У каких животных нет центральной нервной системы



Исследование недавно прочитанного полного генома гребневика Mnemiopsis leidyi привело к выводу, что тип гребневиков является самой древней ветвью многоклеточных животных, даже более древней, чем губки. Такое положение гребневиков на эволюционном древе значительно подкрепляет гипотезу, согласно которой они приобрели нервную систему независимо от всех остальных. Иными словами, получается, что нервная система возникла дважды.

Однако дать на этот вопрос окончательный ответ очень долго не удавалось. Собственно говоря, такого ответа нет и сейчас. Палеонтологическая летопись дает о гребневиках относительно мало информации: тело этих животных очень нежное, и они плохо сохраняются в ископаемом состоянии. Анатомия гребневиков изучена прекрасно; она очень интересна, но основанные на ней гипотезы о родстве оказались противоречивыми, и ни одна из них так и не стала общепризнанной. Значит, остается молекулярная филогенетика, то есть анализ нуклеотидных последовательностей. Для такой сложной группы его лучше делать сразу по большому числу генов, а в идеале — по всему геному.


Рис. 2. Проблема положения гребневиков на эволюционном древе животных. Cnidaria — кишечнополостные, Bilateria — двусторонне-симметричные животные, Placozoa — пластинчатые, Porifera — губки, Choanoflagellata — воротничковые жгутиконосцы, Ctenophora — гребневики. Ветвь гребневиков помещена в стороне. Здесь показано четыре варианта ее расположения на древе (оранжевые стрелочки); все они соответствуют гипотезам, поддержанным кем-то из зоологов. Гипотеза 1 означает, что гребневики являются ближайшими родственниками кишечнополостных; гипотеза 2 — что они родственники двусторонне-симметричных животных; гипотеза 3 — что они являются самой древней ветвью животных, не считая губок; и гипотеза 4 означает, что гребневики — это самые древние многоклеточные животные вообще (возможно, не считая некоторых ископаемых). Именно гипотезу 4 подтверждают результаты исследования полных геномов. Схема из обсуждаемой статьи в Science, с изменениями

Совсем недавно появилась статья большой группы американских исследователей с анализом полного генома гребневика Mnemiopsis leidyi (рис. 1). Этот геном относительно маленький: в нем примерно 150 миллионов пар нуклеотидов (у человека, например, более 3 миллиардов). Для его сравнения с геномами других животных были параллельно применены два разных вычислительных метода: метод максимального сходства (см.: Maximum likelihood) и байесовский анализ (см.: Bayesian inference in phylogeny). Результаты получились запутанными. Часть расчетов приводила к выводу, что гребневики — самая древняя ветвь животных (среди вообще всех многоклеточных животных, гипотеза 4 на рис. 2), а часть почему-то указывала на их родство с губками. Последнее не подтверждается никакими морфологическими данными, а потому выглядит сомнительно. Для разрешения этого конфликта была построена большая серия деревьев с использованием разных баз данных, разных методик и разных выборок исследованных организмов, и из нескольких возможных гипотез самую большую поддержку (5 деревьев из 16) получила все-таки гипотеза, согласно которой гребневики — сестринская группа всех остальных животных без исключения (рис. 3).



Рис. 3. Одно из итоговых эволюционных деревьев, помещенных в обсуждаемой статье. Значение латинских названий то же, что и на рис. 2; outgroup — внешняя группа, включающая одноклеточных. Длина ветвей соответствует числу нуклеотидных замен. Белыми кружочками отмечены узлы древа, получившие 100-процентную бутстрэп-поддержку. Иллюстрация из обсуждаемой статьи в Science

А вот гипотеза о родстве гребневиков с кишечнополостными была отвергнута всеми расчетами начисто. Так что сходные признаки гребневиков и медуз или приобретены независимо (конвергенция), или, возможно, в какой-то степени унаследованы от общего предка. Но как же этот предок мог выглядеть.

Если гипотеза американских авторов верна, то общая картина ранней эволюции многоклеточных животных видится примерно так. Прежде всего, от общих предков отделилась ветвь, ведущая к гребневикам. Потом — ветвь губок. А уже дальше пошла ветвь, ведущая к кишечнополостным и двусторонне-симметричным (включая нас). Такая эволюционная схема порождает много вопросов, самый актуальный из которых: когда и как возникла нервная система?

