Биохимия нервной ткани животных

По своему соcтаву и процессам метаболизма нервная ткань значительно отличается от других тканей.

НЕЙРОН

Нейрон - это функциональная единица нервной системы, он состоит из тела (сомы), многочисленных ветвящихся коротких отростков – дендритов и одного длинного отростка – аксона, длина которого может достигать несколько десятков сантиметров. Аксоны и дендриты оканчиваются синаптическими образованиями. Дендриты, проводят нервный импульс по направлению к телу клетки, а аксон, проводит его от сомы. Таким образом, дендриты и аксоны отвечают соответственно за получение и передачу сигнала. Тело нейрона является трофическим центром, нарушение целостности которого ведет клетку к гибели.

Тело нейрона окружено плазматической мембраной – плазмалеммой. Плазмалемма выполняет структурную функцию, служит барьером для поддержания внутриклеточного состава (клеточные органеллы, везикулы нейромедиаторов, метаболиты), играет активную (ионные насосы, ферменты) и пассивную (ионные каналы, высвобождение нейромедиатора) роли в создании мембранного потенциала, транспорте веществ через мембрану и передаче нервного импульса.

Внутри нейрон заполнен нейроплазмой(цитоплазмой). Объем нейроплазмы аксона и дендритов, может в несколько раз превышать объем нейроплазмы в теле нейрона. Нейроплазма содержит все основные органеллы клетки.

ХИМИЧЕСКИЙ СОСТАВ НЕРВНОЙ ТКАНИ

В связи с различием строения, серое и белое вещество нервной ткани отличаются по химическому составу.

-В сером веществе воды больше, чем в белом.

-В сером веществе белки составляют половину плотных веществ, а в белом веществе – одну треть.

-В белом веществе на липиды приходится более половины сухого остатка, а в сером – лишь около 30%.

Химический состав серого и белого вещества головного мозга человека

Компонент Серое вещество, % Белое вещество,%
Вода 84,0 70,0
Сухой остаток 16,0 30,0
Белки 8,0 9,0
Липиды 5,0 17,0
Минеральные вещества 1,0 2,0

Белки нервной ткани

В головном мозге на белки приходиться 40% сухой массы. В настоящее время выделено более 100 белковых фракций нервной ткани (методами хроматографии, электрофореза и экстракции буферными растворами).

В нервной ткани содержатся простые и сложные белки.

Простые белки

Нейроальбумины –основные растворимые белки (89-90%) нервной ткани, являются белковым компонентом фосфопротеинов, в свободном состоянии встречаются редко. Легко соединяются с липидами, нуклеиновыми кислотами, углеводами и другими небелковыми компонентами.

Нейроглобулины,содержатся в небольшом количестве (в среднем 5%).

Катионные белки- основные белки (рН 10,5 – 12,0), например, гистоновые. При электрофорезе они движутся к катоду.

Нейросклеропротеины (опорные белки).Например,нейроколлагены, нейроэлластины, нейростромины и др. Они составляют 8-10% от всех простых белков нервной ткани, локализованы в основном в белом веществе головного мозга и ПНС, выполняют структурно-опорную функцию.

Сложные белки

Сложные белки нервной ткани представлены: нуклеопротеинами, липопротеинами, протеолипидами, фосфопротеинами, гликопротеинами и т.д.

Гликопротеины –содержат олигосахаридные цепи, которые придают специфические отличия клеточным мембранам. Нейроспецифические гликопротеины участвуют в формировании миелина, в процессах клеточной

адгезии, нерорецепции и взаимном узнавании нейронов в онтогенезе и при регенерации.

Протеолипиды –в наибольших количествах содержатся в миелине и в небольших количествах - в синаптических мембранах и синаптических пузырьках.

Нейроспецифические белки

В цитоплазме нейронов присутствуют кальцийнейрин, белок 14-3-2, белок S-100, белок Р-400.

