Митохондриальная дисфункция у ребенка с эпилепсией

Представлены данные о митохондриальных болезнях в детском возрасте. Рассматриваются исторические, этиопатогенетические и генетические аспекты этой группы болезней. Описаны основные виды митохондриальной патологии, подходы к диагностике и современные предс

The article focuses on mitochondrial disorders in infancy and childhood. Authors consider historical, etiopathogenic and genetic aspects of this group of diseases. Main types of mitochondrial pathologies are described, as well as approaches to diagnostics and contemporary ideas of potential treatment methods.

Митохондриальные болезни — это группа наследственной патологии, возникающей в результате нарушений клеточной энергетики, характеризующаяся полиморфизмом клинических проявлений, выражающаяся в преимущественном поражении центральной нервной системы и мышечной системы, а также других органов и систем организма [1].

Альтернативное определение митохондриальной патологии гласит, что это обширная группа патологических состояний, обусловленных генетическими, структурными и биохимическими дефектами митохондрий, нарушением тканевого дыхания и, как следствие, недостаточностью энергетического обмена.

R. Luft и соавт. (1962) обнаружили взаимосвязь между мышечной слабостью и нарушениями процессов окислительного фосфорилирования в мышечной ткани [3]. S. Nass и M. Nass (1963) открыли существование собственного генетического аппарата митохондрий (обнаружены несколько копий кольцевой хромосомы) [4, 5]. В 1960–1970 гг. появилась концепция митохондриальных болезней, то есть патологии, этиологически опосредованной митохондриальной дисфункцией. В 1980-е гг. были получены точные молекулярно-генетические доказательства митохондриальной природы ряда заболеваний (болезнь Лебера, синдром Пирсона) [6].

В зависимости от наличия основного метаболического дефекта принято рассматривать четыре основных группы митохондриальных болезней: 1) нарушения обмена пирувата; 2) дефекты обмена жирных кислот; 3) нарушения цикла Кребса; 4) дефекты электронного транспорта и окислительного фосфорилирования (OXPHOS) [1, 2].

Причинами возникновения митохондриальной патологии являются мутации в генах, кодирующих белки, задействованные в процессах энергообмена в клетках (включая субъединицы комплекса пируватдегидрогеназы, ферменты цикла Кребса, компоненты цепи транспорта электронов, структурные белки цепи транспорта электронов (ЦТЭ), митохондриальные транспортеры внутренней мембраны, регуляторы митохондриального нуклеотидного пула, а также факторы, взаимодействующие с ДНК митохондрий (мтДНК) [2, 6].

Митохондриальные нарушения связаны с большим числом болезней, не являющихся первичными митохондриальными цитопатиями. Тем не менее, при этих болезнях нарушения функций митохондрий вносят значимый вклад в патогенез и клинические проявления заболеваний. Описываемые болезни могут быть метаболическими, дегенеративными, воспалительными, врожденными/приобретенными мальформациями, а также неоплазмами.

Основные особенности митохондриальных цитопатий включают выраженный полиморфизм клинических симптомов, мультисистемный характер поражения, вариабельность течения, прогрессирование и неадекватное реагирование на применяемую терапию.

Дыхательная цепь локализуется на внутренней мембране митохондрий и включает в себя пять мультиферментных комплексов, каждый из которых, в свою очередь, состоит из нескольких десятков субъединиц. Митохондриальная ДНК кодирует только 13 из белковых субъединиц дыхательной цепи, 2 белковых субъединицы мтРНК и 22 митохондриальных транспортных РНК (тРНК). Ядерный геном кодирует более 90% митохондриальных белков [2, 6].

Конечным результатом окислительного фосфорилирования, происходящего в комплексах 1-γ, является производство энергии (АТФ). Аденозин трифосфат — основной источник энергии для клеток.