У кишечнополостных, как и у двусторонне-симметричных, нервная система есть. У гребневиков — тоже, и не зачаточная, а довольно сложная. А вот у губок, которые вроде бы отделились от общего ствола позже гребневиков, никакой нервной системы нет. И это приводит к очень интересному предположению. Возможно, что нервная система у животных возникала дважды: отдельно у гребневиков и у всех остальных (кишечнополостные + двусторонне-симметричные).

Факты, говорящие за эту идею:

    Нервная система гребневиков представляет собой дифференцированную сеть, включающую нервные узлы, связанные с органами чувств и основаниями щупалец. Эти структуры не имеют близких аналогов ни у каких других животных, даже и у кишечнополостных (которые тоже относительно примитивны и похожи на гребневиков по типу симметрии).

Надо заметить, что гипотеза о независимом происхождении нервной системы гребневиков высказывается уже не впервые (см.: E. Pennisi. 2013. Nervous System May Have Evolved Twice). Похоже, что она становится популярной.




В итоге речь идет сразу о трех взаимосвязанных гипотезах:

Эти гипотезы могут быть верны одновременно, но, в принципе, могут и по отдельности. Пока еще ни одна из них не подтверждена настолько достоверно, чтобы быть включенной в учебники. Но задуматься они, конечно, заставляют.

Источник: Joseph F. Ryan, Kevin Pang, Christine E. Schnitzler, Anh-Dao Nguyen, R. Travis Moreland, David K. Simmons, Bernard J. Koch, Warren R. Francis, Paul Havlak, NISC Comparative Sequencing Program, Stephen A. Smith, Nicholas H. Putnam, Steven H. D. Haddock, Casey W. Dunn, Tyra G. Wolfsberg, James C. Mullikin, Mark Q. Martindale, Andreas D. Baxevanis. The Genome of the Ctenophore Mnemiopsis leidyi and Its Implications for Cell Type Evolution // Science. 13 December 2013. V. 342. P. 1336. DOI: 10.1126/science.1242592.

Мы поговорили об этом с главой подразделения конфокальной микроскопии Института им. Вейцмана (Израиль), профессором Эдуардом Коркотяном.


1. Даже младенцы теряют нервные клетки.

Сколько нейронов (нервных клеток) в мозге человека? У нас их около 85 миллиардов. Для сравнения, у медузы - всего 800, у таракана - миллион, а у осьминога - 300 млн.

Многие считают, что нервные клетки гибнут лишь в пожилые годы, но большая их часть теряется нами еще в детстве, когда в голове ребенка происходит процесс естественного отбора.

Как в джунглях, среди нейронов выживают наиболее эффективные и приспособленные.


Если нервная клетка простаивает без работы, у нее включается механизм самоликвидации.

Проиграв в честной борьбе, слабые команды выбывают, освобождая место победителям. Это ни плохо, ни хорошо, это нормально. Таков суровый, но необходимый процесс естественного отбора в мозге - нейродарвинизм.

2. Нейронов – миллиарды.

Бытует мнение, что каждая нервная клетка - это простейший элемент памяти, как один бит информации в памяти компьютера. Несложные подсчеты показывают, что в этом случае кора нашего мозга вмещала бы всего 1-2 гигабита или не более 250 мегабайт памяти, что никак не соответствуют тому объему слов, знаний, понятий, образов и прочей информации, которой мы владеем. Конечно, нейронов огромное количество, но их, безусловно, не хватит, чтобы вместить все это. Каждый нейрон является интегратором и носителем, множества элементов памяти - синапсов.

3. Гениальность не зависит от размера мозга

Мозг человека весит примерно 1200 - 1400 грамм. Мозг Эйнштейна , к примеру, 1 230 г, не самый большой. Мозг слона почти в четыре раза больше, самый крупный мозг у кашалота - 6800 граммов. Дело здесь не в массе.


В чем разница между мозгом гения и обычного человека? По обложке книги или по числу страниц никогда не скажешь, вышла она из-под пера мастера или графомана. Кстати, и среди преступников попадаются весьма умные люди. Для оценки нужны совершено другие единицы измерения, которых пока не существует. Но в целом мощность мозга зависит от числа синаптических контактов (мозг состоит отнюдь не из одних нейронов, в нем заключено огромное множество вспомогательных клеток. Его пересекают большие и малые кровеносные сосуды, а в центре мозга скрыты четыре так называемых мозговых желудочка, заполненных цереброспинальной жидкостью. ).

Главную интеллектуальную мощь мозга составляют нейроны его коры. Особенно важна плотность синаптических контактов между нейронами, а никак не физический вес. Ведь не станем же мы по весу в килограммах определять быстроту компьютера.

