Цнс вегетативные ганглии м холинорецепторы

Холинергические синапсы представляют собой место, в котором происходит контакт двух нейронов или нейрона и эффекторной клетки, получающей сигнал. Синапс состоит из двух мембран – пресинаптической и постсинаптической, а также из синаптической щели. Передача нервного импульса осуществляется посредством медиатора, то есть вещества-передатчика. Происходит это в результате взаимодействия рецептора и медиатора на постсинаптической мембране. В этом заключаются основные функции холинергического синапса.

Медиатор и рецепторы


В парасимпатической НС медиатором является ацетилхолин, рецепторами – холинорецепторы двух типов: Н (никотин) и М (мускарин). М-холиномиметики, обладающие прямым типом действия, могут стимулировать рецепторы на мембране постсинаптического типа.

Синтез ацетилхолина осуществляется в цитоплазме нейронных холинергических окончаний. Он образуется из холина, а также ацетилкоэнзима-А, который имеет митохондриальное происхождение. Синтез происходит под действием цитоплазматического энзима холинацетилазы. В синаптических пузырьках происходит депонирование ацетилхолина. В каждом из таких пузырьков может находиться до нескольких тысяч ацетилхолиновых молекул. Нервный импульс провоцирует высвобождение молекул ацетилхолина в синаптическую щель. После этого он вступает во взаимодействие с холинорецепторами. Строение холинергического синапса уникально.

Строение

По данным, которые имеются у биохимиков, холинорецептор нервно-мышечного синапса может включать 5 белковых субъединиц, которые окружают ионный канал и проходят сквозь всю толщу мембраны, состоящей из липидов. Пара молекул ацетилхолина вступает во взаимодействие с парой α-субъединиц. Это приводит к тому, что открывается ионный канал и постсинаптическая мембрана деполяризуется.

Виды холинергических синапсов


Холинорецепторы по-разному локализованы и так же по-разному чувствительны к воздействию фармакологических веществ. В соответствии с этим различают:

  • Маскариночувствительные холинорецепторы – так называемые М-холинорецепторы. Мускарин представляет собой алкалоид, присущий ряду ядовитых грибов, к примеру мухоморам.
  • Никотиночувствительные холинорецепторы – так называемые Н-холинорецепторы. Никотин представляет собой алкалоид, содержащийся в листьях табака.

Их расположение

Первые располагаются в постсинаптической мембране клеток в составе эффекторных органов. Расположены они у окончаний постганглионарных парасимпатических волокон. Помимо этого они также есть в нейронных клетках вегетативных ганглиев и в коре головного мозга. Установлено, что М-холинорецепторы различной локализации гетерогенны, что обуславливает различную чувствительность холинергических синапсов к веществам фармакологической природы.


Виды в зависимости от расположения

Биохимики различают несколько видов М-холинорецепторов:

  • Расположенные в вегетативных ганглиях и в ЦНС. Особенностью первых является то, что они локализованы вне синапсов – М1-холинорецепторы.
  • Расположенные в сердце. Некоторые из них способствуют снижению высвобождения ацетилхолина – М2-холинорецепторы.
  • Расположенные в гладких мышцах и в большей части эндокринных желез – М3-холинорецепторы.
  • Расположенные в сердце, в стенках легочных альвеол, в ЦНС – М4-холинорецепторы.
  • Расположенные в ЦНС, в радужной оболочке глаза, в слюнных железах, в мононуклеарных кровяных клетках – М5-холинорецепторы.

Воздействие на холинорецепторы

Большая часть эффектов, оказываемых известными фармакологическими веществами, влияющими на М-холинорецепторы, связана с взаимодействием этих веществ и постсинаптических М2- и М3-холинорецепторов.

Рассмотрим классификацию средств, стимулирующих холинергические синапсы, ниже.

Н-холинорецепторы располагаются в постсинаптической мембране нейронов ганглиев у окончаний каждого из преганглионарных волокон (в парасимпатических и симпатических ганглиях), в синокаротидной зоне, в мозговом слое надпочечников, в нейрогипофизе, в клетках Реншоу, в скелетных мышцах. Чувствительность различных Н-холинорецепторов неодинакова к веществам. Например, Н-холинорецепторы в структуре вегетативных ганглиев (рецепторы нейтрального типа) имеют значительные отличия от Н-холинорецепторов в скелетных мышцах (рецепторы мышечного типа). Именно такая их особенность позволяет избирательно блокировать ганглии специальными веществами. Например, курареподные вещества способны блокировать нервно-мышечную передачу.