Митохондриальная ДНК тесно взаимодействует с ядерной ДНК (яДНК). В каждом из 5 дыхательных комплексов основная часть субъединиц кодируется яДНК, а не мтДНК. Комплекс I состоит из 41 субъединицы, из которых 7 кодируются мтДНК, а остальные — яДНК. Комплекс II имеет всего 4 субъединицы; большая их часть кодируется яДНК. Комплекс III представлен десятью субъединицами; кодирование мтДНК — 1, яДНК — 9. Комплекс IV имеет 13 субъединиц, из которых 3 кодируются мтДНК, а 10 — яДНК. Комплекс V включает 12 субъединиц, кодирование мтДНК — 2, яДНК — 10 [2, 6].

Нарушения клеточной энергетики приводят к полисистемным заболеваниям. В первую очередь, страдают органы и ткани, являющиеся наиболее энергозависимыми: нервная система (энцефалопатии, полинейропатии), мышечная система (миопатии), сердце (кардиомиопатии), почки, печень, эндокринная система и другие органы и системы. До недавнего времени все эти заболевания определялись под многочисленными масками других нозологических форм патологии. К настоящему времени выявлено более 200 заболеваний, причиной которых являются мутации митохондриальной ДНК [1, 2, 6].

Митохондриальные болезни могут быть обусловлены патологией как митохондриального, так и ядерного генома. Как указывают P. F. Chinnery и соавт. (2004) и S. DiMauro (2004), мутации мтДНК были выявлены в 1 случае на 8000 населения, а распространенность митохондриальных заболеваний составляет порядка 11,5 случаев на 100 тысяч населения [7, 8].

В каждой клетке находятся от нескольких сотен до нескольких тысяч органелл — митохондрий, содержащих от 2 до 10 кольцевых молекул митохондриальной ДНК, способных к репликации, транскрипции и трансляции, причем независимо от ядерной ДНК.

Митохондриальная генетика отличается от классической менделевской в трех важнейших аспектах: 1) материнское наследование (всю цитоплазму, вместе с находящимися в ней органеллами, потомки получают вместе с яйцеклеткой); 2) гетероплазмия — одновременное существование в клетке нормального (дикого) и мутантного типов ДНК; 3) митотическая сегрегация (оба типа мтДНК в процессе деления клетки могут распределяться случайным образом между дочерними клетками) [1, 2].

Митохондриальная ДНК накапливает мутации более чем в 10 раз быстрее ядерного генома, так как она лишена защитных гистонов и ее окружение чрезвычайно богато реактивными видами кислорода, являющимися побочным продуктом метаболических процессов, протекающих в митохондриях. Пропорция мутантной мтДНК должна превышать критический пороговый уровень, прежде чем клетки начнут проявлять биохимические аномалии митохондриальных дыхательных цепей (пороговый эффект). Процентный уровень мутантной мтДНК может варьировать у индивидов внутри семей, а также в органах и тканях. В этом заключается одно из объяснений вариабельности клинической картины у больных с митохондриальными дисфункциями. Одни и те же мутации могут вызывать различные клинические синдромы (например, мутация A3243G — энцефалопатию с инсультоподобными пароксизмами — синдром MELAS, а также хроническую прогрессирующую наружную офтальмоплегию, сахарный диабет). Мутации в различных генах могут быть причиной одного и того же синдрома. Классическим примером такой ситуации является синдром MELAS [2].

Если перечислить основные митохондриальные болезни, то в их числе окажутся следующие: митохондриальная нейрогастроинтестинальная энцефалопатия (MNGIE), синдром множественных делеций митохондриальной ДНК, липидная миопатия с нормальными уровнями карнитина, недостаточность карнитин пальмитоилтрансферазы, митохондриальный сахарный диабет, болезнь Альперса–Хуттенлохера, синдром Кернса–Сейра, болезнь Лебера (LHON), синдром Вольфрама, синдром MEMSA, синдром Пирсона, синдром SANDO, синдром MIRAS, синдром MELAS, синдром MERRF, синдром SCAE, синдром NARP, синдром Барта, синдром CPEO, синдром Ли и др. [1].

