Вегетативная нервная система в спорте

Исследование вегетативной нервной системы у спортсменов

Большое внимание уделяется исследованию вегетативной нервной системы, регулирующей функции кровообращения, дыхания, пищеварения, выделения и др. Нормальная деятельность ее очень важна в обеспечении гомеостазиса. Через вегетативную нервную систему осуществляется адаптационно-трофические влияния центральной нервной системы, которые в значительной степени обусловливают функциональное состояние всего организма.

В вегетативной нервной системе выделяют симпатический и парасимпатический отделы, которые оказывают противоположные влияния на функции иннервируемых ими органов (например, возбуждение симпатического отдела приводит к учащению сердцебиений, а парасимпатического - к замедлению их). Однако симпатический и парасимпатический отделы могут действовать синер-гически (например, в критической ситуации, требующей незамедлительной адаптации к неожиданным воздействиям, симпатический отдел обеспечивает быструю мобилизацию энергетического потенциала организма, его адаптацию к изменившимся условиям, а парасимпатический - активно включается в действие, если напряжение становится длительным). При рациональных занятиях спортом отмечается оптимальное взаимодействие в деятельности симпатических и парасимпатических отделов вегетативной нервной системы, причем в покое наблюдается преобладание парасимпатических влияний, что обеспечивает экономизацию деятельности сердечно-сосудистой, дыхательной и других систем (замедление ЧСС, понижение АД, уменьшение частоты дыхания и т.д.). Во время же спортивных занятий и сразу после них у спортсменов отмечается преобладание симпатических влияний, что способствует лучшей адаптации к нагрузкам. Если такое преобладание имеется и в покое, то наблюдается повышенная возбудимость, учащение пульса, дыхания и т.д., что характерно для состояния переутомления и перетренированности, когда нарушается оптимальное соотношение функций симпатического и парасимпатического отделов. По мере же повышения тренированности можно отметить улучшение функционального состояния вегетативной нервной системы, а также двигательной сферы, улучшается координация их функций, что является важным условием достижения высоких результатов в спорте.

При исследовании вегетативной нервной системы используют ряд инструментальных методов исследования и специальных проб, позволяющих установить функциональное состояние ее симпатического и парасимпатического отделов и выявить степень нарушения их взаимодействия.

Следует заметить, что объективную оценку состояния вегетативной нервной системы дать непросто. Проявления ее деятельности весьма разнообразны, и каждая проба свидетельствует в основном о состоянии той или иной функции, обеспечиваемой вегетативной нервной системой. В целом о тонусе ее можно судить лишь на основании анализа результатов большого числа различных проб и инструментальных методов исследования. Опишем здесь некоторые из них.

Проба на дермографизм (кожно-сосудистая реакция)

Выполняя ее, по коже проводят тупым концом металлической или деревянной палочки несколько штрихов. Через 5-15 с после раздражения на коже появляется полоска - розовая (в норме), белая (при повышенной возбудимости симпатической иннервации кожных сосудов), красная или выпукло-красная (при повышенной возбудимости парасимпатической иннервации кожных сосудов).

При поведении пробы Ашнера подсчитывается пульс в покое за 15 с (f 1 ), затем подушечками большого и указательного пальцев производятся надавливания на глазные яблоки в течение 10 с с подсчетом пульса (f 2 ). После прекращения надавливания на глазные яблоки продолжается подсчет пульса в течение двух 15-секундных интервалов (f 3 и f 4 ). Разница между значениям f 1 и f 2 указывает на степень замедления пульса, а величины f 3 и f 4 характеризуют восстановление его после надавливания.

При нормальной возбудимости парасимпатического отдела вегетативной нервной системы пульс урежается на 6-12 уд/мин (наблюдается обычно у спортсменов с хорошим состоянием тренированности). При замедлении пульса более чем на 16 уд/мин реакция на пробу Ашнера считается усиленной. Если же пульс учащается, то говорят об извращенной реакции, а при отсутствии изменения пульса - об отрицательной реакции.

