Впервые нервная система появляется у кишечнополостных

Кишечнополостные - одна из древнейших групп многоклеточных организмов, просто организованных, обладающих лучевой (радиальной) симметрией и двуслойностью. Кишечнополостные - в большинстве обитатели морей и океанов, часть встречается в пресных водах. Произошли от колониальных форм простейших - жгутиконосцев.


Чтобы хорошо понимать зоологию, следует, прежде всего, знать ароморфозы. С них мы и будем начинать изучение каждого нового раздела. Определений слова "ароморфоз" множество, приведу два. Ароморфоз - прогрессивное эволюционное изменение строения, в результате которого усложняется организация организмов.

  • Многоклеточность

У простейших одна клетка представляла весь организм целиком, имела сложное строение. Начиная с кишечнополостных организмы представлены совокупностью клеток - многоклеточность, клетки отличаются по строению и функции.

Стенка тела состоит из двух слоев: эктодермы (наружного слоя, от греч. ektós — вне, снаружи) и энтодерма (внутреннего слоя, от гр. entos внутри). Между эктодермой и энтодермой находится мезоглея - студенистое вещество.


Радиальная симметрия - форма симметрии, при которой тело при вращении совпадает само с собой. Через центр такого организма можно провести несколько или много плоскостей симметрии. Такая форма симметрии характерна для животных, ведущий малоподвижный образ жизни.

В типе кишечнополостные нас более всего интересует подтип стрекающие, в составе которого имеются три класса, о которых мы будем говорить подробно: гидроидные, сцифоидные, коралловые полипы.


Специализация клеток закономерное явление в многоклеточном организме, клетки отличаются по строению и выполняемой функции. В эктодерме и энтодерме представлены разные типы клеток. Эктодерма состоит из:

    Эпителиально-мускульные - благодаря их сокращениям организм передвигается (гидра совершает кувырок)


Промежуточные - мультипотентные стволовые клетки, которые могут дифференцироваться в другие типы клеток организма. Благодаря им кишечнополостные имеют высокую способность к регенерации.

Выполняют функции защиты от врагов и нападения на добычу. Характерный признак - наличие книдоциста, сложноустроенного органа, состоящего из колбовидной капсулы, и нитевидной структуры - стрекательной нити. При соприкосновении с книдоцилем ("спусковым выростом") - направленной наружу части книдоцита - книдоцит "выстреливает". Шипы, расположенные в основании стрекательной нити, прокалывают цель, а стрекательная нить выворачивается наружу из стрекательной капсулы, пронзая тело жертвы.

При ударе стрекательной нити об организм-мишень, внутрь ткани впрыскиваются нейротоксины и добыча оказывается парализованной. После этого кишечнополостные легко овладевают добычей, и, перемещая ее в гастральную полость, переваривают.


Нервные клетки, соединяясь друг с другом, объединяются в нервную систему. Благодаря наличию этих клеток, у гидры имеются рефлексы. Рефлекс - ответная реакция организма на раздражение. Так, если гидру уколоть иглой, то ее тело сжимается.

Внутренний слой гидры - энтодерма, также содержит определенные типы клеток:

  • Эпителиально-мускульные - это те же эпителиально-мускульные клетки по функции и строению, только расположены они во внутреннем слое и способны к фагоцитозу.
  • Пищеварительные - имеют жгутики, обеспечивают внутриклеточное пищеварение путем фагоцитоза.
  • Железистые клетки - выделяют ферменты в гастральную (кишечную) полость, благодаря чему осуществляется полостное пищеварение.

Дифференцировка клеток, их специализация способствовала появлению тканей у кишечнополостных, обособлению наружного и внутреннего слоев.

Посмотрите на схему (ниже) строения стенки тела гидры. Попробуйте сами дать определения и назвать функцию каждого из указанных элементов.


Именно у кишечнополостных мы впервые отметим появление нервной системы. Она диффузного (сетчатого) типа, то есть нервные клетки по организму распределены равномерно, нигде мы не найдем скопления нервных клеток (узлов).