Белок S-100 (или кислый белок), содержит много глутаминовой и аспарагиновой кислот, гомологичен мышечному тропонину С, находиться в цитоплазме или связан с мембранами. На 85-90% он сосредоточен в нейроглии, и на 10-15% в нейронах. Участвует в развитии нервной системы и ее пластичности. Концентрация S-100 возрастает при обучении животных.

Белок 14-3-2 -кислый белок, который преимущественно локализован в нейронах ЦНС.

Белок Р-400находится в мозжечке мышей, где, возможно, отвечает за двигательный контроль.

К сократительным белкам нейронаотносятсянейротубулин, нейростенин, актиноподобные белки (кинезин и др.). Они обеспечивают ориентацию и подвижность цитоскелета (микротрубочек и нерофиламентов), активный транспорт веществ в нейроне, участвуют в работе синапсов.

В нейронах имеются белки, осуществляющие гуморальную регуляцию. Это некоторые гликопротеины гипоталамуса, нейрофизины и подобные им белки.

На мембране нейронов расположены нейроспецифические поверхностные антигены (NS1, NS2, L1) с неизвестной функцией и факторы адгезии клеток(N-САМ), важные для развития нервной системы.

Нейроспецифические белки участвуют в осуществлении всех функций нервной системы - генерации и проведении нервного импульса, процессах переработки и хранении информации, синаптической передаче, клеточном узнавании, рецепции и др.

По своему составу и процессам метаболизма нервная ткань значительно отличается от других тканей организма. Специфику ее определяет гематоэнцефалический барьер (ГЭБ), который имеет избирательную проницаемость для различных метаболитов, а также способствует накоплению некоторых веществ в нервной ткани.

Липиды нервной ткани

Большая часть липидов нервной ткани находится в составе плазматических и субклеточных мембран нейронов и в миелиновых оболочках.

В нервной ткани по сравнению с другими тканями организма содержание липидов очень высокое.

Особенности липидного состава нервной ткани: содержит фосфолипиды, гликолипиды и холестерин, нет нейтральных жиров. Эфиры холестерина можно встретить только в участках активной миелинизации. Холестерин синтезируется интенсивно только в развивающемся мозге. Содержание свободных жирных кислот в мозге очень низкое.

Некоторые нейромедиаторы после взаимодействия со специфическими рецепторами изменяют свою конформацию и изменяют конформацию фермента фосфолипазы С, которая катализирует расщепление связи в фосфатидилинозите между глицерином и остатком фосфата, в результате чего образуется фосфоинозитол и диацилглицерин. Эти вещества являются регуляторами внутриклеточного метаболизма. Диацилглицерин активирует протеинкиназу С, фосфоинозитол вызывает повышение концентрации Са 2+ . Ионы кальция влияют на активность внутриклеточных ферментов и участвуют в работе микрофиламентов, что обеспечивает передвижение различных веществ в теле нервной клетки, аксоне. Протеинкиназа С участвует в реакциях фосфорилирования белков внутри нервных клеток.

Липиды постоянно обновляются. Некоторые липиды (например: холестерин, цереброзиды, фосфатидилэтаноламины, сфингомиелины) обмениваются медленно – в течение месяцев и даже лет. Исключение составляют фосфатидилхолин и, особенно, фосфатидилинозиты (содержат глицерин, фосфат, спирт (инозит), жирные кислоты) – они обмениваются очень быстро (сутки, недели).

Синтез цереброзидов и ганглиозидов протекает с большой скоростью в развивающемся мозге в период миелинизации. У взрослых почти все цереброзиды (до 90 %) находятся в миелиновых оболочках, а ганглиозиды – в нейронах.

Нервные клетки не делятся, следовательно, не происходит синтез ДНК. Однако, содержание РНК в них самое высокое по сравнению с клетками остальных тканей организма. Скорость синтеза РНК тоже очень велика.

В клетках нервной ткани не могут синтезироваться пиримидины, они поступают из крови через ГЭБ.