Дает представление о симпатическом отделе вегетативной нервной системы, ее часто используют при исследовании сердечно-сосудистой системы спортсмена, так как она позволяет судить о регуляции сосудистого тонуса. Заключается ортостатическая проба в переводе тела из горизонтального положения в вертикальное или близкое к нему. При этом направление главных сосудов будет совпадать с направлением действия силы тяжести, обусловливающей возникновение гидростатических сил, затрудняющих кровообращение. Влияние гравитационного поля Земли на деятельность сердечно-сосудистой системы довольно значительно при снижении адаптационной способности аппарата кровообращения: может существенно страдать кровоснабжение головного мозга, что выражается в развитии так называемого ортостатического коллапса. Ортостатическая проба как метод функциональной диагностики часто используется в клинической практике. Ее проводят при экспертизе трудоспособности, при диагностике гипотонических состояний и в других случаях. Широкое применение она нашла при обследовании летчиков и космонавтов. Весьма перспективной ортостатическая проба, проводимая в различных вариантах, оказалась при обследовании спортсменов. При переходе из горизонтального положения в вертикальное затрудняется кровоток в нижней половине тела. Особенно затрудняется он в венах, что приводит к депонированию в них крови, степень которого зависит от тонуса вен. Возврат крови к сердцу значительно уменьшается, в связи с чем на 20-30% может снижаться систолический выброс. Частота сердечных сокращений при этом компенсаторно увеличивается, что позволяет поддерживать минутный объем кровообращения на прежнем уровне.

В регуляции функции сердечно-сосудистой системы выявлена важная роль коры больших полушарий (при нарушении ее функционального состояния, например при неврозе, возникает расстройство этих регуляторных воздействий) и гуморальных факторов, среди которых основное влияние на сосудистый тонус оказывают катехоламины. Снижение венозного тонуса, наблюдаемое при переутомлении, перетренированности, болезненном состоянии, связано с дискоординацией звеньев, обеспечивающих как его регуляцию, так и деятельность сердца. При этом страдает приспособление функции кровообращения к возмущающим воздействиям, в результате может наблюдаться резкое падение венозного возврата крови к сердцу и развитие обморочного состояния.

При сокращении скелетных мышц кровь в венах, благодаря односторонней функции их клапанов, проталкивается в сторону сердца. Это один из важных факторов, предупреждающих застой ее в конечностях. Из других факторов следует указать на влияние остаточной энергии сердечного толчка, отрицательного давления в грудной полости и в какой-то мере имеют значение для передвижения крови по венам артериовенозные шунты, осуществляющие прямые связи между мелкими артериями и венами.

Известно, что глубокие вены окружены мышцами, и даже в спокойном состоянии наблюдается некоторое их сокращение, оказывающее давление на вены, достаточное для проталкивания крови через венозные клапаны в направлении сердца. При более частых и активных движениях, особенно носящих перемежающийся характер, например при ходьбе, беге, эффективность мышечного насоса резко возрастает. Увеличивается приток крови к сердцу и при сокращении мышц брюшного пресса (вытесняется кровь из сосудов печени, селезенки, кишечника).

В норме у хорошо тренированных спортсменов при ортостатической пробе систолическое давление незначительно уменьшается - на 3-6 мм рт. ст. (может не изменяться), а диастолическое - повышается в пределах 10-15% по отношению к его величине в горизонтальном положении. Учащение пульса не превышает 15-20 уд/мин. Более выраженная реакция на ортостатическую пробу может наблюдаться у детей.

Ортостатическая проба по Шеллонгу представляет собой активную пробу, при которой испытуемый самостоятельно переходит из горизонтального положения в вертикальное и в дальнейшем стоит неподвижно. Чтобы уменьшить наблюдаемое при этом напряжение мускулатуры, Ю.М. Стойда (1974) предложил изменить вертикальную позу испытуемого на другую, при которой ноги его находятся на расстоянии одной ступни от стены, а сам испытуемый опирается на нее спиной, под крестец подкладывается валик диаметром 12 см. При такой позе достигается более выраженное расслабление мышц. Угол наклона тела относительно горизонтальной плоскости составляет около 75°.