Наиболее часто в детском возрасте встречаются следующие клинические синдромы митохондриальной патологии: синдром MELAS (митохондриальная энцефаломиопатия, лактат-ацидоз и инсультоподобные пароксизмы), синдром MERRF (миоклонус-эпилепсия с рваными красными волокнами), синдром Кернса–Сейра (характеризуется птозом, офтальмоплегией, пигментным ретинитом, атаксией, нарушением сердечного проведения), синдром NARP (нейропатия, атаксия, пигментный ретинит), синдром Ли (подострая некротизирующая энцефаломиелопатия), болезнь Лебера (наследственная оптическая нейропатия) [1, 2].

Имеется большой пул заболеваний, причиной которых является не мутации митохондриальной ДНК, а мутации ядерной ДНК, кодирующей работу митохондрий. К ним относятся следующие виды патологии: болезнь Барта (миопатия, кардиомиопатия, транзиторные нейтро- и тромбоцитопении), митохондриальная гастроинтестинальная энцефалопатия (аутосомно-рецессивное мультисистемное заболевание): птоз, офтальмоплегия, периферическая нейропатия, гастроинтестинальная дисфункция, приводящая к кахексии, лейкоэнцефалопатия. Возраст дебюта последнего заболевания весьма вариабелен — от периода новорожденности до 43 лет.

Клинические критерии диагностики митохондриальных болезней сравнительно многочисленны: 1) миопатический симптомокомплекс (непереносимость физических нагрузок, мышечная слабость, снижение мышечного тонуса); 2) судороги (миоклонические или мультифокальные); 3) мозжечковый синдром (атаксия, интенционный тремор); 4) поражение глазо­двигательных нервов (птоз, наружная офтальмоплегия); 5) полинейропатия; 6) инсультоподобные пароксизмы; 7) мигренеподобные головные боли; 8) черепно-лицевая дисморфия; 9) дисметаболические проявления (рвота, эпизоды летаргии, комы); 10) дыхательные нарушения (апноэ, гипервентиляция, тахипноэ); 11) поражение сердца, печени, почек; 12) прогрессирующее течение заболевания [1, 2].

В диагностике митохондриальных болезней используются следующие клинические критерии: 1) признаки поражения соединительной ткани (гипермобильный синдром, гиперэластичность кожи, нарушения осанки и др.); 2) нейродегенеративные проявления, лейкопатии при проведении магнитно-резонансной томографии (МРТ) головного мозга; 3) повторные эпизоды нарушения сознания или необъяснимые эпизоды рвоты у новорожденных; 4) необъяснимая атаксия; 5) отставание в умственном развитии без определенных причин; 6) отягощенный семейный анамнез; 7) внезапное ухудшение состояния ребенка (судороги, рвота, расстройства дыхания, вялость, слабость, нарушения мышечного тонуса — чаще мышечная гипотония, кома, летаргия; поражение печени и почек, не поддающееся обычной терапии) [1, 2].

Лабораторные (биохимические) исследования нацелены в первую очередь на выявление у пациентов лактат-ацидоза и/или пируват-ацидоза. При этом следует помнить, что нормальные показатели молочной кислоты не исключают наличия митохондриального заболевания. Другие биохимические показатели, исследуемые при подозрении на наличие митохондриальной патологии, включают кетоновые тела в крови и моче, ацилкарнитины плазмы крови, а также содержание органических кислот и аминокислот в крови и моче [9].

M. V. Miles и соавт. (2008) предложили оценивать содержание мышечного коэнзима Q10 у детей с дефектом ферментов дыхательной цепи митохондрий [10].

Цитоморфоденситометрические исследования позволяют оценивать активность митохондрий лимфоцитов (снижение количества, увеличение объема, снижение активности).

Генетические методы исследований сводятся к определению наиболее частых мутаций и секвенированию митохондриальной ДНК.

Терапия митохондриальных болезней, к сожалению, не разработана. С позиций доказательной медицины считается, что эффективное лечение для этой представительной группы болезней отсутствует. Тем не менее, в различных странах мира используются фармакологические средства и биологически активные вещества, нацеленные на нормализацию метаболизма и обеспечение адекватной энергетики митохондрий.