У простейших был только один вариант пищеварения - внутриклеточное. У кишечнополостных возникает полостное пищеварение, при котором ферменты выделяются железистыми клетками энтодермы в кишечную (гастральную) полость. Таким образом, расщепление пищи начинается еще до того, как она попадет в клетку.

Заметьте, само название типа "Кишечнополостные" напоминает вам об этом ароморфозе.

Отмечу, что полостное пищеварение никак не исключает внутриклеточное: после полостного пищеварения мелкие пищевые частицы захватываются пищеварительными клетками - начинается внутриклеточный этап пищеварения.


Осуществляется как бесполым, так и половым путем. Бесполое может осуществляться путем фрагментации и почкования, в результате которого образуются колонии. Половое - с помощью билатерально-симметричной (двусторонняя симметрия) личинки - планулы.

У некоторых кишечнополостных имеются жизненные циклы со сменой форм: полипа (сидячая) и медузы (плавающая).

Приглашаю вас в увлекательное путешествие на глубины океана, в мир обожаемых нами кишечнополостных! В следующих темах мы подробнее поговорим о представителях кишечнополостных и получим несравненное удовольствие.


Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Нервная система в живом организме представлена сетью коммуникаций, обеспечивающих его связь с окружающим миром и собственными процессами. Её базовым элементом является нейрон — клетка с отростками (аксонами и дендритами), передающая информацию электрическим и химическим путём.

Назначение нервной регуляции

Впервые нервная система появилась у живых организмов при необходимости более эффективного взаимодействия со средой. Развитие простейшей сети для передачи импульсов помогало не только воспринимать сигналы извне. Благодаря ей стало возможным организовывать собственные процессы жизнедеятельности для более успешного функционирования.


Во время эволюции структура нервной системы усложнялась: её задачей стало не только формирование адекватного ответа на внешние воздействия, но и организация собственного поведения. И. П. Павлов назвал такой способ функционирования высшей нервной деятельностью.

Взаимодействие со средой одноклеточных

Впервые нервная система появилась у организмов, состоящих более чем из одной клетки, так как она передаёт сигналы между нейронами, образующими сеть. Но уже у простейших можно наблюдать способность реагировать на внешние стимулы, обеспечивающиеся внутриклеточными процессами.

Таким образом, у того впервые нервная система появляется, у кого есть не одна, а несколько клеток, то есть у многоклеточных организмов. Прототипом же служит проведение импульсов у простейших. На их уровне жизнедеятельности выявляется выработка протоплазмой структур, обладающих проводимостью импульсов. Аналогично у более сложноорганизованных живых существ эту функцию выполняют отдельные нервные клетки.

Особенности нервной системы кишечнополостных

Многоклеточные животные, обитающие колониями, не разделяют между собой функций, и у них ещё нет нервной сети. Она возникает на том этапе, когда дифференцируются различные функции в организме многоклеточного.


Впервые нервная система появляется у гидры и других кишечнополостных. Она является сетью, проводящей нецеленаправленные сигналы. Структура ещё не оформлена, она диффузно распределена по всему телу кишечнополостного. Ганглиозные клетки и их нисслевская субстанция не до конца сформированы. Это наипростейший вариант нервной системы.

Тип моторики животного определяется диффузной сетевидной нервной системой. Гидра выполняет перистальтические движения, так как у неё нет специальных частей тела для перемещения и других движений. Для моторной активности ей необходима беспрерывная связь сокращающихся элементов, при этом требуется, чтобы основная масса проводящих клеток была расположена в сократительной части. У кого из животных впервые нервная система появляется в виде диффузной сети? У тех, которые являются основателями системы регуляции человека. Доказательством этому служит тот факт, что в развитии эмбриона животных присутствует гаструляция.

Особенности нервной системы гельминтов

Последующее совершенствование нервной регуляции было связано с развитием билатеральной симметрии взамен радиальной и формированием скоплений нейронов в различных частях организма.