Для проведения пассивной ортостатической пробы необходим поворотный стол. Проводиться она может в различных модификациях под углом наклона стола от 60 до 90° и длительности преывания испытуемого в вертикальном положении до 20 мин. При проведении ортостатической пробы обычно регистрируется частота сердечных сокращений (ЧСС) и артериальное давление (АД), однако при наличии соответствующей аппаратуры исследование можно дополнить, к примеру, регистрацией поликардиограммы и плетизмограммы.

На основании многочисленных данных исследования ортостатической устойчивости у спортсменов высокой квалификации нами предложенно оценивать ее как хорошую, если ЧСС к десятой минуте ортостатического положения увеличивается не более чем на 20 уд/мин у мужчин и 25 уд/мин у женщин (по сравнению с величиной ЧСС в положении лежа), переходный процесс для ЧСС заканчивается не позднее 3-й мин ортостатического положения у мужчин и 4-й мин - у женщин (т.е. ежеминутное колебание величины ЧСС не превышает 5%), пульсовое давление снижается не более чем на 35%, самочувствие хорошее. При удовлетворительной ортостатической устойчивости прирост ЧСС к 10-й мин пробы составляет у мужчин до 30 уд/мин, а у женщин - до 40 уд/мин. Переходный процесс для ЧСС завершается у мужчин не позднее 5-й мин, а у женщин - 7-й мин ортостатического положения. Пульсовое давление уменьшается на 36-60% (по отношению к положению лежа), самочувствие хорошее. Неудовлетворительная ортостатическая устойчивость характеризуется высоким учащением пульса к 10-й мин ортостатического положения (30-40 уд/мин), снижением пульсового давления более чем на 50%, отсутствием устойчивого состояния для ЧСС, плохим самочувствием, бледностью лица, головокружением. Развитие ортостатического коллапса является свидетельством особенно неблагоприятной реакции на пробу (чтобы не допустить его, пробу следует прекращать при ухудшении самочувствия и появлении головокружения).

Многочисленные исследования позволяют утверждать, что увеличение значений ЧСС при ортостатической пробе более 100-110 уд/мин (независимо от исходной ЧСС в положении лежа) сопровождается обычно резким ухудшением самочувствия, появлением жалоб на сильную слабость, головокружение. Если при этом пробу не прекратить, то развивается ортостатический коллапс. Такие реакции отмечались нами при форсированных тренировках (особенно проводимых в среднегорье), в состоянии перенапряжения, перетренированности, а также в период выздоровления после болезни.

Возможны и другие варианты проведения пробы. Так, после подсчета пульса в положении лежа (за 15 с с пересчетом на минуту) спортсмену предлагается плавно встать и через 10 с после этого подсчитывается пульс за 15 с с пересчетом на минуту. В норме учащение его составляет 6-18 уд/мин (у хорошо подготовленных спортсменов - обычно в пределах 6-12 уд/мин). Чем больший пульс будет отмечаться в вертикальном положении, тем, следовательно, выше возбудимость симпатического отдела вегетативной нервной системы.

Функциональное состояние вестибулярного анализатора

Можно оценить с помощью специальных проб, которые подразделяют на активные (т.е. выполняемые самим испытуемым) и пассивные. Некоторые из них мы уже описали выше ( проба Ромберга и пальценосовая проба Барани ). Довольно проста и информативна проба Яроцкого : выполнение в положении стоя кружений головой в одну сторону (вправо или влево) в темпе два кружения в 1 с. Фиксируется время сохранения равновесия. У нетренированных оно составляет в среднем 28 с. У спортсменов время сохранения равновесия может составлять 60-80 с и более.

Наиболее объективную функцию вестибулярного анализатора можно составить по результатам вращательных проб (Барани, Воячека и др.), выполняемых в кресле Барани. Опишем некоторые из них.

Проба Барани . Испытуемый усаживается в кресло и закрывает глаза, производят 10 оборотов кресла за 20 с. После остановки вращения наблюдается нистагим глаз (т.е. ритмические горизонтальные движения глазных яблок, связанные с раздражением полукружных каналов), средняя продолжительность которого – 20-30 с. Оцениваются также отклонения туловища и вегетативные реакции (сдвиги пульса артериального давления и т.д.). Удлинение времени нистагма до 80-100 с и более, а также появление тошноты и рвоты указывают на повышенную возбудимость полукружных каналов.