При синдроме MELAS лечение должно быть направлено на лечение судорог, эндокринных расстройств, устранение последствий инсульта.

P. Каufmann и соавт. (2006) указывают, что поскольку уровень лактата часто коррелирует с тяжестью неврологических проявлений, целесообразно применять дихлорацетат для снижения уровня лактата [11]. В нашей стране с аналогичной целью используется диметилоксобутилфосфонилдиметилат (Димефосфон) [12].

В исследованиях японских авторов Y. Koga и соавт. (2002, 2005, 2006, 2007) с хорошим эффектом использовалось внутривенное введение L-аргинина (предшественника NO) — для стимуляции вазодилатации в остром периоде инсульта, а также пероральное его применение для снижения тяжести последующих эпизодов [13–16].

Среди средств, используемых в терапии митохондриальной патологии, фигурируют следующие: витамин В1 (тиамин) — 400 мг/сут, витамин В2 (рибофлавин) — 100 мг/сут, витамин С (аскорбиновая кислота) — до 1 г/сут, витамин Е (токоферол) — 400 МЕ/сут, никотинамид (ниацин) — до 500 мг/сут, коэнзим Q10 — от 90 до 200 мг/сут, L-карнитин — от 10 мг до 1–2 г/сут, янтарная кислота — от 25 мг до 1,5 г/cут, Димефосфон 15% — 1,0 мл на 5 кг массы тела. Применяются также цитохром С (внутривенно), Реамберин (внутривенно) и Цитофлавин (внутривенно и перорально) [17, 18].

В качестве других средств фармакотерапии выступают кортикостероиды, минералокортикоиды (при развитии надпочечниковой недостаточности), антиконвульсанты — при судорогах/эпилепсии (исключая вальпроевую кислоту и ее производные, ограничивая применение барбитуратов). В наших наблюдениях наиболее эффективной противосудорожной терапией являлось использование препаратов леветирацетам (Кеппра), топирамат (Топамакс) или их сочетаний.

Широко применяются вещества, являющиеся пищевыми кофакторами (коэнзим Q10, L-карнитин, ацетил-L-карнитин, витамин В2, аскорбиновая кислота, витамин Е, витамин В1, никотинамид, витамин В6, витамин В12, биотин, фолиевая кислота, витамин К, α-липоевая кислота, янтарная кислота, Se) [19]. Рекомендуется избегание индивидуальных алиментарных факторов, индуцирующих обострение митохондриальной болезни (голодание, потребление жиров, белков, сахарозы, крахмала, алкоголя, кофеина, мононатрия глутамата; количественные нарушения приема пищи и неадекватное потребление пищевой энергии). При необходимости осуществляется клиническое питание (энтеральное, парентеральное, гастростомия) [19].

Чрезвычайно важными являются своевременная диагностика митохондриальных болезней, поиск клинических и параклинических критериев этих заболеваний на этапе предварительном, догенетическом. Это необходимо для подбора адекватной метаболической терапии и предотвращения ухудшения состояния или инвалидизации больных с этими редкими заболеваниями.

C. S. Chi (2015) подчеркивает, что подтверждение или исключение митохондриальной патологии остается принципиальным в педиатрической практике, особенно когда клинические признаки болезни не являются специфичными, вследствие чего необходим катамнестический подход к оценке симптомов и биохимических показателей [20].