Информация, благодаря которой нейроны устанавливают только определенные связи с определенными нейронами, кодируется в структуре полисахаридных веточек мембранных гликопротеинов.

1. Основной путь получения энергии – только аэробный распад глюкозы по ГБФ-пути. Глюкоза является почти единственным энергетическим субстратом, поступающим в нервную ткань, который может быть использован ее клетками для образования АТФ.

2. Проникновение глюкозы в ткань мозга не зависит от действия инсулина, который не проникает через гематоэнцефалический барьер. Влияние инсулина проявляется лишь в периферических нервах.

3. Постоянный и непрерывный приток глюкозы и кислорода из кровеносного русла является необходимым условием энергетического обеспечения нервных клеток. Жесткая зависимость от поступления глюкозы обусловлена тем, что содержание гликогена в нервной ткани ничтожно (0,1 % от массы мозга) и не может обеспечить мозг энергией даже на короткое время.
С другой стороны, окисления неуглеводных субстратов с целью получения энергии не происходит. Поэтому при гипогликемии и/или даже кратковременной гипоксии в нервной ткани образуется мало АТФ.

4. Высокая скорость потребления глюкозы нервными клетками обеспечивается работой высокоактивной гексокиназы мозга. В отличие от других тканей, здесь гексокиназа не является ключевым ферментом всех путей метаболизма глюкозы. Ключевыми ферментами ГБФ-пути в нервной ткани являются фосфофруктокиназа и изоцитратдегидрогеназа. Фосфофруктокиназу ингибируют фруктозо-1,6-бисфосфат, АТФ и цитрат, активируют фруктозо-6-фосфат, АДФ, АМФ и неорганический фосфат.

5. Образование НАДФН2, который используется в нервной ткани в основном для синтеза жирных кислот и стероидов, обеспечивается сравнительно высокой скоростью протекания ГМФ-пути распада глюкозы.

6. Энергия АТФ в нервной ткани используется неравномерно во времени.

7. Образование креатинфосфата. Он обладает способностью удерживать макроэргические связи.

Метаболизм аминокислот и белков

Ткань мозга интенсивно обменивается аминокислотами с кровью. Для этого существует специальные транспортные системы: две для незаряженных и еще несколько – для аминокислот, заряженных положительно и отрицательно.

До 75 % от общего количества аминокислот нервной ткани составляют аспартат, глутамат, а также продукты их превращений или вещества, синтезированные с их участием (глутамин, ацетильные производные, глутатион, гамма-аминомасляная кислота ГАМК и другие). Их концентрации в нервной ткани очень высоки.

Глутаминовая кислота по праву занимает центральное место в обмене аминокислот мозга. Она используется для образования глутатиона, глутамина и γ-аминомасляной кислоты. Образуется глутамат из своего кетоаналога – α-кетоглутаровой кислоты в ходе реакции трансаминирования.

Образующаяся из глутамата ГАМК в результате нескольких реакций может быть превращена снова в щавелевоуксусную кислоту. Так образуется ГАМК-шунт, имеющийся в тканях головного и спинного мозга. Поэтому
в этих тканях содержание ГАМК, как промежуточного метаболита циклического процесса, значительно выше, чем в остальных.

Остальные пути метаболизма аминокислот сходны с имеющимися
в других тканях.

Ткань мозга способна синтезировать заменимые аминокислоты, как
и другие ткани.

Нейромедиаторы играют важную роль в функционировании нервной ткани, обеспечивая синаптическую передачу нервного импульса. Их синтез происходит в теле нейронов, а накопление – в особых везикулах, которые постепенно перемещаются с участием систем нейрофиламентов и нейротрубочек к кончикам аксонов.

1. Аминокислоты (и их производные). К ним относят таурин, норадреналин, дофамин, гамма-аминомаляная кислота, глицин, ацетилхолин, гомоцистеин и некоторые другие (адреналин, серотонин, гистамин).