Пресинаптические холинорецепторы и адренорецепторы участвуют в регуляции процесса высвобождения ацетилхолина в синапсах нейроэффекторной природы. Возбуждение этих рецепторов будет угнетать высвобождение ацетилхолина.

Ацетилхолин взаимодействует с Н-холинорецепторами и изменяет их конформацию, повышает уровень проницаемости постсинаптической мембраны. Ацетилхолин оказывает возбуждающий эффект на ионы натрия, которые проникают затем внутрь клетки, а это приводит к тому, что постсинаптическая мембрана деполяризуется. Изначально возникает локальный синаптический потенциал, который достигает определенной величины и начинает процесс генерации потенциала действия. После этого местное возбуждение, которое ограничено синаптической областью, начинает распространяться по всей клеточной мембране. Если происходит стимуляция М-холинорецептора, то при передаче сигнала значительную роль играют вторичные мессенджеры и G-белки.

Ацетилхолин действует в течение весьма короткого времени. Это обусловлено тем, что он стремительно гидролизуется под действием фермента ацетилхолинэстеразы. Холин, который образуется в процессе гидролиза ацетилхолина, в половине объема будет захвачен пресинаптическими окончаниями и транспортирован в цитоплазму клетки для последующего биосинтеза ацетилхолина.


Вещества, которые воздействуют на холинергические синапсы

Фармакологические и разнообразные химические вещества способны воздействовать на множество процессов, которые связаны с синаптической передачей:

  • Процесс синтеза ацетилхолина.
  • Процесс высвобождения медиатора. К примеру, карбахолин способен усиливать процесс выделения ацетилхолина, а ботулиновый токсин может препятствовать процессу высвобождения медиатора.
  • Процесс взаимодействия между ацетилхолином и холинорецептором.
  • Гидролиз ацетилхолина энзиматической природы.
  • Процесс захвата холина, образованного в результате гидролиза ацетилхолина, пресинаптическими окончаниями. К примеру, гемихолиний способен угнетать нейроновый захват и транспортировку холина в цитоплазму клетки.

Классификация


Средства, стимулирующие холинергические синапсы, способны оказывать не только этот эффект, но и холиноблокирующий (угнетающий) эффект. В качестве основы для классификации подобных веществ биохимики используют направленность действия этих веществ на различные холинорецепторы. Если придерживаться такого принципа, то вещества, оказывающие влияние на холинорецепторы, можно классифицировать следующим образом:

  • Вещества, которые оказывают влияние на М-холинорецепторы и Н-холинорецепторы: к холиномиметикам относятся ацетилхолин и карбахолин, а к холиноблокаторам – циклодол.
  • Средства антихолинэстеразного характера. К ним относятся салицилат физостигмина, прозерин, гидробромид галантамина, армин.
  • Вещества, которые влияют на холинергические синапсы. К холиномиметикам относятся гидрохлорид пилокарпина и ацеклидин, к холиноблокаторам – сульфат атропина, матацин, гидротартрат платифиллина, бромид ипратропия, гидробромид скопаламина.


Мы подробно рассмотрели средства, влияющие на холинергические синапсы.

Источник:
Клиническая фармакология по Гудману и Гилману том 1.
Редактор: профессор А.Г. Гилман Изд.: Практика, 2006 год.

Содержание

  • 1 Холинергическая передача
    • 1.1 Холинацетилтрансфераза
    • 1.2 Транспорт холина и ацетилхолина
    • 1.3 Особенности различных холинергических синапсов
    • 1.4 Действие ацетилхолина на пресинаптические рецепторы
  • 2 Холинорецепторы
    • 2.1 Подтипы N-холинорецепторов
    • 2.2 Подтипы М-холинорецепторов
  • 3 Читайте также

Холинергическая передача [ править | править код ]

В холинергической передаче важнейшую роль играют два фермента, отвечающие соответственно за синтез и расщепление ацетилхолина — холинацетилтрансфераза и ацетилхолинэстераза (АХЭ).

Этот фермент катализирует последнюю реакцию синтеза ацетилхолина — соединение холина с ацетил-КоА (Wu and Hersh, 1994; Parsons et al., 1993). Первичная структура холинацетилтрансферазы была установлена с помощью молекулярного клонирования. Ее иммуногистохимическое определение — ценный метод, позволяющий выявлять тела и отростки холинергических нейронов.