В виде тяжей впервые нервная система появляется у 1 плоских червей. На этом этапе она представлена парными головными нервными узлами и отходящими от них сформированными волокнами. В сравнении с кишечнополостными такая система устроена гораздо сложней. У гельминтов обнаруживаются группы нервных клеток в виде узлов и ганглиев. Прототип головного мозга — ганглий в передней части тела, выполняющий регуляторные функции. Он называется мозговым ганглием. От него вдоль всего тела идут два нервных ствола, соединённые перемычками.


Все составные части системы расположены не снаружи, а погружены в паренхиму и тем самым защищены от травм. Впервые нервная система появляется у плоских червей вместе с простейшими органами чувств: осязанием, зрением и ощущением равновесия.

Особенности нервной системы нематод

Следующим этапом развития становится формирование кольцевого образования около глотки и отходящих от него нескольких длинных волокон. С такими характеристиками впервые нервная система появляется у круглых червей. Окологлоточное кольцо представляет собой единый круговой ганглий и выполняет функции базового органа восприятия. С ним связан вентральный тяж и дорзальный нерв.

Нервные стволы у нематод расположены интраэпителиально, то есть в гиподермальных валиках. В роли органов восприятия выступают сенсиллы — щетинки, папиллы, супплементарные органы, амфиды и фазмиды. Все они наделены смешанной чувствительностью.


Самые сложные органы восприятия нематод — амфиды. Они парные, могут быть различными по форме и находятся спереди. Их основная задача — распознавать химические агенты, расположенные далеко от тела. У части круглых червей имеются также рецепторы, воспринимающие внутренние и внешние механические воздействия. Они называются метанемами.

Особенности нервной системы кольчецов

Образование ганглий в нервной системе в дальнейшем развивается у кольчатых червей. У большинства из них ганглионизация брюшных стволов происходит так, что каждый сегмент червя имеет пару нервных узлов, которые соединяются волокнами с соседними сегментами. Кольчатые черви имеют брюшную нервную цепочку, образованную мозговым ганглием и парой тяжей, идущих от него. Они тянутся по брюшной плоскости. Воспринимающие элементы расположены спереди и представлены простейшими глазами, обонятельными клетками, ресничными ямками и локаторами. С парными узлами впервые нервная система появилась у кольчатых червей, но в дальнейшем она развивается у членистоногих. У них происходит увеличение ганглиев в головной части и совмещение узлов в теле.

Элементы диффузной сети в нервной системе человека

Вершиной эволюционного развития нервной системы является появление головного и спинного мозга у человека. Однако даже при наличии таких сложных структур сохраняется первоначальная диффузная организация. Эта сеть опутывает каждую клетку организма: кожу, сосуды и т. д. А ведь с такими характеристиками у того впервые нервная система появляется, у кого даже не было возможности дифференцировано воспринимать окружающую среду.


Общая линия развития нервной системы в ходе эволюции

Эволюционные процессы нервной системы проходили в три этапа:

  • диффузная сеть;
  • гангилии;
  • спинной и головной мозг.


Структура и функционирование ЦНС очень отличаются от более ранних типов. В её симпатическом отделе представлены ганглиозные и сетевидные элементы. В своём филогенетическом развитии нервная система приобретала всё большую расчленённость и дифференциацию. Ганглиозный этап развития от сетевидного отличался наличием нейронов, всё ещё расположенных над системой проведения.

Любой живой организм — по сути монолит, состоящий из различных органов и их систем, которые постоянно и непрерывно взаимодействуют между собой и с внешним окружением. Впервые нервная система появилась у кишечнополостных, она представляла собой диффузную сеть, обеспечивающую элементарное проведение импульсов.

3. РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ В ФИЛОГЕНЕЗЕ

Для беспозвоночных животных характерно наличие нескольких источников происхождения нервных клеток. У одного и того же типа животных нервные клетки могут одновременно и независимо происходить из трех разных зародышевых листков. Полигенез нервных клеток беспозвоночных является основой разнообразия медиаторных механизмов их нервной системы.