Таурин образуется из аминокислоты цистеина. Сначала происходит окисление серы в SH-группе до остатка серной кислоты, затем – декарбоксилирование. Таурин – это кислота, в которой нет карбоксильной группы, а имеется остаток серной кислоты. Таурин принимает участие в проведении нервного импульса в процессе зрительного восприятия.

Ацетилхолин образуется при взаимодействии холина и ацетил-КоА. Холин, в свою очередь, образуется из серина, метионина. Ацетилхолин участвует в синаптической передаче нервного импульса. Он накапливается в синаптических пузырьках, образуя комплексы с отрицательно заряженным белком везикулином. Передача возбуждения с одной клетки на другую осуществляется с помощью специального синаптического механизма.

Синапс – это функциональный контакт специализированных участков плазматических мембран двух возбудимых клеток. Синапс состоит из пресинаптической мембраны, синаптической щели и постсинаптической мембраны. Мембраны клеток в месте контакта имеют утолщения в виде бляшек – нервных окончаний. Нервный импульс, достигший нервного окончания,
не в состоянии преодолеть возникшее перед ним препятствие – синаптическую щель. После этого электрический сигнал преобразуется в химический. Пресинаптическая мембрана содержит специальные канальные белки, подобные белкам, формирующим натриевый канал в мембране аксона. Они тоже реагируют на мембранный потенциал, изменяя свою конформацию
и формируют канал. В результате ионы Са 2+ проходят через пресинаптическую мембрану по градиенту концентраций в нервное окончание. Градиент концентраций Са 2+ создается работой Са 2+ -зависимой АТФазы – кальциевым насосом. Повышение концентрации Са 2+ внутри нервного окончания вызывает слияние 200–300 имеющихся там везикул, заполненных ацетилхолином, с плазматической мембраной. Далее ацетилхолин секретируется в синаптическую щель путем экзоцитоза и присоединяется к рецепторным белкам, расположенным на поверхности постсинаптической мембраны.

Ацетилхолиновый рецептор представляет собой трансмембранный олигомерный гликопротеиновый комплекс, состоящий из 6 субъединиц:
2 – α-, 2 – δ-, 1 – γ- и 1 – δ-. Плотность расположения белков-рецепторов
в постсинаптической мембране – около 20 000 молекул на 1 мкм 2 . Пространственная структура рецептора строго сооответствует конформации медиатора.

При взаимодействии с ацетилхолином белок-рецептор так изменяет свою конформацию, что внутри него формируется натриевый канал. Катионная селективость канала обеспечивается тем, что ворота канала сформированы отрицательно заряженными аминокислотами. Повышается проницаемость постсинаптической мембраны для натрия и возникает новый импульс (или сокращение мышечного волокна). Деполяризация постсинаптической мембраны вызывает диссоциацию комплекса "ацетилхолин–белок–рецептор", и ацетилхолин освобождается в синаптическую щель. Как только ацетилхолин оказывается в синаптической щели, он за 40 мкс подвергается быстрому гидролизу под действием фермента ацетилхолинэстеразы.

Во время гидролиза ацетилхолина образуется промежуточный фермент-субстратный комплекс, в котором ацетилхолин связан с активным центром фермента через серин.

Катехоламины в нервной ткани синтезируются по общему механизму из тирозина. Ключевой фермент синтеза – тирозингидроксилаза, ингибируемая конечными продуктами.

Норадреналин – медиатор в постганглионарных волокнах симпатической и в различных отделах ЦНС.

Дофамин – медиатор проводящих путей, тела нейронов которого расположены в отделе мозга, который отвечает за контроль произвольных движений. Поэтому при нарушении дофаминэргической передачи возникает заболевание паркинсонизм.

Катехоламины, как и ацетилхолин, накапливаются в синаптических пузырьках и тоже выделяется в синаптическую щель при поступлении нервного импульса. Но регуляция в адренэргическом рецепторе происходит иначе. В пресинаптической мембране имеется специальный регуляторный белок – α-ахромогранин, который в ответ на повышение концентрации медиатора в синаптической щели связывает уже выделившийся медиатор и прекращает его дальнейший экзоцитоз. Фермента, разрушающего медиатор, в адренэргических синапсах нет. После передачи импульса молекулы медиатора перекачиваются специальной транспортной системой путем активного транспорта с участием АТФ обратно через пресинаптическую мембрану и включаются вновь в везикулы.