Ацетил-КоА, используемый для синтеза ацетилхолина, образуется либо из пирувата путем его окислительного декарбоксилирования (многостадийной реакции, катализируемой пируватдегидрогеназным комплексом), либо из ацетата. В последнем случае под действием фермента ацетил-КоА-синтетазы ацетат соединяется с АТФ с образованием связанного с ферментом ациладенилата (ацетил-АМФ), и далее в присутствии КоА происходит трансацетилирование и синтез ацетил-КоА.

Как и другие нейрональные белки, холинацетилтрансфераза синтезируется в теле нейрона. Затем она переносится по аксону в окончания. В последних имеется множество митохондрий, в которых образуется ацетил-КоА. Холин захватывается из внеклеточной жидкости путем активного транспорта. Ацетилхолин синтезируется в цитоплазме и затем депонируется в синаптических пузырьках. Существуют ингибиторы холинацетилтрансферазы, в том числе с умеренной активностью. Однако их фармакологический эффект невелик, частично из-за того, что лимитирующей реакцией в синтезе ацетилхолина служит захват холина.

Захват холина из внеклеточной жидкости осуществляется с помощью двух разных систем — высоко- и низкоаффинной. Высокоаффинная система (константа Михаэлиса 1—5 мкмоль/л) имеется только в холинергических нейронах; ее активность зависит от концентрации Na+ во внеклеточной среде, и она блокируется гемихолинием. Концентрация холина в плазме составляет около 10 мкмоль/л, и поэтому она не ограничивает транспорт холина в нейрон. Большая часть холина, образующегося при гидролизе ацетилхолина под действием АХЭ, захватывается обратно в пресинаптическое окончание. Недавно методом молекулярного клонирования была установлена структура высокоаффинного переносчика холина, выделенного из пресинаптических окончаний. Оказалось, что он отличается от переносчиков других медиаторов, но сходен с Na+-3aвисимым переносчиком глюкозы (Okuda et al., 2000).

Синтезируемый ацетилхолин переносится в синаптические пузырьки. Этот перенос осуществляется системой, в которой используется энергия электрохимического градиента для протонов. Везамикол в микромолярных концентрациях блокирует перенос в пузырьки ацетилхолина. Гены холинацетилтрансферазы и переносчика ацетилхолина располагаются в одном и том же локусе (ген переносчика локализован в 1-м интроне гена холинацетилтрансферазы). Поэтому экспрессия обоих этих генов регулируется одним и тем же промотором (Eiden, 1998). АХЭ. Непременным условием эффективной холинергической передачи в нервно-мышечных и некоторых межнейронных синапсах является быстрая инактивация ацетилхолина. Так, в нервно-мышечном синапсе его удаление должно быть буквально, по словам Дейла, молниеносным — иначе ацетилхолин будет диффундировать и активировать рецепторы соседних мышечных волокон.

С помощью современных биохимических методов удалось установить, что гидролиз ацетилхолина АХЭ в нервно-мышечном синапсе занимает меньше 1 мс. Действие же холина на N-холинорецепторы в этом синапсе в 10_3— 10

5 раз слабее, чем действие ацетилхолина.

АХЭ обнаруживается не только в холинергических синапсах, но и в других структурах холинергических нейронов (дендритах, теле, аксонах). Ее концентрация особенно высока в области постсинаптической мембраны нервно-мышечных синапсов.

В глиальных клетках ЦНС и мантийных глиоцитах в низкой концентрации содержится псевдохолинэстераза (бутирилхолинэстераза, холинэстераза); в центральных и периферических нейронах она почти отсутствует. Псевдохолинэстераза обнаруживается главным образом в печени (где она в основном и образуется) и в плазме. Возможно, она выполняет рудиментарную физиологическую функцию — гидролиз эфиров холина, содержащихся в растительной пище. АХЭ и псевдохолинэстераза различаются по скорости гидролиза ацетилхолина и бутирилхолина и по реакции на избирательные ингибиторы. Почти все фармакологические эффекты ингибиторов АХЭ обусловлены подавлением активности именно этого фермента и, как следствие, накоплением эндогенного ацетилхолина в холинергических синапсах и окружающих тканях. У млекопитающих АХЭ и псевдохолинэстераза кодируются разными генами. Разнообразие строения АХЭ обусловлено альтернативным сплайсингом РНК (Taylor et al., 2000).