Нервная система впервые появляется у кишечнополостных животных. Кишечнополостные — это двухслойные животные. Их тело представляет собой полый мешок, внутренняя полость которого является пищеварительной полостью. Нервная система кишечнополостных принадлежит к диффузному типу. Каждая нервная клетка в ней длинными отростками соединена с несколькими соседними, образуя нервную сеть. Нервные клетки кишечнополостных не имеют специализированных поляризованных отростков. Их отростки проводят возбуждение в любую сторону и не образуют длинных проводящих путей. Контакты между нервными клетками диффузной нервной системы бывают нескольких типов. Существуют плазматические контакты, обеспечивающие непрерывность сети (анастомозы). Появляются и щелевидные контакты между отростками нервных клеток, подобные синапсам. Причем среди них существуют контакты, в которых синаптические пузырьки располагаются по обе стороны контакта — так называемые симметричные синапсы, а есть и несимметричные синапсы: в них везикулы располагаются только с одной стороны щели.

Нервные клетки типичного кишечнополостного животного гидры равномерно распределены по поверхности тела, образуя некоторые скопления в районе ротового отверстия и подошвы (рис. 8). Диффузная нервная сеть проводит возбуждение во всех направлениях. При этом волну распространяющегося возбуждения сопровождает волна мышечного сокращения.

Рис. 8. Схема строения диффузной нервной системы кишечнополостного животного:

1 — ротовое отверстие; 2 — щупальце; 3 — подошва


Рис. 9. Схема строения диффузностволовой нервной системы турбеллярии:

1 — нервный узел; 2 — глотка; 3 — брюшной продольный ствол; 4 — боковой нервный ствол


Следующим этапом развития беспозвоночных является появление трехслойных животных — плоских червей. Подобно кишечнополостным они имеют кишечную полость, сообщающуюся с внешней средой ротовым отверстием. Однако у них появляется третий зародышевый слой — мезодерма и двусторонний тип симметрии. Нервная система низших плоских червей принадлежит диффузному типу. Однако из диффузной сети уже обособляются несколько нервных стволов (рис. 9, 3, 4).

У свободно живущих плоских червей нервный аппарат приобретает черты централизации. Нервные элементы собираются в несколько продольных стволов (рис. 10, 4, 5) (для самых высокоорганизованных животных характерно наличие двух стволов), которые соединяются между собой поперечными волокнами (комиссурами) (рис. 10, 6). Упорядоченная таким образом нервная система называется ортогоном. Стволы ортогона представляют собой совокупность нервных клеток и их отростков (рис. 10).

1 — щупальцевидный вырост; 2 — нерв, иннервирующий вырост; 3 — мозговой ганглий; 4 — боковой продольный нервный ствол; 5 — брюшной продольный нервный ствол; 6 — комиссура


ганглия появляются длинные отростки, идущие в продольные стволы ортогона (рис. 10, 4, 5).

Таким образом, ортогон представляет собой первый шаг к централизации нервного аппарата и его цефализации (появлению мозга). Централизация и цефализация являются результатом развития сенсорных (чувствительных) структур.

Следующим этапом развития беспозвоночных животных является появление сегментированных животных — кольчатых червей. Их тело метамерно, т.е. состоит из сегментов. Структурной основой нервной системы кольчатых червей является ганглий — парное скопление нервных клеток, расположенных по одному в каждом сегменте. Нервные клетки в ганглии размещаются по периферии. Центральную его часть занимает нейропиль — переплетение отростков нервных клеток и глиальные клетки. Ганглий расположен на брюшной стороне сегмента под кишечной трубкой. Он посылает свои чувствительные и двигательные волокна в свой сегмент и в два соседних. Таким образом, каждый ганглий имеет три пары боковых нервов, каждый из которых является смешанным и иннервирует свой сегмент. Приходящие с периферии чувствительные волокна попадают в ганглий через вентральные корешки нервов. Двигательные волокна выходят из ганглия по дорсальным корешкам нервов. Соответственно этому чувствительные нейроны расположены в вентральной части ганглия, а двигательные — в дорсальной. Кроме того, в ганглии есть мелкие клетки, иннервирующие внутренние органы (вегетативные элементы), они расположены латерально — между чувствительными и двигательными нейронами. Среди нейронов чувствительной, двигательной или ассоциативной зон ганглиев кольчатых червей не обнаружено группирования элементов, нейроны распределены диффузно, т.е. не образуют центров.