Передача сигнала в адренэргических синапсах протекает по механизму с участием аденилатциклазной системы. Связывание медиатора с постсинаптическим рецептором почти мгновенно вызывает повышение концентрации цАМФ, что приводит к быстрому фосфорилированию белков постсинаптической мембраны. В результате изменяется (тормозится) генерация нервных импульсов постсинаптической мембраной.

ГАМК – тормозной медиатор. Повышает проницаемость постсинаптических мембран для ионов калия. Это ведет к изменению мембранного потенциала.

Глицин – тормозной медиатор, по вызываемым эффектам подобен ГАМК.

2. Пептиды.Имеют в своем составе от трех до нескольких десятков аминокислотных остатков. Функционируют только в высших отделах нервной системы. Эти пептиды, как и катехоламины, выполняют функцию не только нейромедиаторов, но и гормонов. Передают информацию
от клетки к клетке по системе циркуляции. Сюда относятся:

- нейрогипофизарные гормоны (вазопрессин, либерины, статины). Эти вещества одновременно и гормоны, и медиаторы;

- гастроинтестинальные пептиды (гастрин, холецистокинин). Гастрин вызывает чувство голода, холецистокинин вызывает чувство насыщения,
а также стимулирует сокращение желчного пузыря и функцию поджелудочной железы;

- опиатоподобные пептиды (или пептиды обезболивания). Образуются путем реакций ограниченного протеолиза белка-предшественника проопиокортина. Взаимодействуют с теми же рецепторами, что и опиаты, тем самым имитируют их действие. Общее название – эндорфины, вызывают обезболивание. Они легко разрушаются протеиназами, поэтому их фармакологический эффект незначителен;

- пептиды сна. Их молекулярная природа не установлена. При введении их животным вызывается сон;

- пептиды памяти (скотофобин). Накапливается в мозге крыс при тренировке на избегание темноты;

- пептиды – компоненты ренин-ангиотензин-альдостероновой системы (РААС-системы). Показано, что введение ангиотензина-II в центр жажды головного мозга вызывает появление этого ощущения и стимулирует секрецию антидиуретического гормона.

Образование пептидов происходит в результате реакций ограниченного протеолиза, разрушаются также под действием протеиназ.

Нервная ткань составляет 2,0-2,5% общей массы организма. Она состоит из нервных клеток, нервных волокон, нервных окончаний и нейроглии. Структурной и функциональной единицей нервной ткани является нейрон. Нейроны объединяются в органы, органы - в нервную систему, которая воспринимает внешние и внутренние раздражения, анализирует их, регулирует и координирует все основные функции организма, объединяет его в единое целое, осуществляет связь организма животного с внешней средой.

Химический состав нервной ткани и ее структурных элементов определяется значением органа нервной системы в жизнедеятельности организма, местом животного в филогенетическом ряду, возрастом и функциональным состоянием организма и др. Нервная ткань эмбриона в среднем содержит 90% воды и 10% сухого остатка, взрослого организма - соответственно 65% воды и 35% сухого остатка. Больше всего воды имеется в сером веществе коры больших полушарий головного мозга (82,7%), меньше - в белом (72,8%) и в спинном мозгу (74%). Серое вещество мозга крупного рогатого скота содержит 80,6% воды и 19,4% сухого остатка, в сухом остатке 55,4% составляют белки, 43,1 - липиды и 1,5% зола, белое вещество имеет 68,4% воды и 31,6% сухого остатка, в сухом остатке 24,8% составляют белки, 74,6 - липиды и 0,6% зола.