По этому показателю мозг животных, даже высших приматов, существенно меньше человеческого. Мы проигрываем животным в скорости бега, в силе и выносливости, в способности лазить по деревьям.… Собственно, во всем, кроме ума.


Мышление, сознание - это то, что отличает человека от животных. Тогда возникает вопрос: почему бы человеку не обзавестись еще более вместительным мозгом?

Ограничивающим фактором является сама анатомия человека. Размер нашего мозга, в конце концов, определяется размером родовых путей женщины, которая не сможет родить ребенка со слишком большой головой. В каком-то смысле мы - пленники собственного строения. И в этом смысле человек не может стать существенно умнее, если только в один прекрасный день не изменит себя сам.

4. Многие болезни можно будет лечить, внедряя в нервные клетки новые гены.

Генетика - невероятно успешная наука. Мы научились не только исследовать гены, но и создаем новые, перепрограммируем их. Пока это лишь эксперименты на животных, и идут они более чем успешно. Близится время, когда многие болезни можно будет вылечить, внедряя в клетки новые или модифицированные гены. Не проводятся ли опыты над человеком? Тайные лаборатории существуют только в фантастических фильмах. Такие научные манипуляции осуществимы только в крупных научных центрах и требуют больших усилий. Беспокойство о несанкционированном взломе человеческого генома на сегодняшний день лишено оснований.


5. Человек использует лишь толику возможностей своего мозга? Это миф.

Многие почему-то считают, что человек использует лишь небольшую часть возможностей своего мозга (скажем, 10, 20 и так далее процентов). Трудно сказать, откуда взялся этот странный миф. Верить в него не стоит. Эксперименты показывают, что нервные клетки, не задействованные в работе мозга, погибают.

6. Нервные клетки восстанавливаются.

Несколько лет назад в 83-летнем возрасте скончался очень известный пациент, американец Генри Моллисон. Еще в молодости врачи, чтобы сохранить ему жизнь, полностью удалили из мозга гиппокамп (от греческого - морской конек), являвшийся источником эпилепсии. Результат оказался тяжелым и неожиданным. Больной потерял способность что-либо запоминать. Он остался совершенно нормальным человеком, мог поддерживать беседу. Но стоило вам выйти за дверь всего на несколько минут, и он воспринимал вас как совершенно незнакомого человека. Каждое утро на протяжении десятков лет Моллисону приходилось заново познавать мир в той его части, каким мир стал после операции (все, что предшествовало операции, больной помнил). Так, волею случая, было установлено, что гиппокамп отвечает за формирование новой памяти. В гиппокампе восстановление нервных клеток (нейрогенез) происходит сравнительно интенсивно. Но значение нейрогенеза не следует переоценивать, его вклад все же невелик.


7. Как одна часть мозга спасает другую

Ишемический инсульт мозга - тяжелая болезнь. Она связана с закупоркой кровеносных сосудов, подводящих кровь. Мозговая ткань чрезвычайно чувствительна к кислородному голоданию и быстро отмирает вокруг закупорившегося сосуда. Если зона поражения не находится в одном из жизненно важных центров, человек выживает, но при этом может частично утратить подвижность или речь. Тем не менее, через продолжительное время (иногда - месяцы, годы) утраченная функция частично восстанавливается. Если нейронов не становится больше, то за счет чего это происходит? Известно, что кора головного мозга имеет симметричное строение. Все ее структуры поделены на две половины, левую и правую, но поражена лишь одна из них. Со временем можно заметить медленное прорастание отростков нейронов из сохранившейся структуры в пострадавшую. Отростки удивительным образом находят правильный путь и частично компенсируют возникший недостаток. Точные механизмы этого процесса остаются неизвестными. Если мы научимся управлять процессом восстановления, регулировать его, это не только поможет при лечении инсультов, но и раскроет одну из самых больших тайн мозга.

8. Когда-то левое полушарие победило правое

У животных нет центров речи, поэтому и явной асимметрии полушарий у них не выявлено.


9. У правого полушария словарный запас ребенка, зато фантазия круче


Важнейшая функция правого полушария - восприятие зрительных образов.

Представим себе картину, висящую на стене. А теперь мысленно расчертим ее на квадратики и начнем постепенно закрашивать их случайным образом. Детали рисунка начнут пропадать, но пройдет довольно много времени, прежде чем мы перестанем понимать, что же именно изображено на картине.