Литература

  1. Martikainen M. H., Chinnery P. F. Mitochondrial disease: mimics and chameleons // Pract. Neurol. 2015. Vol. 15 (6): 424–435.
  2. Sarnat H. B., Menkes J. H. Mitochondrial encephalomyopathies. Ch. 2. In: Child Neuroloy (Menkes J. H., Sarnat H. B., Maria B. L., eds). 7 th ed. Philadelphia-Baltimore. Lippincott Williams & Wilkins. 2006. 143–161.
  3. Luft R., Ikkos D., Palmieri G., Ernster L., Afzelius B. A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study // J. Clin. Invest. 1962. Vol. 41: 1776–1804.
  4. Nass M. M., Nass S. Intramitochondrial fibers with DNA characteristics. I. Fixation and electron staining reactions // J. Cell. Biol. 1963. Vol. 19: 593–611.
  5. Nass S., Nass M. M. Intramitochondrial fibers with DNA characteristics. II. Enzymatic and other hydrolytic treatments // J. Cell. Biol. 1963. Vol. 19: 613–629.
  6. Сухоруков В. С. Очерки митохондриальной патологии. М.: Медпрактика-М, 2011. 288 с.
  7. Chinnery P. F., DiMauro S., Shanske S., Schon E. A., Zeviani M., Mariotti C., Carrara F., Lombes A., Laforet P., Ogier H., Jaksch M., Lochmuller H., Horvath R., Deschauer M., Thorburn D. R., Bindoff L. A., Poulton J., Taylor R. W., Matthews J. N., Turnbull D. M. Risk of developing a mitochondrial DNA deletion disorder // Lancet. 2004. 364 (9434): 592–596.
  8. DiMauro S. Mitochondrial diseases // Biochim. Biophys. Acta. 2004. 1658 (1–2): 80–88.
  9. Siciliano G., Volpi L., Piazza S., Ricci G., Mancuso M., Murri L. Functional diagnostics in mitochondrial diseases // Biosci. Rep. 2007. Vol. 27 (1–3): 53–67.
  10. Miles M. V., Miles L., Tang P. H., Horn P. S., Steele P. E., DeGrauw A. J., Wong B. L., Bove K. E. Systematic evaluation of muscle coenzyme Q10 content in children with mitochondrial respiratory chain enzyme deficiencies // Mitochondrion. 2008. Vol. 8 (2): 170–180.
  11. Kaufmann P., Engelstad K., Wei Y., Jhung S., Sano M. C., Shungu D. C., Millar W. S., Hong X., Gooch C. L., Mao X., Pascual J. M., Hirano M., Stacpoole P. W., DiMauro S., De Vivo D. C. Dichloracetate causes toxic neuropathy in MELAS: a randomized, controlled clinical trial // Neurology. 2006. Vol. 66 (3): 324–330.
  12. Федеральное руководство по использованию лекарственных средств (формулярная система). Вып. XVI. М.: Эхо, 2015. 540.
  13. Koga Y., Ishibashi M., Ueki I., Yatsuga S., Fukiyama R., Akita Y., Matsuishi T. Effects of L-arginine on the acute phase of strokes in three patients with MELAS // Neurology. 2002. Vol. 58 (5): 827–828.
  14. Koga Y., Akita Y., Nishioka J., Yatsuga S., Povalko N., Tanabe Y., Fujimoto S., Matsuishi T. L-arginine improves the symptoms of strokelike episodes in MELAS // Neurology. 2005. Vol. 64 (4): 710–712.
  15. Koga Y., Akita Y., Junko N., Yatsuga S., Povalko N., Fukiyama R., Ishii M., Matsuishi T. Endothelial dysfunction in MELAS improved by L-arginine supplementation // Neurology. 2006. Vol. 66 (11): 1766–1769.
  16. Koga Y., Akita Y., Nishioka J., Yatsuga S., Povalko N., Katayama K., Matsuishi T. MELAS and L-arginine therapy // Mitochondrion. 2007. Vol. 7 (1–2): 133–139.
  17. Rai P. K., Russell O. M., Lightowlers R. N., Turnbull D. M. Potential compounds for the treatment of mitochondrial disease // Br. Med. Bull. 2015. Nov 20. pii: ldv046. [Epub ahead of print].
  18. Finsterer J., Bindu P. S. Therapeutic strategies for mitochondrial disorders // Pediatr. Neurol. 2015. Vol. 52 (3): 302–313.
  19. Студеникин В. М., Горюнова А. В., Грибакин С. Г., Журкова Н. В., Звонкова Н. Г., Ладодо К. С., Пак Л. А., Рославцева Е. А., Степакина Е. И., Студеникина Н. И., Турсунхужаева С. Ш., Шелковский В. И. Митохондриальные энцефалопатии. Глава 37. В кн.: Нейродиетология детского возраста (коллективная монография)/Под ред. Студеникина В. М. М.: Династия, 2012. С. 415–424.
  20. Chi C. S. Diagnostic approach in infants and children with mitochondrial diseases // Pediatr. Neonatol. 2015. Vol. 56 (1): 7–18.