Белки. В нервной ткани имеется от 5-7 до 16 индивидуальных белков (в т. ч. в митохондриях - до 8), представляющих около 100 различных растворимых белковых фракций. Они относятся к двум группам - протеинам и протеидам. Протеины представлены: нейроальбуминами (они являются основным белковым компонентом фосфопротеидов и составляют основную массу растворимых белков - 89-90%), нейро-глобулинами (около 5% всех растворимых белков), гистонами и нейросклеропротеидами (структурно-опорные белки -нейроколлагены, нейроэластины, нейростромины и др., составляют 8-10% от всех простых белков). Протеиды нервной ткани представлены следующими подгруппами: нуклеопротеидами (ДНП и РНП), липопротеидами (фосфатидов и холестерина), протеолипидами, фосфопротеидами (около 2% всех сложных белков), гликопротеидами. В нервной ткани обнаружено два специфических белка -S-100, или белок Мура (его иногда называли "белком памяти", 85-90% белка сосредоточено в нейроглии, 10-15% -в нейронах), и белок 14-3-2. В нервной ткани содержатся ферменты всех шести классов, катализирующих все стороны обмена веществ, восприятие, анализ и передачу нервных импульсов.

Содержание углеводов. Нервная ткань бедна углеводами, хотя потребность в них здесь велика. Основными углеводами здесь являются глюкоза (1-4 мкмоля на 1 г ткани) и гликоген (2,5-4,5 мкмоля на 1 г). У новорожденных животных содержание гликогена в мозгу в 3 раза выше, чем у взрослых. Большая часть гликогена (около 80%) связана с белками и липидами, меньшая (до 20%) находится в свободном состоянии. Нервная ткань содержит промежуточные продукты углеводного обмена - гексозо- и триозофосфаты, молочную, пировиноградную и другие кислоты.

Содержание липидов. Нервная ткань богата липидами, часть из которых специфична для нее. Так, в расчете на сухой остаток серое вещество мозга крупного рогатого скота содержит 43,1% и белое вещество-74,6% липидов. Из них фосфатиды соответственно составляют 16,3 и 27,5%, в том числе лецитины-3,2 и 3,3; кефалины-9,4 и 19,2; сфингомиелины - 3,7 и 5,0; холестерин - 3,2 и 10,9; цереброзиды - 4,3 и 14,1%. В нервной ткани мало жиров. Они могут быть представлены лигноцериновой, цереброновой и другими характерными для нервной ткани кислотами и оксикислотами. Из нервной ткани выделены страндин и другие сложные гликолипиды.

Содержание нуклеотидов и креатинфосфата. Из свободных нуклеотидов адениловые нуклеотиды составляют 84%.

Обмен веществ в нервной ткани. Изучение обмена веществ в нервной ткани сопряжено с рядом трудностей. Прежде всего, нервная ткань обладает сложным строением, химическим составом, многообразием функций и реакций обмена веществ. В организме человека имеется 1010 нейронов, в коре больших полушарий - около 14 млрд. Каждый нейрон в среднем связан с 5 тыс. клеток. Синтез белков в нейроне больше, чем в другой клетке, предельно совершенен, что обеспечивает полноценное функционирование нейрона в течение всей жизни организма. Головной мозг заключен в черепную коробку, спинной - в позвоночный канал. Малейшее вмешательство в структуру нервной ткани грозит патологией. Многие реакции протекают в ней в течение десятых, сотых и даже тысячных долей секунды. Все это требует особого подхода к изучению обмена веществ в нервной ткани.

Дыхание нервной ткани. Мозг потребляет 20-25% всего кислорода, поступающего в организм. Газообмен мозга в 20 раз больше газообмена покоящихся мышц. Так, нервная ткань за 10 с способна использовать весь кислород, который в ней содержится. У молодых животных нервная система потребляет 40-50% кислорода, поступившего в организм, причем 80% расходуют нейроны. При возбуждении потребление кислорода нервной тканью возрастает примерно на 50%.