Проба академика В.И. Воячека. Выполняется она следующим образом (используется метод так называемого двойного вращения): испытуемый сидит в кресле с закрытыми глазами, склонив голову вперед на 90°. В течение 10 с производят пять вращений кресла. Затем, спустя 5 с после остановки, ему предлагают поднять голову. До проведения пробы и после нее подсчитывается пульс и измеряется артериальное давление. Оценку отолитовой реакции проводят по степени соматической и вегетативной реакций. Различают 4 степени выраженности соматической реакции на вращение: при нулевой степени (норма) соматическая реакция отсутствует, при I (слабой) - отмечается лишь незначительное отклонение туловища (5°), II (средний) - явный наклон туловища (до 30°) и III (сильный) - резкое отклонение туловища (более 30°), наклонность к падению (К.Л. Хилов, 1952). Оценку вегетативных реакций проводят по схеме К.Л. Хилова в модификации П.И. Готовцева (табл. 16).

Оценка вегетативных реакций, наблюдаемых после проведения пробы В.И. Воячека (схема К.Л. Хилова в модификации П.И. Готовцева)

Степень выраженности соматических и вегетативных изменений

Содержание

В соматической нервной системе нервные волокна тянутся к скелетной мышце, коже и органам чувств, а также от них. Соматические нервные волокна обычно реагируют на стимулы из окружающей среды, как, например, в случае рефлекса отдергивания. Большая часть активности соматической нервной системы происходит сознательно и под волевым контролем. Напротив, вегетативная, или автономная, нервная система (ВНС) в основном занята регуляцией кровообращения и деятельности внутренних органов. Она отвечает на изменяющиеся условия среды ортостатической реакцией, запуском реакций с целью регуляции внутренней среды организма. Основные виды деятельности вегетативной нервной системы не подлежат волевому контролю.

Вегетативная и соматическая нервные системы, в основном на периферии, разделены анатомически и функционально (А), но тесно контактируют в центральной нервной системе (ЦНС). Периферическая вегетативная нервная система является эфферентной (двигательной), но большинство вегетативных нервов несут также афферентные (сенсорные) нейроны. Они называются также висцеральными афферентными нейронами, потому что проводят сигналы от висцеральных (внутренних) органов, таких как пищевод, желудочно-кишечный тракт, печень, легкие, сердце, артерии и мочевой пузырь. Некоторые из них называются по нерву, который они сопровождают, например афферентный нейрон блуждающего нерва.

Активность вегетативной нервной системы обычно регулируется рефлекторной дугой, которая имеет афферентный сегмент (висцеральные и/или соматические афферентные нейроны) и эфферентный сегмент (автономные и/или соматические афферентные нейроны). Афферентные волокна проводят стимулы от кожи (болевые, или ноцицептивные, стимулы) и болевых рецепторов, от механорецепторов и хеморецепторов в таких органах, как легкие, желудочно-кишечный тракт, желчный пузырь, сосудистая система и гениталии. Вегетативная система содержит автономные эфферентные волокна, которые проводят рефлекторный ответ на афферентную информацию, индуцируя сокращение гладких мышц в таких органах, как глаза, легкие, пищеварительный тракт и желчный пузырь, и влияя на работу сердца и желез. Примеры действия соматической нервной системы - афферентные стимулы от кожи и органов чувств (например, реакция на световые стимулы) и эфферентные импульсы к скелетной мускулатуре (например, кашель и рвота).

Простые рефлексы могут быть внутри органа (например, в желудке), но сложные (комплексные) рефлексы идут через контролирующие вегетативные центры в ЦНС, в основном в спинном мозге (А). Эти центры контролируются гипоталамусом, активность которого связана с вегетативной нервной системой. Кора головного мозга -самый высокоорганизованный нервный центр, связывающий вегетативную нервную систему с другими системами.