Наше сознание обладает удивительной способностью воссоздавать картину по отдельным фрагментам.

Кроме того, мы наблюдаем динамичный, подвижный мир, почти как в кино. Фильм не рисуется нам в виде отдельных сменяющихся кадров, а воспринимается в постоянном движении.

Еще одной удивительной способностью, которой мы наделены, является умение видеть мир объемным, трехмерным. Совершенно плоская картина отнюдь не кажется плоской.

Одной только силой воображения правое полушарие нашего мозга наделяет картину глубиной.

До 18-20 лет мозг активно и неразборчиво поглощает любую информацию. Успешно дожив до этих лет, которые в прошлом считались солидным возрастом, мозг постепенно меняет стратегию с запоминания на сохранение того, что усвоено, дабы не подвергать накопленные знания опасности случайного стирания. Процесс этот происходит медленно и планомерно на протяжении всей жизни каждого из нас. Мозг становится все более консервативным. Поэтому с годами ему все труднее осваивать новое, зато усвоенные знания надежно закрепляются.


Этот процесс не является болезнью, с ним трудно и даже практически невозможно бороться. И это лишний аргумент в пользу того, как важно учиться в молодые годы, когда учеба дается легко. Но и для людей постарше имеются хорошие вести. Далеко не все свойства мозга с годами ослабевают. Словарный запас, количество абстрактных образов, способность рационально и здраво мыслить не утрачиваются и даже продолжают расти.

Там, где молодой неопытный разум запутается, перебирая различные варианты, мозг постарше быстрее найдет эффективное решение благодаря лучшей стратегии мышления. Кстати, чем образованнее человек, чем больше он тренирует свой мозг, тем меньше вероятность заболеваний мозга.

11. Мозгу нельзя сделать больно

Мозг лишен каких-либо чувствительных нервных окончаний, поэтому ему не бывает ни жарко, ни холодно, ни щекотно, ни больно. Это и понятно, если учесть, что он лучше любого другого органа защищен от воздействий внешней среды: добраться до него непросто. Мозг ежесекундно получает точную и разнообразную информацию о состоянии самых удаленных уголков своего тела, знает о любых потребностях, и наделен правом удовлетворить их или отложить на потом. Но себя мозг никак не ощущает: когда у нас болит голова - это лишь сигнал от болевых рецепторов мозговых оболочек.

12. Полезная пища для мозга

Как и все органы тела, мозг нуждается в источниках энергии и в строительных материалах. Иногда говорят, что мозг питается исключительно глюкозой. Действительно около 20% всей глюкозы потребляется именно мозгом, но он, как и любой другой орган, нуждается во всем комплексе питательных веществ. Целые белки никогда не проникают в мозг, перед этим они расщепляются на отдельные аминокислоты. То же касается и сложных липидов, которые перевариваются до жирных кислот, таких как омега-3 или омега-6. Некоторые витамины, например С, проникают в мозг самостоятельно, а такие как В6 или В12 переносятся проводниками.

Следует быть осторожными, употребляя продукты, богатые цинком, например, такие как устрицы, арахис, арбузные семечки. Существует гипотеза о том, что цинк накапливается в мозге и со временем может привести к развитию болезни Альцгеймера.


Многие питательные вещества, особенно важные для мозга, такие как: витамины D3, В12, креатин, карнозин, омега-3 содержатся только в мясе, рыбе и яйцах. Поэтому модное ныне вегетарианство трудно назвать полезным для клеток мозга.

Головной мозг млекопитающих имеет те же отделы, которые есть у других позвоночных. Отличия составляют большие полушария переднего мозга, которые имеют большие размеры и более сложное строение. Внешний слой головного мозга состоит из отдельного слоя нервных клеток, который образует кору головного мозга. У большинства млекопитающих кора головного мозга состоит из настолько большого количества нейронов, что лежит не сплошным слоем, а образует извилины. Извилины – это главный признак хорошо развитого головного мозга. Кора головного мозга отвечает за выполнение многих функций, в том числе, и образование условных рефлексов, которые при удаленной коре не образуются.


Как и передний мозг, мозжечок у млекопитающих развит очень хорошо и также имеет извилины. Такой уровень развития мозжечка связан с тем, что млекопитающие должны владеть координацией сложных и разнообразных движений. Также у млекопитающих отлично развиты органы чувств.

Органы чувств млекопитающих.

Млекопитающие имеют хорошо развитые органы чувств: зрение, обоняние, слух, вкус и обоняние. Но уровень развития или задействования каждого из них у отдельно взятого вида зависит от среды обитания этого вида млекопитающих.