Обмен углеводов. Основной источник химической энергии для нервной ткани - глюкоза. Нервная ткань вдвое больше потребляет глюкозы, чем мышечная, и втрое больше, чем почки. Предполагается, что глюкоза, прежде чем используется клетками нервной системы, проходит стадию биосинтеза гликогена. Гликоген может расщепляться гидролитическим и фосфоролитическим путями. В головном мозгу преобладает первый путь. Серое вещество мозга вчетверо больше потребляет глюкозы, чем белое. Химическая энергия, заключенная в глюкозе, освобождается анаэробным и аэробным путями. Около 85% глюкозы окисляется до CO2 и H2O. Обмен углеводов в нервной ткани зависит от обеспечения ее витамином B1 - его пирофосфат является коферментом пируватдекарбоксилазы, превращающей пировиноградную кислоту в ацетил-КоА.

Обмен белков. Для белков характерна высокая степень метаболизма. Так, за время превращения нейробласта в нейрон содержание белка в клетке возрастает более чем в 2000 раз. Период полужизни молекул белков составляет 2,8-15,2 сут. Обмен белков быстрее происходит в сером веществе мозга, медленнее -в белом, медленно - в периферических нервах. Интенсивность обмена белков в нервных клетках в 53-70 раз большая, чем в глиоцитах. Глиоциты составляют около 40% объема мозга.

Нервная ткань богата аминокислотами. Так, если в крови в среднем содержится аминокислот 0,064 г/л, то в тканях мозга - 0,36 г на 1 кг. Среди них особое место принадлежит глутаминовой кислоте, из которой образуется глутамин и далее после транспортировки в печень - мочевина. На его долю приходится 80% аминного азота. Часть кислоты декарбоксилируется, образуется а-аминомасляная кислота, которая через янтарный полуальдегид превращается в янтарную кислоту. Она включается в цикл трикарбоновых кислот, что приводит к образованию макроэргических соединений, CO2 и H2O.

Глутаминовая кислота может дезаминироваться и превращаться в кетоглутаровую кислоту, Кетоглутаровая кислота идет в цикл трикарбоновых кислот. Аммиак - на образование глутамина, а затем - на синтез мочевины в печени. Некоторое количество мочевины может синтезироваться в нервной ткани и другими путями. В нервной ткани образуются некоторые аминокислоты: глутаминовая, аспарагиновая, аланин, серин, цистин, глицин и аргинин.

Обмен липидов. В тканях головного мозга превращения жиров не имеют существенного значения. Здесь синтезируется холестерин из ацетил-КоА. Количество холестерина возрастает при абсцессах мозга, менингоэнцефалитах и др. Состав липидов нервной ткани сравнительно стабилен. Так, если в тканях печени в течение суток обновляется 50% всех жирных кислот, то в нервной системе за неделю обновляется лишь 20%. Быстрее всего обновляются фосфатиды, особенно инозитфосфатиды. При возбуждении в нервной ткани задерживается холестерин и выделяется в кровеносное русло лецитин.

Химизм передачи нервного импульса. Нервная система выполняет ряд специфических функций: восприятие и передачу информации об изменениях внешней и внутренней среды в соответствующие центры, переработку этой информации, передачу эффекторных импульсов к исполнительным органам и тканям, регуляцию деятельности последних и др. Механизм передачи нервных импульсов - электрический, химический и смешанного типа.

Нервная система состоит из нейронов, нейрон - из тела нервной клетки, аксона (аксонов), дендритов и нервных окончаний. Нейрон имеет наружную плазматическую мембрану. Согласно ионной теории передачи нервного импульса внутренняя поверхность мембраны во время покоя заряжена отрицательно, наружная - положительно. Эти заряды возникают в результате функционировани натрий-калиевого насоса. Под влиянием различных факторов нейрон возбуждается, изменяется проницаемость мембраны и ионы Na+ устремляются в клетку. Внутренняя часть мембраны приобретает положительный заряд, наружная - отрицательный. Возникает потенциал действия. Нервный импульс с помощью нервных окончаний передается на соответствующий объект. После прекращения раздражения в нейроне восстанавливается динамическое равновесие между содержанием ионов K+ и Na+, так как натрий-калиевый насос удаляет избыток ионов Na+ из клетки.