Выше мы уже упоминали о том, что между различными холинергическими синапсами существуют значительные отличия, касающиеся строения этих синапсов, распределения АХЭ и холинорецепторов, временных параметров синаптической передачи и т. п. Так, в скелетной мышце нервно-мышечный синапс занимает лишь небольшой участок на мышечном волокне, и эти синапсы расположены довольно далеко друг от друга — на соседних волокнах. Напротив, в верхнем шейном ганглии на несколько кубических миллиметров ткани приходится около 100 000 нейронов, и пресинаптические окончания образуют здесь сложную и густую сеть с постсинаптическими дендритами.

Скелетные мышцы. Раздражение двигательного нерва вызывает выделение ацетилхолина в перфузат, оттекающий от соответствующей мышцы; с другой стороны, введение ацетилхолина непосредственно в снабжающие мышцу артерии приводит к ее сокращению. Минимальное количество ацетилхолина (10

17 моль), способное вызвать типичный потенциал концевой пластинки при микроионофоретической аппликации на область концевой пластинки диафрагмы крысы, равно тому количеству этого медиатора, которое выделяется из одного пресинаптического окончания при раздражении диафрагмального нерва (Kmjevic and Mitchell, 1961).

Соединение ацетилхолина с N-холинорецептором постсинаптической мембраны приводит к немедленному и выраженному повышению проницаемости этой мембраны для катионов. Это обусловлено тем, что активация N-холинорецептора сопровождается открыванием связанного с этим рецептором канала. Время пребывания канала в открытом состоянии составляет около 1 мс, и при этом через канал проходит примерно 50 000 ионов Na+ (Katz and Miledi, 1972). В результате открывания множества таких каналов развивается местный деполяризующий потенциал — потенциал концевой пластинки, который, в свою очередь, запускает потенциал действия. Последний вызывает сокращение мышцы. Подробнее все эти процессы и влияние на них средств, блокирующих нервно-мышечные синапсы, описаны в гл. 9.

После перерезки и дегенерации двигательного соматического нерва либо постганглионарных вегетативных волокон реакции денервированных органов возникают в ответ на значительно меньшие дозы медиатора (и некоторых фармакологических средств). Это явление было названо повышением чувствительности денервированных структур. В скелетной мышце при этом N-холинорецепторы появляются за пределами концевой пластинки — сначала рядом с ней, а затем на всей сарколемме. Эмбриональные мышечные волокна до прорастания в них нервных волокон также чувствительны к ацетилхолину на всей своей поверхности. Таким образом, иннервация мышцы приводит к подавлению экспрессии гена N-холинорецептора в ядрах, лежащих в отдалении от синапсов, и, напротив, к повышению экспрессии этого гена (и генов, кодирующих другие синаптические белки) в субсинаптических ядрах (Sanes and Lichtman, 1999).

Внутренние органы. Передача стимулирующих или тормозных сигналов от вегетативных нервов к внутренним органам обусловлена активацией М-холинорецепторов (см. ниже). Эти рецепторы, в отличие от N-холинорецепторов, связаны не с ионными каналами, а с G-белками. В отличие от скелетных мышц и нейронов, у гладких мышц и структур проводящей системы сердца (синусового узла, предсердных пучков, АВ-узла, пучка Гиса с его ножками и волокон Пуркинье) имеется собственная — автоматическая — электрическая и механическая активность. Эта активность не запускается, а лишь модулируется нервными воздействиями. В отсутствие последних в гладкомышечных клетках возникают волны деполяризации и — иногда — потенциалы действия; и те, и другие передаются от клетки к клетке, но значительно медленнее, чем распространяются импульсы по аксонам или волокнам скелетных мышц. Потенциалы действия в гладких и сердечной мышцах возникают в результате ритмичных колебаний мембранного потенциала — спонтанной деполяризации. В гладких мышцах ЖКТ область зарождения возбуждения (ведущий водитель ритма, или пейсмекер) постоянно смещается. В сердце же этой областью в норме всегда является синусовый узел; если же его активность подавляется, то функцию ведущего водителя ритма берут на себя другие структуры проводящей системы.

Аппликация ацетилхолина (в концентрации 0,1—1 мкмоль/л) на изолированные гладкие мышцы кишечника вызывает снижение мембранного потенциала (то есть он становится менее отрицательным) и повышение частоты потенциалов действия; тонус мышц при этом возрастает. Очевидно, это действие ацетилхолина, опосредованное активацией М-холинорецепторов, обусловлено повышением натриевой и, иногда, кальциевой проницаемости. Кроме того, в кальцийсодержащем растворе ацетидхолин может вызвать сокращения некоторых гладких мышц, полностью деполяризованных в результате повышения внеклеточной концентрации К+. Таким образом, ацетилхолин повышает трансмембранные ионные потоки и вызывает выход в цитоплазму кальция из внутриклеточных депо.