Например, крот, живущий под землей, имеет плохо развитое зрение. Киты и дельфины, проживающие в воде, почти не способны различать запахи, хотя многие наземные млекопитающие имеют очень острое обоняние. Острое обоняние для наземных млекопитающих – это главный орган чувств, который позволяет находить добычу, чуять приближение хищника, находить самку или самца для спаривания. Родители по запаху выделяют своих детенышей.

Слух для большинства млекопитающих также играет важную роль. Для того, чтобы улавливать наименее заметные звуки, у млекопитающих есть ушные раковины, подвижные у большинства из них. Также у многих зверей, для кого слух очень важен, поверхность ушной раковины часто бывает покрыта волосками, чувствительными к малейшим звуковым вибрациям – вибриссами.

Зрение у млекопитающих не отличается такой же остротой, как у птиц, многие из млекопитающих частично или полностью не способны различать цвета. Идентичную с человеком гамму цветов могут различать только обезьяны.

Органами осязания являются вибриссы, которые растут на чувствительных частях тела, например, на голове. Обезьяны, как и люди, используют для осязания еще и кончики пальцев. Вкусовые рецепторы хорошо развиты у травоядных, благодаря чему они легко различают съедобные растения от несъедобных. Из-за сложности нервной системы поведение млекопитающих является не менее сложным, чем у птиц и других животных.

Поведение млекопитающих.

Поведение млекопитающих является сложным из-за нескольких факторов:

- хорошо развитого переднего мозга и коры головного мозга, а также нервной системы в целом;

- способностью вырабатывать множество условных рефлексов в течение жизни.

Малыши с первых дней жизни способны выделять свою мать. По мере роста опыт отношений особей с внешней средой увеличивается, они получают знания в процессе игры: прыжки, борьба, охота, преследование, бег и т.д.). Также эти игры способствуют выработке навыков, улучшающих выносливость малышей. В дальнейшем эти навыки также помогут млекопитающим во время охоты или спасения своей жизни.

На протяжение всей жизни млекопитающие вырабатывают большое количество условных рефлексов из-за изменчивости окружающей среды. Старые условны рефлексы, которые не подкрепляются условными раздражителями, со временем могут утрачиваться, что позволяет рационально использовать ресурсы головного мозга.


Центральная нервная система (ЦНС) — основная часть нервной системы животных и человека, состоящая из нейронов и их отростков; представлена у беспозвоночных системой тесно связанных между собой нервных узлов (ганглиев), у позвоночных животных и человека — спинным и головным мозгом.

Главная и специфическая функция ЦНС — осуществление простых и сложных высокодифференцированных отражательных реакций, получивших название рефлексов. У высших животных и человека низшие и средние отделы ЦНС — спинной мозг, продолговатый мозг, средний мозг, промежуточный мозг и мозжечок — регулируют деятельность отдельных органов и систем высокоразвитого организма, осуществляют связь и взаимодействие между ними, обеспечивают единство организма и целостность его деятельности. Высший отдел ЦНС — кора больших полушарий головного мозга и ближайшие подкорковые образования — в основном регулирует связь и взаимоотношения организма как единого целого с окружающей средой.

Периферическая нервная система (ПНС) соединяет центральную нервную систему с органами и конечностями. Нейроны периферической нервной системы располагаются за пределами центральной нервной системы — головного и спинного мозга.[1]

В отличие от центральной нервной системы, периферическая нервная система не защищена костями или гематоэнцефалическим барьером, и может быть подвержена механическим повреждениям и действиям токсинов.

Периферическую нервную систему классифицируют на соматическую нервную систему и вегетативную нервную систему; некоторые источники также добавляют сенсорную систему

Соматимческая немрвная системма (от греч. soma — тело) — часть нервной системы животных и человека, представляющая собой совокупность афферентных (чувствительных) и эфферентных (двигательных) нервных волокон, иннервирующих мышцы (у позвоночных — скелетные), [[кожа], [[сустав] .

Вегетативная нервная система (от лат. vegetatio — возбуждение; ВНС, автономная нервная система, ганглионарная нервная система, органная нервная система, висцеральная нервная система, чревная нервная система, systema nervosum autonomicum, PNA) — часть нервной системы организма, комплекс центральных и периферических клеточных структур, регулирующих функциональный уровень внутренней жизни организма, необходимый для адекватной реакции всех его систем.