Ганглии кольчатых червей соединены между собой в цепочку. Каждый последующий ганглий связан с предыдущим при помощи

1 — надглоточный нервный ганглий;

2 — подглоточный нервный ганглий;

3 — сложный слившийся ганглий грудного сегмента; 4 — брюшной ганглий; 5 — периферический нерв; 6 — коннектива


нервных стволов, которые называются коннективами. На переднем конце тела кольчатых червей два слившихся ганглия образуют крупный подглоточный нервный узел. Коннективы от подглоточного нервного узла, огибая глотку, вливаются в надглоточный нервный узел, который является самой ростральной (передней) частью нервной системы. В состав надглоточного нервного ганглия входят только чувствительные и ассоциативные нейроны. Двигательных элементов там не обнаружено. Таким образом, надглоточный ганглий кольчатых червей является высшим ассоциативным центром, он осуществляет контроль над подглоточным ганглием. Подглоточный ганглий контролирует нижележащие узлы, он имеет связи с двумя-тремя последующими ганглиями, тогда как остальные ганглии брюшной нервной цепочки не образуют связей длинней, чем до соседнего ганглия.

В филогенетическом ряду кольчатых червей есть группы с хорошо развитыми органами чувств (многощетинковые черви). У этих животных в надглоточном ганглии обособляются три отдела. Передний отдел иннервирует щупальца, средняя часть иннервирует глаза и антенны. И наконец, задняя часть развивается в связи с совершенствованием химических органов чувств.

Сходную структуру имеет нервная система членистоногих, т.е. построена по типу брюшной нервной цепочки, однако может достигать высокого уровня развития (рис. 11). Она включает в себя значительно развитый надглоточный ганглий, выполняющий функ-

1 — грибовидное тело; 2 — протоцеребрум; 3 — зрительная лопасть; 4 — дейтоцеребрум; 5 — тритоцеребрум


цию мозга, подглоточный ганглий, управляющий органами ротового аппарата, и сегментарные ганглии брюшной нервной цепочки. Ганглии брюшной нервной цепочки могут сливаться между собой, образуя сложные ганглиозные массы.

Головной мозг членистоногих состоит из трех отделов: переднего — протоцеребрума, среднего — дейтоцеребрума и заднего — тритоцеребрума. Сложным строением отличается мозг насекомых. Особенно важными ассоциативными центрами насекомых являются грибовидные тела, располагающиеся на поверхности протоцеребрума, причем чем более сложным поведением характеризуется вид, тем более развиты у него грибовидные тела. Поэтому наибольшего развития грибовидные тела достигают у общественных насекомых (рис. 12).

Практически во всех отделах нервной системы членистоногих существуют нейросекреторные клетки. Нейросекреты играют важную регулирующую роль в гормональных процессах членистоногих.

В процессе эволюции первоначально диффузно расположенные биполярные нейросекреторные клетки воспринимали сигналы либо отростками, либо всей поверхностью клетки, затем сформировались нейросекреторные центры, нейросекреторные тракты и нейросекреторные контактные области. В последующем произошла специализация нервных центров, увеличилась степень надежности во взаимоотношениях двух основных регуляторных систем (нервной и гуморальной) и сформировался принципиально новый этап регуляции — подчинение нейросекреторным центрам периферических эндокринных желез.

