическая когерентная томография

    После закапывания специальных капель, пациента обследуют с помощью ОКТ-сканера.

    Техника проведения оптической когерентной томографии следующая:

    • Врач-офтальмолог подготавливает аппарат к диагностическим процедурам. В это время, обследуемому предлагают расположиться на стуле у томографа.
    • После приведения оборудования к состоянию готовности, диагност предлагает пациенту положить подбородок на специальную подставку. Затем обследуемый должен задержать взгляд на специальном объекте.
    • Врач передвигает камеру прибора к глазу, пока аппарат не выдаст четкое изображение сетчатки глаза. Для получения качественной картинки расстояние между глазом и камерой должно быть равно 9 мм. Когда наибольшая четкость изображения была достигнута, камеру аппарат фиксируют в этом положении. Затем офтальмолог проводит калибровку,добиваясь лучшего качества картинки.
    • Этот этап включает отбор наиболее информативных изображений, позволяющих составить наиболее полную клиническую картину.
    • После получения изображения врач-офтальмолог проводит зачистку получившихся снимков от различных дефектов. Удаляются любые артефакты и помехи.
    • На последнем этапе обследования проводят сравнительную характеристику. Она будет включать как полученные снимки, так и изображения здоровых людей, состоящих в аналогичной возрастной группе. К сравнению допускаются и сканы самого пациента,сделанные раньше текущего обследования.

    Расшифровка результатов ОКТ


    Врач проводит расшифровку результатов, полученных после когерентной томографии органов зрения, она включает три этапа:

    • изучение морфологии - рассматриваются форма и срез профиля, производиться оценка четкости контуров;
    • количественный анализ - посредством обследования регистрируются все изменения тканей, рассматриваются не только факт истончения или уплотнения, но и степень изменений;
    • изучение рефлективности - оценивается степень отражения посланного сигнала от тканей.

    Процесс трактовки результатов оптической томографии тесно связан с цветовыми кодами. Они предоставляют возможность узнать о состоянии тканей.

    Все цветовые коды делят на два основных типа:

    • Теплые. Цвета имеющие теплую температуру, свидетельствуют о наличии участков с тонкой тканью. К примеру, черный и синий оттенки будут указывать на области, имеющие опасное истончение.
    • Холодные. Цвета с температурой холодного типа, указывают на области, для которых будет характерно утолщение. К примеру, участки, окрашенные в желтоватые или красноватые тона, будут показывать области с самой большой толщиной.

    На сегодняшний день технологии позволяют создавать трехмерное изображение. Томографы последнего поколения легко выводят 3D-модель обследуемой области для изучения.Подобные возможности позволяют составить наиболее полное заключение о состоянии здоровья зрительного аппарата пациента.

    Стоимость

    Зачастую для прохождения обследования пациенту приходиться отправиться в специализированный медицинский центр. Обычные районные поликлиники не имеют необходимого оборудования. Как правило, офтальмологические кабинеты плохо оснащены и могут предложить лишь морально устаревшие методы диагностики.

    Таким образом, обследуемому необходимо посетить частное учреждение, предоставляющее медицинские услуги. Возможно жителям небольших населенных пунктов придется наведаться в крупные города. Как правило, в больших городах наблюдается изобилие офтальмологических кабинетов с ОКТ-сканером.

    Стоимость оптической когерентной томографии глаза будет разниться в зависимости от:

    • населенного пункта;
    • престижности медицинского центра;
    • степени подготовки врача;
    • марки оборудования, используемого для проведения обследования.

    В среднем, цена на когерентную томографию переживает колебание от 1500 до 2000 рублей за процедуру.

    Инновационная лазерная технология офтальмоскопии является основой Хейдельбергской ретинальной томографии (HRT). Данный метод исследования позволяет проводить топографические измерения диска зрительного нерва и получать снимки в трехмерном объемном изображении, HRT не имеет противопоказаний, используемый диодный лазер не причиняет вред здоровью пациента.

    Показания к проведению HRT


    Основными показаниями к проведению исследования на ретинальном томографе HRT являются:

    • нейропатии различного генеза;
    • оценка риска развития глаукомы;
    • офтальмогипертензия;
    • подозрение на глаукому.

    HRT позволяет выявить патологические изменения диска зрительного нерва и окружающей зоны сетчатки. Определяется степень деструктивных процессов в нервных волокнах под воздействием высокого внутриглазного давления. Томограф проводит цифровой анализ полученных результатов, и сопоставляют их с данным, ранее заложенными в базу.

    Исследование HRT помогает выявить на ранней стадии глаукому, нейропатии у пациентов с сахарным диабетом и другие нарушения головки зрительного нерва. Высокая точность результатов позволяет оценить результативность хирургического или медикаментозного лечения.