Вегетативная нервная система — отдел нервной системы, регулирующий деятельность внутренних органов, желез внутренней и внешней секреции, кровеносных и лимфатических сосудов.[1] Играет ведущую роль в поддержании постоянства внутренней среды организма и в приспособительных реакциях всех позвоночных.

Симпатическая нервная система (от греч. ухмрбиЮт чувствительный, сочувственный) — часть автономной (вегетативной) нервной системы, ганглии которой расположены на значительном расстоянии от иннервируемых органов.

Парасимпатическая нервная система — часть автономной нервной системы, связанная с симпатической нервной системой и функционально ей противопоставляемая. В парасимпатической нервной системе ганглии (нервные узлы) расположены непосредственно в органах или на подходах к ним, поэтому преганглионарные волокна длинные, а постганглионарные — короткие. Термин парасимпатическая — т. е. околосимпатическая был предложен в конце XIX — начале XX века.

Иннервация (от лат. in — в, внутри и нервы) — снабжение органов и тканей нервами, что обеспечивает их связь с центральной нервной системой (ЦНС).

Различают иннервацию афферентную (чувствительную) и эфферентную (двигательную). Сигналы о состоянии органа и протекающих в нём процессах воспринимаются чувствительными нервными окончаниями (рецепторами) и передаются в ЦНС по центростремительным волокнам. По центробежным нервам осуществляется передача ответных сигналов, регулирующих работу органов, благодаря чему ЦНС постоянно контролирует и изменяет деятельность органов и тканей в соответствии с потребностями организма.

Нервная ткань — ткань эктодермального происхождения, представляет собой систему специализированных структур, образующих основу нервной системы и создающих условия для реализации её функций. Нервная ткань осуществляет связь организма с окружающей средой, восприятие и преобразование раздражителей в нервный импульс и передачу его к эффектору. Нервная ткань обеспечивает взаимодействие тканей, органов и систем организма и их регуляцию.

Нервные ткани образуют нервную систему, входят в состав нервных узлов, спинного и головного мозга. Они состоят из нервных клеток — нейронов, тела которых имеют звездчатую форму, длинные и короткие отростки. Нейроны воспринимают раздражение и передают возбуждение к мышцам, коже, другим тканям, органам. Нервные ткани обеспечивают согласованную работу организма.

Нейрон (от др.-греч. неῦспн — волокно, нерв) — это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высокоспециализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более ста миллиардов нейронов.

Аксон (греч. ἀопн — ось) — нейрит, осевой цилиндр, отросток нервной клетки, по которому нервные импульсы идут от тела клетки (сомы) к иннервируемым органам и другим нервным клеткам.

Нейрон состоит из одного аксона, тела и нескольких дендритов, в зависимости от числа которых нервные клетки делятся на униполярные, биполярные, мультиполярные. Передача нервного импульса происходит от дендритов (или от тела клетки) к аксону, а затем сгенерированный потенциал действия от начального сегмента аксона передается назад к дендритам [1]. Если аксон в нервной ткани соединяется с телом следующей нервной клетки, такой контакт называется аксо-соматическим, с дендритами — аксо-дендритический, с другим аксоном — аксо-аксональный (редкий тип соединения, встречается в ЦНС).

Дендриты могут образовывать синаптические контакты с аксонами (аксодендритические) и дендритами (дендро-дендритические).

Олигодендроциты, или олигодендроглиоциты — клетки нейроглии. Это — наиболее многочисленная группа глиальных клеток.[источник не указан 1041 день] Олигодендроциты локализуются в центральной нервной системе.

Олигодендроциты — клетки овальной формы с отростками. Их основная функция — миелинизация аксонов ЦНС. Каждый олигодендроглиоцит имеет множество отростков, каждый из которых оборачивает собой часть какого-либо аксона. В результате один олигодендроцит оказывается связан с несколькими нейронами. Тем самым обеспечивется изоляция аксона, и, как следствие ее — возможность быстрого сальтаторного проведения нервных импульсов (по перехватам Ранвье, остающимся между изолированными участками).

Олигодендроциты выполняют также трофическую функцию по отношению к нейронам, принимая активное участие в их метаболизме.

Миелин (в некоторых изданиях употребляется некорректная теперь форма миэлин) — вещество, образующее миелиновую оболочку нервных волокон.