В. М. Студеникин* , 1 , доктор медицинских наук, профессор, академик РАЕ
О. В. Глоба**, кандидат медицинских наук

* ГОУ ВПО РНИМУ им. Н. И. Пирогова МЗ РФ, Москва
** ГОУ ВПО ПМГМУ им. И. М. Сеченова МЗ РФ, Москва


Митохондриальные нарушения - это обширная группа патологических состояний, обусловленных генетическими, структурными, биохимическими дефектами митохондрий, нарушением тканевого дыхания, снижение синтеза АТФ, и, как следствие, недостаточностью энергетического обмена и связанных с патологией митохондриального или ядерного генома. Нарушения клеточной энергетики приводят к полисистемным заболеваниям. В первую очередь страдают органы и ткани, наиболее энергозависимые - нервная система (энцефалопатии, полиневропатии), мышечная система (миопатии), сердце (кардиомиопатии), почки, печень, эндокринная система и другие. До самого недавнего времени все эти заболевания определялись под многочисленными масками других патологических форм. К настоящему времени выявлено более 200 заболеваний, причиной которых являются мутации митохондриальной ДНК. Митохондриальная генетика отличается от менделевской в трех важнейших аспектах: материнское наследование, гетероплазмия (одновременно существование в клетке нормального (дикий) и мутантного типов ДНК), митотическая сегрегация (оба типа мтДНК в процессе деления клетки могут распределяться случайным образом между дочерними клетками), что определяет выраженный фенотипический полиморфизм и мультисистемность поражения. заболевания.

Мы обследовали 32 ребенка (6 мес-16лет) с подозрением на наличие митохондриальной болезни. Пациентам проводилось комплексное клиническое, биохимическое обследование, включая исследование уровня лактата крови, аммиака, карнитина; проводилось исследование - тандемная масспектрометрия, для исключения заболеваний, связанных с нарушением обмена аминокислот, органических кислот, дефекта b-окисления липидов, МРТ головного мозга, ЭЭГ, ЭКГ, УЗИ внутренних органов, сердца, SPECT. Генетическое обследование включало в себя исследование митохондриальной ДНК путем сиквенса. У 23 детей митохондриальная патология была подтверждена. У остальных результаты не получены.

Наиболее часто встречающимися общими признаками были: мышечная гипотония, гипермобильный синдром, снижение мышечной силы, снижение толерантности к физическим нагрузкам, гиперактивность. У всех были выявлены нарушения ритма сердца различной природы. Многие дети страдали мигренеподобными головными болями, периодическими рвотами, у многих выявлялась транзиторная гипогликемия, у большинства пациентов, при нормальном интеллектуальном развитии, выявлялась задержка формирования речи. У части детей выявлялась атаксия, миоклонус, летаргические проявления, птоз,нарушение зрения, интеллектуальная недостаточность.