Периферическая ВНС состоит из симпатического и парасимпатического отделов (А), которые в большинстве случаев действуют независимо. Вегетативные центры симпатического отдела расположены в грудном и поясничном отделах спинного мозга, а центры парасимпатического отдела - в стволовом отделе головного мозга (глаза, железы и органы, иннервируемые блуждающим нервом) и в крестцовом отделе спинного мозга (мочевой пузырь, нижняя часть толстой кишки и половые органы) (А). Преганглионарные волокна обоих отделов вегетативной нервной системы тянутся от центров к ганглиям, где заканчиваются на постганглионарных нейронах.

Преганглионарные симпатические нейроны, начинающиеся в спинном мозге, заканчиваются или в околопозвоночной ганглионарной цепи, в шейном или брюшном ганглии, или в так называемых терминальных ганглиях. Передача стимула от преганглионарных к постганглионарным нейронам является холинергической, т. е. опосредована высвобождением нейромедиатора ацетилхолина. Стимуляция постганглионарными симпатическими волокнами всех эффекторных органов, кроме потовых желез, является адренергической, т. е. опосредована высвобождением норадреналина.

Парасимпатические ганглии расположены вблизи или внутри эффекторных органов. Синаптическая передача в парасимпатических ганглиях и эффекторных органах является холинергической (А).

Большинство органов иннервируется симпатическими и парасимпатическими нервными волокнами. Однако ответы органов на активность этих двух систем могут быть или антагонистическими (как в сердце), или комплементарными (в половых органах).

Мозговое вещество надпочечников - это и ганглий, и эндокринная железа одновременно. Преганглионарные симпатические волокна в мозговом веществе надпочечников высвобождают ацетил-холин, что ведет к выделению в кровоток адреналина (и некоторого количества норадреналина).

Ацетилхолин (АЛ) служит нейромедиатором не только двигательной концевой пластинки и в центральной нервной системе, но и в вегетативной нервной системе, ВНС , где проявляет активность

  • во всех преганглионарных волокнах ВНС
  • во всех парасимпатических постганглионарных нервных окончаниях
  • в некоторых симпатических постганглионарных нервных окончаниях (потовые железы).

Синтез ацетилхолина. Ацетилхолин (АХ) синтезируется в цитоплазме нервных окончаний, а ацетилкофермент А (ацетил-КоА) - в митохондриях. Реакция ацетил-КоА + холин катализируется холинацетилтрансферазой, которая синтезируется в соме и достигает нервных окончаний при помощи аксоплазматического транспорта. Поскольку холин должен быть удален из внутриклеточной среды при помощи переносчиков, этот этап является лимитирующей стадией в процессе синтеза ацетилхолина.

Высвобождение ацетилхолина. Пузырьки у пресинаптического нервного окончания высвобождают содержимое в синаптическую щель, когда концентрация Са2+ в цитоплазме возрастает в ответ на потенциал действия (ПД) (А). Адреналин и норадреналин могут ингибировать высвобождение ацетилхолина путем стимуляции пресинаптических a2-адренорецепторов. В постганглионарных парасимпатических волокнах ацетилхолин блокирует свое собственное высвобождение при помощи связывания с пресинаптическими ауторецепторами (М-рецепторами; см. ниже), как показано на рис. Б.

Ацетилхолин связывается с постсинаптическими холинергическими рецепторами, или холинорецепторами, в вегетативных ганглиях и органах, иннервируемых парасимпатическими волокнами, например в сердце, в гладкой мускулатуре (глаз, бронхов, мочеточников, мочевого пузыря, гениталий, кровеносных сосудов, пищевода и желудочно-кишечного тракта), в слюнных и слезных железах, а также в симпатически иннервируемых потовых железах. Холинорецепторы бывают никотинергическими (N) или мускаринергическими (М). N-холинорецепторы (никотинергические) стимулируются алкалоидом никотином, а М-холинорецепторы (мускаринергические) - алкалоидом яда грибов мускарином.

NN-холинорецепторы вегетативных ганглиев, специфичные для нервов (А), отличаются от специфичных для мышц NM-холинорецепторов на двигательной концевой пластинке тем, что образованы разными субъединицами. Они сходны тем, что и те и другие являются ионотропными рецепторами, т. е. они действуют одновременно как холинорецепторы и как катионные каналы. Связывание ацетилхолина ведет к быстрому притоку ионов Na+ и Са2+ и к раннему (быстрому) возбуждающему постсинаптическому потенциалу действия (ВПСП), который запускает постсинаптический потенциал действия (ПД), как только превышается пороговый потенциал (А, левая часть).