Миелиновая оболочка — электроизолирующая оболочка, покрывающая аксоны многих нейронов. Миелиновую оболочку образуют глиальные клетки: в периферической нервной системе — Шванновские клетки, в центральной нервной системе — олигодендроциты. Миелиновая оболочка формируется из плоского выроста тела глиальной клетки, многократно оборачивающего аксон подобно изоляционной ленте. Цитоплазма в выросте практически отсутствует, в результате чего миелиновая оболочка представляет собой, по сути, множество слоёв клеточной мембраны.

Симнапс[1] (греч. уэнбшйт, от ухнЬрфейн — обнимать, обхватывать, пожимать руку) — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Нервные окончания — специализированные образования на концах отростков нервных волокон, обеспечивающие передачу информации в виде нервного импульса.

Нервные окончания формируют передающие или воспринимающие концевые аппараты различной структурной организации, среди которых по функциональному значению можно выделить:

Передающие импульс от одной нервной клетки к другой — синапсы;

Передающие импульс от места действия факторов внешней и внутренней среды к нервной клетке — афферентные окончания, или рецепторы;

Передающие импульс от нервной клетки к клеткам других тканей — эффекторные окончания, или эффекторы.

Микроглия — специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки.

Клемточная мембрамна (или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия среды.

Потенциамл покомя (ПП) - мембранный потенциал возбудимой клетки в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от -55 до -100 мВ[1]. У нейронов и нервных волокон обычно составляет -70 мВ. Измеряется изнутри клетки.

Потенциамл демйствия — волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд — быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

Рис. 1. Схема распределения зарядов по разные стороны мембраны возбудимой клетки в спокойном состоянии (A) и при возникновении потенциала действия (B) (см. объяснения в тексте).

Потенциалы действия могут различаться по своим параметрам в зависимости от типа клетки и даже на различных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов. Тем не менее, в основе любого потенциала действия лежат следующие явления:

Мембрана живой клетки поляризована — её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бомльшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности — бомльшее количество отрицательно заряженных частиц (анионов).

Мембрана обладает избирательной проницаемостью — её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.

Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю (Рис.1).

Первые два свойства характерны для всех живых клеток. Третье же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

Фазы потенциала действия

Предспайк — процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).

Пиковый потенциал, или спайк, состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).

Отрицательный следовой потенциал — от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).

Положительный следовой потенциал — увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

Везимкула — в цитологии — это относительно маленькие внутриклеточные органоиды, мембрано-защищенные сумки, в которых запасаются или транспортируются питательные вещества. Везикула отделена от цитозоля минимальным липидным слоем. Мембрана везикулы отгораживает ее от цитоплазмы схожим образом, как цитоплазматическая мембрана отгораживает клетку от внешней среды (порой агрессивной, с другим давлением, и пр.). Когда они отделены от цитоплазмы всего одним липидным слоем, везикулы называются однопластинчатыми. Так как везикула отгорожена от цитоплазмы, внутривезикулярные вещества могут быть совершенно иными, чем цитоплазматические. Везикула может присоединиться к внешней мембране, сплавиться с ней и выпустить свое содержимое в пространство вне клетки. Так может происходить процесс выделения. Везикула — это базисный инструмент клетки, обеспечивающий метаболизм и транспорт вещества, хранение ферментов также как настоящий химически инертный отсек. Также везикулы играют роль в поддержании плавучести клетки.[1] Некоторые везикулы способны образовываться из частей плазматической мембраны.

Нейромедиамторы (нейротрансмиттеры, посредники) — биологически активные химические вещества, посредством которых осуществляется передача электрического импульса от нервной клетки через синаптическое пространство между нейронами. Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия.

Традиционно нейромедиаторы относят к 3 группам: аминокислоты, пептиды, моноамины (в том числе катехоламины)

Рефлекс (от лат. reflexus — отражённый) — стереотипная реакция живого организма на раздражение рецепторов, проходящая с участием нервной системы. Рефлексы существуют у многоклеточных живых организмов, обладающих нервной системой, осуществляются посредством рефлекторной дуги[1]

Рефлекторная дуга (нервная дуга) — путь, проходимый нервными импульсами при осуществлении рефлекса

Рефлекторная дуга состоит из:

рецептора — нервное звено, воспринимающее раздражение;

афферентного звена — центростремительное нервное волокно — отростки рецепторных нейронов, осуществляющие передачу импульсов от чувствительных нервных окончаний в центральную нервную систему;

центрального звена — нервный центр (необязательный элемент, например для аксон-рефлекса);

эфферентного звена — осуществляют передачу от нервного центра к эффектору.