Генетические исследования, проведенные у этих детей, выявили следующее: A3243G, A11084G-частые мутации MELAS ( MELAS - митохондриальная энцефаломитопатия, лактат-ацидоз и инсультоподобные пароксизмы), мутации в ATPsynthase 6, цитохромС оксидаза, 16S rRNA (T3197C), tRNA lysine, 2 ND A5069G/N235D, 1ND,множественные точковые мутации mtDNA. Эпилепсия была выявлена у 9 пациентов, в комбинации с дилятационной каридиомиопатией - у 2 детей. Комбинация дилятационной кардиомиопатии с развитием инсульта - у троих из 9 пациентов. У двоих детей инсульт был первым проявлением митохондриальной болезни.16SrRNA мутации представлены гипогликемией, эпилептиформными ЭЭГ-изменениями, судорогами, инсультоподобными пароксизмами. Первыми проявлениями мутации АТФ синтазы 6 была дилятационная кардиомиопатия. В дальнейшем возникали инсультоподобные пароксизмы и судороги. В нашем исследовании у троих детей, имеющих частые мутации MELAS проявлением заболевания был не инсульт, а судороги, т.е. эпилепсия. В противоположность этому, у 5 пациентов с развившимся инсультом мутации, характерные для синдрома MELAS выявлены не были. В нашей клинике всем больным проводились курсы лечения препаратами, являющимися кофакторами ферментов метаболизма митохондрий, такие как янтавит, коэнзим Q10, элькар, токоферол, витамины В1 и В2, С, что позволило в большинстве случаев уменьшить степень выраженности неврологического дефицита и стабилизировать состояние больных.

В заключении необходимо отметить, что заболевания, связанные с дисфункцией митохондрий, могут быть представлены множеством симптомов, даже при выявлении одной и той же мутации. Важность своевременной диагностики митохондриальных болезней, поиска клинических и параклинических критериев этих заболеваний на этапе предварительном, догенетическом, необходимо для подбора адекватной метаболической терапии и предотвращения ухудшения состояния или инвалидизации больных с этими редкими заболеваниями.

Полный текст:

  • Аннотация
  • Об авторах
  • Список литературы
  • Cited By

1. Мазунин И.О., Володько Н.В., Стариковская Е.Б., Сукерник Р.И. Митохондриальный геном и митохондриальные заболевания человека. Молекулярная биология. 2010; 44 (5): 755-772.

2. Михайлова С.В., Захарова Е.Ю., Петрухин А.С. Нейрометаболические заболевания у детей и подростков: диагностика и подходы к лечению. М.: Литтерра, 2011, 341 с.

3. Мутовин Г.Р. Клиническая генетика. М.: ГЭОТАР-Медиа, 2010, 832 с.

4. Сухоруков В.С. Очерки митохондриальной патологии. М.: Медпрактика-М, 2011, 287 с.

5. Bindoff LA. Mitochondrial function and pathology in status epilepticus. Epilepsia 2011; 52 (suppl. 8): 6-7.

6. Canafoglia L, Franceschetti S, Antozzi C, Carrara F, Farina L, Granata T, Lamantea E, Savoiardo M, Uziel G, Villani F, Zeviani M, Avanzini G. Epileptic phenotypes associated with mitochondrial disorders. Neurology 2001; 56: 1340-1346.

7. Darin N, Oldfors A, Moslemi AR, Holme E, Tulinius M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical, and DNA anbormalities. Ann. Neurol. 2001; 49: 377-383.

8. El Sabbagh S, Lebre A-S, Bahi-Buisson N, Delonlay P, Soufflet C, Boddaert N, Rio M, Rotig A, Dulac O, Munnich A, Desguerre I. Epileptic phenotypes in children with respiratory chain disorders. Epilepsia 2010; 51: 1225-1235.

9. Finsterer J. Mitochondriopathies. Eur. J. Neurol. 2004; 11: 163-186.

10. Lagrue E, Chalon S, Bodard S, Saliba E, Gressens P, Castelnau P. Lamotrigine is neuroprotective in the energy deficiency model of MPTP intoxicated mice. Pediatr. Res. 2007; 62: 14-19.

11. Lee Y., Kang H., Lee J., Km S., Kim E., Lee S., Slama A., Kim H. Mitochondrial respiratory chain defects: underlyingetiology in various epileptic conditions. Epilepsia. 2008; 49: 685-690.

12. Lheureux P.E., Hantson P. Carnitine in the treatment of valproic acid-induced toxicity. ClinToxicol (Phila). 2009; 47: 101-11.

13. Mancuso M., Galli P., Pizzanelli C., Filosto M., Siciliano G., Murri L. Antimyoclonic effect of levetiracetam in MERRF syndrome. J. Neurol Sci. 2006; 243: 97-99.