М-холинорецепторы (М1-М5) воздействуют на синаптическую передачу не прямо, а посредством G-белков (метаботропные рецепторы).

М—холинорецепторы находятся в основном в вегетативных ганглиях (А), в ЦНС, в клетках желез внешней секреции. Они активируют фосфолипазу Сβ (ФЛ-Сβ) с помощью Gq-белков в постганглионарных нейронах, в результате чего высвобождаются инозитолтрифосфат (ИТФ) и диацилглицерол (ДАГ) (вторичные мессенджеры). Это стимулирует приток Са2+ и поздний возбуждающий постсинаптический потенциал (ВПСП) (А, средняя часть рисунка). Передача синаптического сигнала модулируется поздним ВПСП, а также котрансмиттерными пептидами, запускающими пептидергический ВПСП или ингибирующий постсинаптический потенциал СИПСП1 (А, правая часть).

М2-холинорецепторы расположены в сердце и функционируют в основном опосредованно, через Gj-белки. Gj-белок открывает специфические К+-каналы, локализованные в основном в синусном узле, атриовентрикулярном узле и в клетках предсердия, таким образом оказывая отрицательный хронотропный и дромотропный эффекты на сердце (Б). Gj-белки также ингибируют аденилатциклазу, снижая таким образом приток Са2+ (Б).

М3-холинорецепторы расположены в основном в гладких мышцах. Как и М1-холинорецепторы (А, средняя часть рисунка), М3-холинорецепторы запускают сокращение путем стимуляции входа Са2+ в клетку. Однако они также могут индуцировать релаксацию путем активации Са2+-зависимой NO-син-тазы, например в клетках эндотелия.

Конец действия ацетилхолина достигается путем опосредованного ацетилхолинэстеразой расщепления молекулы ацетилхолина в синаптической щели. Примерно 50% высвобождаемого холина вновь поглощается пресинаптическими нервными окончаниями (Б).

Антагонисты. Атропин блокирует все М-холинорецепторы, тогда как пирензепин, метоктрамин, гекса-гидрозиладифенидол и тропикамид селективно блокируют M1-, М2-, М3- и М4-холинорецепторы соответственно, тубокурарин- NM-холинорецепторы, а триметафан- NM-холинорецепторы.

Некоторые нейроны могут образовывать (при участии ферментов) L-допа или L-дофа (L-дигидрооксифенилаланин) из аминокислоты L-тирозина. L-допа - предшественник дофамина, норадреналина и адреналина - трех природных катехоламинов, которые синтезируются в указанной последовательности. Дофамин является финальным продуктом синтеза в нейронах, содержащих только ферменты, необходимые на первой стадии синтеза (это декарбоксилаза ароматических L-аминокислот). Дофамин используется в качестве медиатора дофаминергическими нейронами в ЦНС и вегетативными нейронами, иннервирующими почки.

Норадреналин (НА) синтезируется в том случае, если присутствует также второй фермент (дофамин-β-карбоксилаза). В большинстве симпатических постганглионарных нервных окончаниях и в норадре-нергических центральных нейронах норадреналин служит нейромедиатором наряду с комедиаторами -аденозинтрифосфатом (АТФ), соматостатином и нейропептидом Y (НП-Y).

В мозговом веществе надпочечников (см. ниже) и в адренергических нейронах продолговатого мозга N-метилтрансфераза фенилэтаноламина превращает норадреналин в адреналин (А).

Окончания немиелинизированных симпатических постганглионарных нейронов являются шишковидными (узловатыми), или варикозными (А). Эти узлы представляют собой синаптические контакты, хотя и не всегда близкие, с эффекторными органами. Они также служат участками синтеза и хранения норадреналина. L-Тирозин (А1) активно поглощается нервными окончаниями и превращается в дофамин. При адренергической стимуляции эта стадия ускоряется зависимым от протеинкиназы А (ПК-A; А2) фосфорилированием соответствующего фермента. Это приводит к увеличению запасов дофамина. Дофамин помещается в хромаффинные везикулы, где превращается в норадреналин (АЗ). Норадреналин, будучи конечным продуктом, ингибирует дальнейший синтез дофамина (отрицательная обратная связь).