Согласно химической теории, нервный импульс от нейрона к нейрону или на соответствующий орган передается с помощью специальных веществ - медиаторов. В передаче импульсов участвуют нервные окончания, входящие в состав синапса. Число синапсов на отдельных нейронах велико - до 10-20 тыс. и больше. Синапс состоит из пресинаптической части (синаптического окончания нейрона), синаптической щели и постсинаптической части. Медиаторы синтезируются в теле нервной клетки и ее отростках, связываются с белками и накапливаются в виде синаптических пузырьков. Под влиянием раздражителя пресинаптическая мембрана деполяризуется, увеличивается ее проницаемость к ионам Ca2+ - они проникают в пресинаптические окончания и вызывают расщепление комплекса белок - медиатор. Медиатор диффундирует через поры мембраны в синаптическую щель, взаимодействует с рецепторами постсинаптической мембраны и вызывает потенциал действия.

Функциями медиаторов обладают ацетилхолин, серотонин, гистамин, а-аминомасляная кислота и др.

· Ацетилхолин - медиатор в синапсах центральной, парасимпатической и симпатической нервной системы. Синтезируется из ацетил-КоА и холина под влиянием холинацетилтрансферазы и ионов Mg2+, K+, Ca2+. Образуется в эндоплазматической сети нейрона, поступает в синапсы, связывается с белками и накапливается в виде синаптических пузырьков. После возникновения нервного импульса комплекс ацетилхолин - белок расщепляется, медиатор через поры пресинаптической мембраны проникает в синаптическую щель и взаимодействует с холинорецепторами постсинаптической мембраны. Возникает потенциал действия, и возбуждение передается от нейрона к нейрону или к эффектор-ной клетке.

· Серотонин (5-окситриптамин) - медиатор нервной системы, образуется из аминокислоты триптофана. После оказания биологического действия в синапсе дезаминируется, образовавшаяся 5-оксииндолилуксусная кислота выделяется из организма с мочой.

· Гистамин образуется из гистидина под влиянием гистидиндекарбоксилазы. Принцип действия гистамина такой же, как и остальных медиаторов. После оказания своего действия инактивируется дезаминированием гистаминазой или путем соединения с клеточными белками.

Аминомасляная кислота (ГАМК) - промежуточный продукт обмена веществ в нервной ткани. Образуется из глутаминовой кислоты под влиянием глутаматдекарбоксилазы. Оказывает тормозящее действие на функции дендритов нейронов головного и спинного мозга и деятельность мионевральных бляшек. После оказания биологического действия инактивируется переаминированием с кетоглутаровой кислотой.

Связь между функциональным состоянием головного мозга и процессами обмена веществ в организме. Нервная система оказывает регулирующее действие на реакции обмена веществ. При возбуждении отдельных центров нервной системы реакции обмена веществ усиливаются, в состоянии покоя устанавливается динамическое равновесие между реакциями анаболизма и катаболизма, а при торможении реакции обмена веществ замедляются.

Ликвор (спинномозговая жидкость) циркулирует в полости желудочков головного мозга, спинномозгового канала и субарахноидальном пространстве головного и спинного мозга. Он предохраняет мозг от вредных внешних воздействий, участвует в регуляции внутричерепного давления и отдельных сторон тканевого обмена в нервной системе. Плотность ликвора - 1,007-1,009, рН 7,4-7,8. По химическому составу ликвор сходен с сывороткой крови. Так, он содержит белки и другие азотистые вещества, углеводы, хлорид-ионы, К+ и Ca2+. Химический состав ликвора изменяется при нервных болезнях. В клинике проводится пункция ликвора и введение некоторых лекарственных веществ в ликвор для облегчения их контакта с нейронами.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.