эффектора — исполнительный орган, деятельность которого изменяется в результате рефлекса.

Различают: — моносинаптические, двухнейронные рефлекторные дуги; — полисинаптические рефлекторные дуги (включают три и более нейронов).

Нервно-секреторный эффектор — эффекторное нервное окончание, имеет простое строение. Представляет собой контакт плазматической мембраны концевого расширения аксона с плазматической мембраной секреторных клеток.

Спинной мозг (лат. Medulla spinalis) — орган ЦНС позвоночных, расположенный в позвоночном канале. Принято считать, что граница между спинным и головным мозгом проходит на уровне перекрёста пирамидных волокон (хотя эта граница весьма условна). Внутри спинного мозга имеется полость, называемая центральным каналом (лат. Canalis centralis). Спинной мозг защищён мягкой, паутинной и твёрдой мозговыми оболочками. Пространства между оболочками и спинномозговым каналом заполнены спинномозговой жидкостью. Пространство между внешней твёрдой оболочкой и костью позвонков называется эпидуральным и заполнено жиром и венозной сетью.

В анатомической терминологии существуют особые термины для точного описания расположения частей тела, органов и других анатомических образований в пространстве и по отношению друг к другу в анатомии человека и других животных с билатеральным типом симметрии тела. Причём, в анатомии человека имеется ряд терминологических особенностей, которые описываются здесь и в отдельной статье.

Термины, описывающие положение относительно центра масс и продольной оси тела или выроста тела:

Абаксиальный (антоним: адаксиальный) — располагающийся дальше от оси.

Адаксиальный (антоним: абаксиальный) — располагающийся ближе к оси.

Апикальный(антоним: базальный) — располагающийся у вершины.

Базальный (антоним: апикальный) — располагающийся у основания.

Дистальный (антоним: проксимальный) — дальний.

Латеральный (антоним: медиальный) — боковой.

Медиальный (антоним: латеральный) — серединный.

Проксимальный (антоним: дистальный) — ближний.

Термины, описывающие положение относительно основных частей тела:

Аборальный (антоним: адоральный) — располагающийся на противоположном рту полюсе тела.

Адоральный (оральный) (антоним: аборальный) — располагающийся вблизи рта.

Вентральный (антоним: дорсальный) — брюшной.

Дорсальный (антоним: вентральный) — спинной.

Каудальный (антоним: краниальный) — хвостовой, располагающийся ближе к хвосту или к заднему концу тела.

Краниальный (антоним: каудальный) — головной, располагающийся ближе к голове или к переднему концу тела.

Ростральный — носовой, буквально — располагающийся ближе к клюву. Располагающийся ближе к голове или к переднему концу тела.

Основные плоскости и разрезы:

Сагиттальный — разрез, идущий в плоскости двусторонней симметрии тела.

Парасагиттальный — разрез, идущий параллельно плоскости двусторонней симметрии тела.

Фронтальный — разрез, идущий вдоль передне-задней оси тела перпендикулярно сагиттальному.

Аксиальный — разрез, идущий в поперечной плоскости тела

Термины, описывающие способ инъекций:

перорально — через рот;

интрадермально, внутрикожно (лат. intracutaneous или intradermal);

подкожно (лат. subcutaneous);

внутримышечно (лат. intramuscular);

внутривенно (лат. intravenous);

ректально — через анальное отверстие.

Соматические клетки (др.-греч. уῶмб — тело) — клетки, формирующие тело организма. К соматическим клеткам относятся все клетки тела, за исключением гамет.

Головномй мозг (лат. cerebrum, др.-греч. ἐгкЭцблпт) — часть центральной нервной системы подавляющего большинства хордовых, её головной конец; у позвоночных находится внутри черепа. В анатомической номенклатуре позвоночных, в том числе человека, мозг в целом чаще всего обозначается как encephalon — латинизированная форма греческого слова; изначально латинское cerebrum стало синонимом большого мозга (telencephalon).

Головной мозг состоит из большого числа нейронов, связанных между собой синаптическими связями. Взаимодействуя посредством этих связей, нейроны формируют сложные электрические импульсы, которые контролируют деятельность всего организма.

Несмотря на значительный прогресс в изучении головного мозга в последние годы, многое в его работе до сих пор остаётся загадкой. Функционирование отдельных клеток достаточно хорошо объяснено, однако понимание того, как в результате взаимодействия тысяч и миллионов нейронов мозг функционирует как целое, доступно лишь в очень упрощённом виде и требует дальнейших глубоких исследований.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.