1 — церебральная комиссура; 2 — церебральные ганглии; 3 — педальные ганглии; 4 — коннектива; 5 — висцеральные ганглии


Нервная система моллюсков также имеет ганглионарное строение (рис. 13). У простейших представителей типа она состоит из нескольких пар ганглиев. Каждая пара ганглиев управляет определенной группой органов: ногой, висцеральными органами, легкими и т.д. — и расположена рядом с иннервируемыми органами или внутри их. Одноименные ганглии попарно соединены между собой комиссурами. Кроме того, каждый ганглий связан длинными коннективами с церебральным комплексом ганглиев.

У более высокоорганизованных моллюсков (головоногие) нервная система преобразуется (рис. 14). Ганглии ее сливаются и образуют общую окологлоточную массу — головной мозг. От заднего отдела головного мозга отходят два крупных мантийных нерва и образуют два больших звездчатых ганглия. Таким образом, у головоногих наблюдается высокая степень цефализации.


Здравствуйте , уважаемые читатели блога репетитора ЕГЭ по биологии по Скайпу biorepet-ufa.ru.

В этой статье мы продолжим рассмотрение мира живых организмов царства животные.

Тип Кишечнополостные — это одни из первых наиболее просто организованных многоклеточных животных (есть еще примитивнее — тип Губки, который сейчас в школьной программе на рассматривается).

Да, из многоклеточных форм жизни, кишечнополостные одни из наиболее примитивных, но, согласитесь, какого огромного прогресса достигла жизнь! Был осуществлен настоящий прорыв — переход от одноклеточных простейших, то есть одноклеточной формы жизни к многоклеточной.


К тому же кишечнополостные — ДВУХ слойные. У них есть наружный слой клеток — ЭКТО дерма и внутренний слой клеток — ЭНТО дерма . Между этими слоями клеток находится неклеточная мезоглея (8) — не путать с МЕЗОдермой, которая эволюционно появится только у следующего типа животных — ПЛОСКИЕ ЧЕРВИ.

Причем в обоих слоях клетки неоднородные, дифференцированные, специализированные для выполнения определенных функций.

Как видим из рисунка, в эктодерме насчитывается 5 типов различных клеток

Дыхание и выделение продуктов обмена: всей поверхностью тела.

Раздражимость: примитивная диффузная нервная система. У прикрепленных форм из органов чувств — только осязание, у свободно плавающих — есть в щупальцах органы зрения (глаза — отличают свет от темноты) и органы равновесиястатоцисты .

Регенерация: возможна за счет размножения и дифференцировки промежуточных клеток.

Размножение: р аздельнополые, есть и гермафродиты — яичники и семенники развиваются на одной особи.

Половое размножение — прямое или с метаморфозом (личинка планула ).

Бесполое размножение — почкование образование выроста на материнском организме и стробиляция (множественные поперечные деления полипа).

Для медуз же, вообще, характерно развитие с чередованием поколений — половой и бесполой жизненными формами.

Итак, вот основные ароморфозы , которые претерпела жизнь при переходе от одноклеточных простейших к первым многоклеточным кишечнополостным животным:

1. Многоклеточная форма жизни.

2. Произошла дифференцировка клеток, специализация их по выполняемым функциям.

3. Тело из двойного слоя клеток — эктодермы и энтодермы.

4. Появление настоящего полового процесса.

5. Появление внутреннего пищеварения.

6. Появление нервной системы диффузного типа.

У кого есть вопросы по статье к репетитору биологии по Скайпу, замечания, пожелания — прошу в комментарии.

Около 9 тысяч видов водных (в основном морских) хищных животных.

Тело представляет собой мешок (кишечную полость) из двух слоев клеток – экто- и энтодермы, между которыми находится слизистая мезоглея. Кишечная полость открывается наружу ротовым отверстием, окруженным щупальцами.

Щупальца направлены равномерно во все стороны – это радиальная (лучевая) симметрия, характерная для сидячих животных.

Только у кишечнополостных имеются стрекательные клетки. Стрекательные клетки расположены в основном на щупальцах, при раздражении чувствительного волоска они с силой выстреливают нить, которая поражает добычу или нападающего хищника.