Высвобождение норадреналина. Норадреналин высвобождается в синаптическую щель после поступления в нервные окончания потенциала действия и инициации притока Са2+ (А4).

Адренергические рецепторы, или адренорецепторы (В). Различают четыре основных типа адренорецепторов (а1, а2, β1 и β2) в зависимости от их аффинности к адреналину и норадреналину, а также к многочисленным агонистам и антагонистам. Все адренорецепторы реагируют на адреналин; однако норадреналин оказывает слабое действие на β2-адренорецепторы. Изопротеренол (изопреналин) активирует только β-адренорецепторы, а фентоламин блокирует только а-адренорецепторы. Активность всех адренорецепторов опосредована G-белками.

Выделяют различные подтипы (a1A, а1B. а1D) a1-адренорецепторов (Б1). Их расположение и функции; ЦНС (усиление симпатической активности), слюнные железы, печень (усиление гликогенолиза), почки (действие на порог высвобождения ренина) и гладкая мускулатура (сигнал к сокращению артериол, матки, различных протоков, бронхиол, мочевого пузыря, желудочно-кишечных сфинктеров и расширителя зрачка).

Активация а1-адренорецепторов (Б1), опосредованная Gq-белками и фосфолипазой Сβ (ФЛ-Сβ), ведет к формированию вторичных мессенджеров: инозитолтрифосфата (ИТФ), который увеличивает внутриклеточную концентрацию Са2+, и диацилглицерола (ДАГ), который активирует протеинкиназу С (ПК-С). Опосредованная Gj-белками активация a1-адренорецепторов также приводит к активации Са2+-зависимых К+-каналов. Результирующая утечка К+ гиперполяризует и расслабляет мишень - гладкую мышцу (например, в желудочно-кишечном тракте).

Различают три подтипа (a2A, а2B, а2C) a2-адренорецепторов (Б2). Их расположение и функции: ЦНС (снижение симпатической активности; например, использование а2-агониста клонидина для снижения кровяного давления), слюнные железы (уменьшение слюноотделения), островковые клетки поджелудочной железы (снижение секреции инсулина), жировые клетки (снижение липолиза), тромбоциты (увеличение агрегации) и нейроны (пресинаптические ауторецепторы, см. ниже). Активированные а2-адренорецепторы (Б2) связываются с G1 белком и ингибируют (посредством аi-субъединицы Gj-белков) аденилатциклазу (синтез цАМФ) и в то же время при помощи βу-субъединицы Gj-белков увеличивают вероятность открывания зависимых от потенциала К+-каналов (гиперполяризация). Так как аг-адренорецепторы сопряжены с Go-белками, они также ингибируют зависимые от потенциала Са2+-каналы (снижая [Са2+]внутр ).

Все β-адренорецепторы сопряжены с GS-белком и их aS-субъединицы высвобождают цАМФ как вторичный мессенджер. Затем цАМФ активирует протеинкиназу А (ПК-A), которая фосфорилирует различные белки, что зависит от типа клеток-мишеней.

Норадреналин и адреналин действуют через β1-адренорецепторы (БЗ) и открывают посредством цАМФ и протеинкиназы А Са2+-каналы L-типа в мембранах клеток сердца. Это увеличивает [Са2+]внутр. и таким образом производит положительные хронотропные, дромотропные и инотропные эффекты. Активированные Gs-белки могут также напрямую увеличивать вероятность открывания зависимых от потенциала Са2+-каналов в сердце (БЗ). В почках базальная секреция ренина увеличивается посредством β1-адренорецепторов.

Активация β2-адренорецепторов адреналином (БД) увеличивает уровень цАМФ, таким образом снижая [Са2+]внутр. (механизм этого процесса пока не ясен). Это расширяет бронхиолы и кровеносные сосуды в скелетных мышцах и расслабляет мышцы матки, различных протоков и желудочно-кишечного тракта. Дальнейшие эффекты активации β2-адренорецепторов - увеличенная секреция инсулина и гликогенолиз в печени и мышцах, а также пониженная агрегация тромбоцитов.