В структурах проводящей системы сердца (в частности, в синусовом узле) раздражение холинергических нервов или прямая аппликация ацетилхолина вызывает снижение частоты потенциалов действия, обусловленное гиперполяризацией и замедлением скорости спонтанной деполяризации. Эти эффекты частично обусловлены избирательным повышением калиевой проницаемости (Hille, 1992).

Вегетативные ганглии. Механизмы холинергической передачи в вегетативных ганглиях в основном такие же, как в скелетных мышцах. Потенциалы действия в постганглионарных волокнах можно вызвать введением в ганглий очень небольших количеств ацетилхолина. ВПСП в постганглионарных нейронах возникает в результате активации N-холинорецепторов, непосредственно связанных с ионными каналами (как и в скелетных мышцах). Некоторые другие медиаторы, или так называемые нейромодумторы, снижают либо повышают чувствительность постганглионарных нейронов к ацетилхолину — видимо, меняя мембранный потенциал тел или дендритов этих нейронов. Подробнее передача возбуждения в вегетативных ганглиях рассматривается в гл. 9.

Большое количество работ было посвящено возможной роли пресинаптических холинорецепторов в холинергической и нехолинергической передаче и действии ряда лекарственных средств. На симпатических сосудосуживающих нервах, видимо, присутствуют пресинаптические М-холинорецепторы (Steinsland et al., 1973). Их активация сопровождается снижением выброса норадреналина в ответ на нервные импульсы. Физиологическая роль этих рецепторов не ясна, ведь холинергическая иннервация сосудов выражена слабо, а поскольку ацетилхолин быстро гидролизуется тканевыми и плазменными эстеразами, маловероятно, чтобы он, подобно адреналину, играл роль гормона.

Введение эфиров холина приводит к расширению сосудов. Точек приложения у этих веществ несколько; к ним относятся холинорецепторы тормозных синапсов на пресинаптических симпатических окончаниях и холинорецепторы на сосудах, расположенные вне синапсов. Сосудорасширяющее действие ацетилхолина возможно только при неповрежденном эндотелии. Активация М-холинорецепторов эндотелия приводит к выделению из него N0 (эндотелиального фактора расслабления сосудов). Диффундируя от эндотелия к гладким мышцам, N0 вызывает их расслабление, а следовательно, расширение сосудов (Furchgott, 1999).

Холинорецепторы [ править | править код ]

Сэр Генри Дейл впервые показал, что различные эфиры холина могут оказывать эффекты, сходные с таковыми либо никотина, либо мускарина (Dale, 1914). Было также обнаружено, что последствия раздражения парасимпатических нервов воспроизводятся мускарином. Это позволило Дейлу предположить, что медиатором вегетативной нервной системы служит ацетилхолин либо какой-либо другой эфир холина. Кроме того, отметив двоякое действие ацетилхолина, он ввел термины никотиноподобный и мускариноподобный для обозначения соответствующих эффектов.

Дальнейшие доказательства наличия двух типов холинорецепторов были получены в опытах с применением тубокурарина и атропина. Оказалось, что эти вещества блокируют соответственно никотиноподобный и мускариноподобный эффекты ацетилхолина. Дейл имел дело лишь с неочищенными алкалоидами Amanita muscaria и Nicotiana tabacum, структуры которых в то время были не известны, однако его классификация холинорецепторов действительна и по сей день — хотя и дополнилась представлениями о нескольких подтипах N- и М-холинорецепторов.

Ацетилхолин и некоторые другие вещества активируют оба типа холинорецепторов; другие же стимуляторы и блокаторы действуют избирательно на один из них. Молекула ацетилхолина способна легко деформироваться; по непрямым данным, при связывании с N- и М-холинорецепторами ее конформация различна.

N-холинорецепторы непосредственно связаны с ионными каналами. Активация этих рецепторов всегда вызывает кратковременное (около 1 мс) открывание соответствующих каналов, повышение натриевой и кальциевой проницаемости и деполяризацию — ВПСП или потенциал концевой пластинки. Что же касается М-холинорецепторов, то они принадлежат к суперсемейству рецепторов, сопряженных с G-белками. Реакции на активацию М-холинорецепторов гораздо медленнее, они могут быть как стимуляторными, так и тормозными и не обязательно связаны с изменениями ионных проницаемостей.