Полостное и внутриклеточное пищеварение происходит в кишечной полости, непереваренные остатки выбрасываются через рот. Дыхание и выделение происходят через всю поверхность тела.

Характерной особенностью Кишечнополостных является высокий уровень регенерации: при разрезании ее на несколько частей каждая часть превращается в новую особь – это происходит за счет деления промежуточных клеток.

У кишечнополостных впервые появляется нервная система, состоящая из нервных клеток звездчатой формы, образующих сеть (сетчатая, диффузная нервная система). Она обеспечивает простые безусловные рефлексы (например, при касании тела оно сжимается).

723-01. Что изображено на рисунке?


А) одноклеточные организмы
Б) финны бычьего цепня
В) стрекательные клетки гидры
Г) корневые волоски

723-02. Верны ли суждения о пресноводной гидре?
1. Гидра легко восстанавливает повреждённые части тела.
2. Восстановление гидрой утраченных и повреждённых частей тела называется раздражимостью.
А) верно только 1
Б) верно только 2
В) верны оба суждения
Г) оба суждения неверны

723-03. Общий признак гидры и медузы –
А) наличие стрекательных клеток
Б) внутренний скелет
В) отсутствие нервной системы
Г) жизнь в пресных водах

723-04. Тип беспозвоночных животных, для которого характерна лучевая симметрия тела, –
А) моллюски
Б) кишечнополостные
В) круглые черви
Г) кольчатые черви

723-05. Регенерация (восстановление поврежденных или утраченных частей тела) происходит у пресноводной гидры благодаря делению клеток
А) промежуточных
Б) кожно-мускульных
В) стрекательных
Г) нервных

723-06. Поступление кислорода в тело гидры происходит через
А) всю поверхность тела
Б) дыхательные отверстия
В) жаберные щели
Г) клетки щупалец

723-07. Прогрессивный признак типа Кишечнополостные, отличающий от простейших, – это переваривание пищи
А) отдельно в каждой клетке животного
Б) в полости, окруженной двумя слоями клеток животного
В) во внутреннем слое клеток тела животного
Г) в наружном слое клеток тела животного

723-08. Общим признаком для гидры и медузы является
А) двусторонняя симметрия
Б) лучевая симметрия
В) наличие кровеносной системы
Г) трехслойное строение тела

723-09. Верны ли следующие суждения о кишечнополостных животных?
1. Для кишечнополостных животных характерно внутриполостное и внутриклеточное переваривание пищи.
2. Кишечнополостные животные способны к регенерации.
А) верно только 1
Б) верно только 2
В) верны оба суждения
Г) оба суждения неверны

723-10. Гидра может восстановить свое тело из 1/200 части благодаря способности к
А) регенерации
Б) возбуждению
В) самовоспроизведению
Г) обмену веществ

723-11. Верны ли суждения о кишечнополостных животных?
1. Кишечнополостные имеют три слоя клеток.
2. Гидры и актинии передвигаются реактивным способом.
А) верно только 1
Б) верно только 2
В) верны оба суждения
Г) оба суждения неверны

723-12. Если дотронуться до пресноводной гидры, то она
А) погибнет
Б) уплывёт
В) спрячется
Г) сожмётся

723-13. На рисунке изображен фрагмент тела животного, которого относят к типу


А) Плоские черви
Б) Членистоногие
В) Кишечнополостные
Г) Кольчатые черви

723-14. Проглоченная пресноводным полипом – гидрой добыча переваривается в
А) желудке
Б) кишечнике
В) ротовом отверстии
Г) кишечной полости

723-15. Верны ли суждения о процессах пищеварения у кишечнополостных животных?
1. Непереваренные остатки пищи у гидры удаляются через анальное отверстие.
2. У кишечнополостных животных происходит и внутриполостное, и внутриклеточное пищеварение.
А) верно только 1
Б) верно только 2
В) верны оба суждения
Г) оба суждения неверны

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.