    Процедура HRT занимает не более 10 секунд для каждого глаза, на ответ не влияет состояние нервной системы больного, и его способность концентрировать внимание.

    Оптическая когерентная томография зрительного нерва


    Диагностика ОКТ – это метод томографического анализа диска зрительного нерва, который позволяет осмотреть структуры глаз с высокой точностью, что является одной из разновидностей биопсии глазных тканей.

    Данное исследование основано на способности глаза отражать световые волны. Инфракрасный луч разделяется на два световых пучка, один из них направлен на зрительный орган, а другой на специальное зеркало. При их отражении формируется индивидуальная интерференционная картина, которая анализируется программным обеспечением томографа, результаты выдаются в виде псевдоизображений.

    На снимке ОКТ различные участки окрашены в разные цвета в зависимости от степени отражения светового излучения. Хорошая отражаемость обозначается красной гаммой, а плохая – холодными тонами. По данным исследования, можно оценить изменения в сетчатке глаза, повреждение нервных волокон, параметры диска и головки зрительного нерва.

    Результаты ОКТ выглядят как таблицы, графики и карты. Эти данные сравнивают с установленными параметрами в памяти томографа.

    ОКТ проводят для оценки результатов лечения и диагностики таких патологий:

    • макулярные разрывы;
    • диабетическая ретинопатия;
    • патологии диска зрительного нерва;
    • дегенеративные изменения, отслойка сетчатки;
    • глаукома;
    • кистоидный макулярный отек;
    • витреоретинопатия;
    • кератиты и язвы роговицы;
    • эпиретинальная мембрана.

    Результаты ОКТ позволяют оценить эффективность проведения лазерной коррекции зрения, трансплантации роговицы, установки интрастромальных колец, интраокулярных линз.

    Магниторезонансная терапия


    МРТ глазных орбит и зрительных нервов является одной из наиболее информативных методик диагностики многих заболеваний глаз на ранних стадиях. Исследование выявляет злокачественные новообразования, оценить структуру тканей глаза, назначить терапию и проследить за динамикой лечебных мероприятий.

    МРТ глазных орбит и диска зрительного нерва проводится для диагностики следующих патологий:

    • глаукома;
    • оценка целостности структуры глаза;
    • механическое повреждение;
    • кровоизлияние в стекловидное тело;
    • сомнительные результаты других исследований;
    • раковые опухоли;
    • резкое ухудшение зрения;
    • невыясненная этиология болей в глазах;
    • неврит зрительного нерва;
    • отслойка сетчатки;
    • нарушение кровообращения в глазных сосудах.

    Пациенту делают серию снимков глаза, затем внутривенно вводят контрастное вещество, чтобы оценить кровообращение. При тромбозе центральной артерии циркуляция нарушена, и сосуды окрашиваются слабо, при наличии раковых опухолей, наоборот, окрашивание интенсивное, так как новообразование состоит из густой сети сосудов.

    Противопоказания магниторезонансной терапии:

    • установленный кардиостимулятор;
    • металлические зубные импланты, коронки, брекет-системы;
    • применение инсулиновой помпы;
    • любые ферромагнитные или электронные импланты в организме;
    • тяжелые заболевания кровеносной системы;
    • клаустрофобия;
    • низкий болевой порог;
    • первый триместр беременности;
    • проведенная лапороскопия;
    • тремор, невозможность находится в вынужденном положении длительное время.

    Процедура МРТ длится 20–60 минут, при введении контраста у больного может появиться тошнота, жар и неприятный привкус во рту. Это нормальная реакция на препарат.

    Стоимость диагностических исследований


    Средняя стоимость томографического анализа:

    Наименование процедурыЦена, руб
    МРТ глазных орбит и диска зрительного нерва4–5 тыс.
    МРТ глазных орбит с контрастированием5–8 тыс.
    ОКТ сетчатки одного глаза1,5–2 тыс.
    ОКТ сетчатки на один глаз повторное исследование800–1000
    HRT диска зрительного нерва1–1,5 тыс.
    HRT диска зрительного нерва повторное исследование500–800

    На общую стоимость влияет ценовая политика выбранной клиники, дополнительная консультация специалиста диагностического центра, офтальмолога, заключение рентгенолога, цифровая запись с данными исследования.

    Современные методы диагностики повреждения диска зрительного нерва помогают выявить заболевания глаз на ранних стадиях, что значительно снижает риск потери зрения и развития других тяжелых осложнений.

    Читайте также:

    Пожалуйста, не занимайтесь самолечением!
    При симпотмах заболевания - обратитесь к врачу.