14. Schaefer A.M., McFarland R., Hart Y., Turnbull D.M. Newcastle Mitochondrial Disease Guidelines. Newcastle Mitochondrial Centre, NHS Specialised Services for Rare Mitochondrial Disorders of Adults and Children. 2010; 17 p.

15. Siekevitz P. Powerhouse of the cell. Scientific American 1957; 1: 131-140.

16. Zammit V.A., Ramsay R.R., Bonomini M., Arduini A. Carnitine, mitochondrial function and therapy. Adv. Drug. Deliv. Rev. 2009; 61: 1353-1362.

Заваденко Н.Н., Холин А.А. ЭПИЛЕПСИЯ У ДЕТЕЙ С МИТОХОНДРИАЛЬНЫМИ ЗАБОЛЕВАНИЯМИ: ОСОБЕННОСТИ ДИАГНОСТИКИ И ЛЕЧЕНИЯ. Эпилепсия и пароксизмальные состояния. 2012;4(2):21-27.

Zavadenko N.N., Kholin A.A. EPILEPSY IN CHILDREN WITH MYTOCHONDRIAL DISEASES: DIAGNOSTICS AND TREATMENT FEATURES. Epilepsy and paroxysmal conditions. 2012;4(2):21-27. (In Russ.)



Контент доступен под лицензией Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Дисфункция митохондрий и аутизм

Митохондрии — компоненты клеток, которые генерируют энергию

Мозг наш очень богат митохондриями
Он потребляет очень много АТФ для того, чтобы передавать электрические сигналы по всему организму

Книга МЕДИЦИНСКИЕ АСПЕКТЫ АУТИЗМА


Аденозинтрифосфа́т (сокр. АТФ , англ. АТР) — нуклеозидтрифосфат, который играет очень важную роль в обмене энергии и веществ в организмах.
АТФ известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах.
Основная масса АТФ образуется на мембранах митохондрий в ходе окислительного фосфорилирования H-зависимой АТФ-синтазой

Мета-анализ исследований показал, что

5% случаев аутизма достигает критериев классических митохондриальных заболеваний

30% больных аутизмом демонстрируют признаки, схожие с митохондриальными заболеваниями

у 80% детей с аутизмом обнаружено снижение функционирования электронной транспортной цепи в лимфоцитах

Электронная транспортная цепь – это компонент митохондрий


Исследование показывает, что многие комплексы электронно-транспортных митохондрий и многие ферментативные процессы, такие как цикл Кребса существенно снижены у детей с аутизмом

Цикл Кребса — это процесс синтеза энергии или АТФ в организме

Что мы встречаем у детей с аутизмом


Мы наблюдаем возрастание пирувата и лактата, это конечные этапы гликолиза

Пируваты — являются конечным продуктом метаболизма глюкозы в процессе гликолиза

Глико́лиз или путь Эмбдена — Мейергофа — Парнаса — процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты или пируватов

У аутистов не работает пируватдегидрогеназный цикл

В ходе его пируват и лактат превращаются в ацетилкоэнзим, который попадает в цикл Кребса

Также второй наиболее частой проблемой в цикле Кребса у больных с аутизмом, это проблема с альфа-Кетоглутаратдегидрогеназный комплексом

На рисунке выше четко видно, что альфа-кетоглутаровой кислоты очень много, а сукцината мало. Значит, там есть блокировка, поэтому не работает эта ферментативная связка

План семинаров ЗДЕСЬ

Продукты пчеловодства Тенториум восстанавливают каждую клеточку организма естественным путем по принципам натуропатии или биомедицинской коррекции организма
Они насыщают организм необходимыми ферментами, витаминами и микроэлементами.
Также есть продукция, с помощью которой токсины после медикаментозного лечения без проблем выведутся из организма

Отказ от ответственности
Информация, представленная в этой статье, предназначена только для информирования читателя
Она не может быть заменой для консультации профессиональным медицинским работником

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.