Первичная структура различных подтипов N-холинорецепторов (Numa et al., 1983; Changeux and Edelstein, 1998) и М-холинорецепторов (Bonner, 1989; Caulfield and Birdsall, 1998) была установлена на основании данных о строении соответствующих генов. Оказалось, что эти два типа холинорецепторов принадлежат к белкам разных семейств — что не удивительно, учитывая различия в их фармакологических свойствах и функции.

N-холинорецепторы — это пентамеры, состоящие из гомологичных субъединиц. Существуют несколько типов таких субъединиц. В состав каждого пентамерного N-холинорецептора могут входить субъединицы разных типов — но не более 4 типов, так как а-субъединиц обязательно должно быть две. Участки связывания ацетилхолина образуются в местах стыков а-субъединиц с соседними субъединицами. Стенки ионного канала образованы трансмембранными а-спиральными структурами субъединиц (Changeux and Edelstein, 1998; см. также гл. 9 и 12). Структура и свойства М-холинорецепторов описаны в гл. 2 и 7.

Уже давно было известно, что многие стимуляторы и блокаторы действуют только на N-холинорецепторы либо скелетных мышц, либо вегетативных ганглиев — а значит, эти рецепторы различаются. Эти различия были подтверждены и с помощью молекулярного клонирования. Оказалось, например, что N-холинорецепторы скелетных мышц включают субъединицы 4 типов. Структура этих рецепторов соответствует формуле а2р8у или а2рбе: у рецепторов эмбриональных или денервированных мышц имеется субъединица у, у нормальных мышц взрослого — е. Замена субъединицы у на субъединицу I сопровождается некоторым изменением избирательности рецептора к лиганду, но важнее, видимо, то, что такая замена может влиять на скорость обновления рецепторов или их локализацию в клетке. Нейрональные N-холинорецепторы также представляют собой пентамеры. Субъединицы нейрональных N-холинорецепторов очень разнообразны. Они подразделяются на типы а и β; в свою очередь, тип а в нервной системе млекопитающих включает 8 подтипов (а2—а9), а тип β — 3 подтипа (β2—β4)- Не все сочетания этих субъединиц образуют функционирующие рецепторы, но тем не менее число вариантов таких рецепторов слишком велико для того, чтобы различать их на основании сродства к лигандам. В частности, функционирующими рецепторами служат гомоолигомерные пентамеры субъединиц а7, а8 и а9. Особенности N-холинорецепторов скелетных мышц, периферических вегетативных и центральных нейронов приведены в табл. 6.2. Подробнее структура, функция, распределение и подтипы N-холинорецепторов рассматриваются в гл. 9.

С помощью молекулярного клонирования были выделены 5 подтипов М-холинорецепторов. Как и подтипы N-холинорецепторов, они различаются по локализации и фармакологическим свойствам. Все М-холинорецепторы сопряжены с G-белками (см. ниже и табл. 6.2).

В течение нескольких десятилетий исследовались многие М-холиноблокаторы, но только полученный в 1970-х гг. пирензепин обладал способностью подавлять желудочную секрецию соляной кислоты в концентрациях, не оказывающих иных эффектов. Эти данные, исследование эффектов других стимуляторов и блокаторов, а затем клонирование кДНК М-холинорецепторов привели к разделению этих рецепторов на 5 подтипов, обозначаемых M1—М5 (Bonner, 1989).

Холинорецепторы подтипа М, обнаруживаются в вегетативных ганглиях и некоторых железах, М2 — в миокарде и, возможно, в гладких мышцах, М3 и М4 — в гладких мышцах и железах. В ЦНС имеются рецепторы всех 5 подтипов. Во многих тканях содержатся одновременно рецепторы нескольких подтипов. То же касается и интрамуральных парасимпатических ганглиев.