Адреналин также увеличивает высвобождение норадреналина в норадренергических волокнах посредством активации пресинаптических β2-адренорецепторов (Д2, А5).

Продукция тепла увеличивается при помощи β3-адренорецепторов клеток бурого жира.

Норадреналин в синаптической щели инактивируется при помощи (А6а-г):

  • диффузии норадреналина из синаптической щели в кровь;
  • вненейронного поглощения адреналина (в сердце, железах, гладких мышцах, нейроглии и печени) и последующей внутриклеточной деградации норадреналина посредством катехоламин-O-метилтрансферазы (КОМТ) и моноаминоксидазы (МАО);
  • активного вторичного поглощения норадреналина (70%) пресинаптическим нервным окончанием. Некоторое количество поглощенного норадреналина входит во внутриклеточные везикулы (АЗ) и используется повторно, а остальная часть инактивируется при помощи МАО;
  • стимуляции пресинаптических а2-адренорецепторов (ауторецепторов А6г, 7) норадреналином синаптической щели, который ингибирует дальнейшее высвобождение норадреналина.

Пресинаптические а2-адренорецепторы также можно обнаружить в холинергических нервных окончаниях, например в желудочно-кишечном тракте (снижение подвижности) и предсердии (отрицательный дромотропный эффект), а пресинаптические М-холинорецепторы присутствуют в норадренергических нервных окончаниях. Их взаимодействие позволяет в некоторой степени регулировать периферическую нервную систему. Мозговое вещество надпочечников

После стимуляции преганглионарных симпатических волокон (холинергическая передача) 95% всех клеток в мозговом веществе секретирует в кровь при помощи экзоцитоза гормон адреналин (А), а другие 5% - высвобождают норадреналин (НА). Синтез норадреналина в мозговом веществе аналогичен таковому в норадренергических нейронах (см. выше), но большая часть норадреналина покидает везикулы и превращается в цитоплазме в адреналин. Специальные везикулы, называемые хромаффинными тельцами, после этого активно запасают адреналин и готовятся к высвобождению его и комедиаторов: знкефалина, нейропептида Y путем экзоцитоза.

При реакциях организма на стресс секреция адреналина (и некоторого количества норадреналина) мозговым веществом существенно увеличивается - ответ на физический, ментальный или эмоциональный стресс. Таким образом, клетки, не иннервированные симпатически, активируются и при стрессовой реакции. Адреналин увеличивает высвобождение норадреналина из нейронов посредством пресинаптических β2-адренорецепторов (А2). Секреция адреналина мозговым веществом (опосредованная увеличением симпатической активности) стимулируется некоторыми триггерами, например физической работой, холодом, теплом, тревогой, гневом (стрессом), болью, дефицитом кислорода или снижением кровяного давления. Например, при тяжелой гипогликемии ( Нехолинергические и неадренергические нейромедиаторы Править

У человека гастринвысвобождающий пептид (ГВП) и вазоактивный интестинальный (кишечный) пептид (ВИП) служат комедиаторами в преганглионарных симпатических волокнах; а нейропептид Y (НП-Y) и соматостатин - в постганглионарных волокнах. Постганглионарные парасимпатические волокна используют в качестве комедиаторов нейропептиды энкефалин, вещество Р и/или НП-Y.

Первичной целью преганглионарной секреции пептидов, по-видимому, является регуляция постсинаптических нейронов. Существует весомое доказательство того, что АТФ (аденозинтрифосфат), НП-Y и ВИП также функционируют как независимые нейромедиаторы в вегетативной нервной системе. ВИП и ацетилхолин часто присутствуют одновременно (но в нескольких разных везикулах) в парасимпатических волокнах кровеносных сосудов, экзокринных железах и потовых железах. В желудочно-кишечном тракте ВИП (вместе с оксидом азота) индуцирует истощение слоя круговых мышц и мышц сфинктера, а также (вместе с комедиаторами динорфином и галанином) увеличивает желудочную секрецию. Oксид азота (N0) высвобождается из нитроергических нейронов.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.