Как уже говорилось, М-холинорецепторы сопряжены с G-белками, и поэтому их стимуляция приводит к изменению активности ряда внутриклеточных белков. Соединение лигандов с рецепторами подтипов М]( М3 и М5 приводит к активации белков Gq и G11. Это, в свою очередь, вызывает повышение активности фосфолипазы С, гидролизу мембранных фосфолипидов — фосфатидилинозитолполифосфатов — и образованию инозитолполифосфатов. Некоторые из последних — главным образом ИФ3 — вызывают выход Са2+ из эндоплазматического ретикулума. Таким образом, активация рецепторов этих подтипов отвечает за такие кальцийзависимые процессы, как сокращение гладких мышц и секреция (Berridge, 1993; см. также гл. 2). Второй продукт гидролиза фосфатидилинозитолполифосфатов — ДАГ — в присутствии Са + активирует протеинки-назу С. Этот механизм отвечает за модуляцию клеточных функций (в том числе запускаемых ИФ3) и за отсроченные реакции на ацетилхолин (Dempsey et al., 2000).

Рецепторы подтипов М2 и М4 сопряжены с белками Gj и G11. Их активация приводит к ингибированию аденилатциклазы, открыванию калиевых каналов (в частности, в сердце) и в некоторых клетках к снижению вероятности открывания медленных кальциевых каналов. Функциональные последствия этих эффектов наиболее изучены на сердце: именно ингибирование аденилатциклазы и открывание калиевых каналов, видимо, ответственны за отрицательные хронотропный и инотропный эффекты ацетилхолина.

Активация М-холинорецепторов может приводить и к другим событиям, в частности активации гуанилатциклазы и образованию арахидоновой кислоты. Обычно эти процессы вторичны по отношению к иным внутриклеточным реакциям.

Холинорецепторы разной локализации обладают неодинаковой чувствительностью к фармакологическим веществам. На этом основано выделение так называемых

мускариночувствительных холинорецепторов - м-холинорецепторы (мускарин - алкалоид из ряда ядовитых грибов, например мухоморов) и

никотиночувствительных холинорецепторов - н-холинорецепторы (никотин - алкалоид из листьев табака).

М-холинорецепторы расположены в постсинаптической мембране клеток эффекторных органов у окончаний постганглионарных холинергических (парасимпатических) волокон. Кроме того, они имеются на нейронах вегетативных ганглиев и в ЦНС - в коре головного мозга, ретикулярной формации). Установлена гетерогенность м-холинорецепторов разной локализации, что проявляется в их неодинаковой чувствительности к фармакологическим веществам.

Выделяют следующие виды м-холинорецепторов:

м 1 -холинорецепторы в ЦНС и в вегетативных ганглиях (однако последние локализуются вне синапсов);

м 2 -холинорецепторы - основной подтип м-холинорецепторов в сердце; некоторые пресинаптические м 2 -холинорецепторы снижают высвобождение ацетилхолина;

м 3 -холинорепепторы - в гладких мышцах, в большинстве экзокринных желез;

м 4 -холинорецепторы - в сердце, стенке легочных альвеол, ЦНС;

м 5 -холинорецепторы - в ЦНС, в слюнных железах, радужной оболочке, в мононуклеарных клетках крови.

Вещества, воздействующие на холинергические синапсы

Химические (в том числе фармакологические) вещества могут воздействовать на разные процессы, имеющие отношение к синаптической передаче:

высвобождение медиатора (например, карбахолин усиливает выделение ацетилхолина на уровне пресинаптических окончаний, а также ботулиновый токсин, препятствующий высвобождению медиатора);

взаимодействие ацетилхолина с холинорецепторами;

энзиматический гидролиз ацетилхолина;

захват пресинаптическими окончаниями холина, образующегося при гидролизе ацетилхолина (например, гемихолиний, который угнетает нейрональный захват - транспорт холина через пресинаптическую мембрану).

Вещества, влияющие на холинорецепторы, могут оказывать стимулирующий (холиномиметический) или угнетающий (холиноблокирующий) эффект. Основой классификации таких средств является направленность их действия на определенные холинорецепторы. Исходя из этого принципа, препараты, влияющие на холинергические синапсы, могут быть систематизированы следующим образом:

3. Теплоотдача.Механизмы теплоотдачи (физические, физиологические, поведенческие), их регуляция.

Основная масса тепла образует-ся во внутренних органах. Поэтому внутренний поток тепла для удале-ния из организма должен подойти к коже. Перенос тепла от внутренних органов осуществляется за счет теплопроведения (таким способом пе-реносится менее 50% тепла) и кон-векции, т. е. тепломассапереноса. Кровь в силу своей высокой тепло-емкости является хорошим провод-ником тепла.

Второй поток тепла -- это поток, направленный от кожи в среду. Его называют наружным потоком. Рас-сматривая механизмы теплоотдачи, обычно имеют ввиду именно этот поток.

Отдача тепла в среду осуществ-ляется с помощью 4 основных меха-низмов:

Теплопроведение -- это способ отдачи тепла телу, которое непосредственно контакти-рует с телом человека. Чем ниже температура этого тела, чем выше температурный гради-ент, тем выше скорость потери тепла за счет этого механизма. Обычно этот способ отдачи тепла ограничен одеждой и воздушной прослойкой, которые являются хорошими изолято-рами тепла, а также подкожным жировым слоем. Чем толще этот слой, тем меньше вероят-ность передачи тепла к холодному телу.

Теплоизлучение -- отдача тепла с участков кожи, не прикрытых одеждой. Происходит путем длинноволнового инфракрасного излучения, поэтому такой вид теплоотдачи еще называют радиационной теплоотдачей. В условиях температурного комфорта за счет этого механизма отдается до 60% тепла. Эффективность теплоизлучения зависит от градиента температуры (чем он выше, тем больше тепла отдается), от площади, с которой происходит излучение, от числа объектов, находящихся в среде, которые поглощают инфракрасные лучи.

На долю кистей рук приходится небольшая часть поверхности тела -- всего 6%, но их кожей отдается до 60% тепла при помощи механизма сухой теплоотдачи (теплоизлучение, конвекция).

Испарение. Отдача тепла происходит за счет траты энергии (0,58 ккал на 1 мл воды) на испарение воды. Различают два вида испарения, или перспирации: неощущаемую и ощущаемую пер-спирацию.

а)неощущаемая перспирация-- это испарение воды со слизистых дыхательных путей и воды, которая просачивается через эпителий кожного покрова (тканевой жидкости). За сут-ки через дыхательные пути испаряется в норме до 400 мл воды, т. е. отдается 400x0,58ккал=232ккал/сутки. При необходимости эта величина может быть увеличена за счет так назы-ваемой тепловой одышки, которая обусловлена влиянием нейронов центра теплоотдачи на дыхательные нейроны ствола мозга.

В среднем за сутки через эпидермис просачивается около 240 мл воды. Следовательно, за счет этого отдается 240*0,58ккал=139ккал/сутки. Эта величина не зависит от процессов регуляции и различных факторов среды.

Оба вида неощущаемой перспирации за сутки позволяют отдать (400 + 240) * 0,58 = 371 ккал.

б)ощущаемая перспирация (отдача тепла путем испарения пота).В среднем за сутки при комфортной температуре среды выделяется 400--500 мл пота, следовательно, отдает-ся до 300 ккал. Однако при необходимости объем потоотделения может возрасти до 12 л/сутки, т. е. путем потоотделения можно отдать почти 7000 ккал в сутки. За час потовые железы могут продуцировать до 1,5 л, а по некоторым источникам -- до 3 л пота.

Эффективность испарения во многом зависит от среды: чем выше температура и ниже влажность воздуха (насыщенность воздуха водяными парами), тем выше эффективность потоотделения как механизма отдачи тепла. При 100% насыщения воздуха парами воды испарение невозможно.

Потовые железысостоят из концевой части, или тела, и потового протока, который от-крывается наружу потовой порой. По характеру секреции потовые железы делятся на эккриновые (мерокриновые) и апокриновые. Апокриновые железы локализуются, главным образом, в подмышечной впадине, в лобковой области, а также в области половых губ, промежности, околососковом круге молочной железы. Апокриновые железы секретируют жирное вещество, богатое органическими соединениями. Вопрос об их иннервации диску-тируется -- одни утверждают, что она адренергическая симпатическая, другие считают, что она вообще отсутствует и продукция секрета зависит от гормонов мозгового вещества над-почечников (адреналина и норадреналина).

Видоизмененными апокриновыми железами являются ресничные железы, расположен-ные в веках у ресниц, а также железы, продуцирующие ушную серу в наружном слуховом проходе, и железы носа (преддверные железы). В испарении, однако, апокриновые железы не участвуют. Эккриновые, или мерокриновые, потовые железы расположены в коже почти всех областей тела. Всего их более 2 млн. (хотя есть люди, у которых они почти полностью отсутствуют). Больше всего потовых желез на ладонях и подошвах (свыше 400 на 1 см 2) и в коже лобка (около 300 на 1см 2). Скорость потообразования, также как и включение в актив-ность потовых желез, в разных участках тела очень широко варьирует.

По химическому составу пот -- это гипотонический раствор: он содержит 0,3% хлористо-го натрия (в крови -- почти 0,9%), мочевину, глюкозу, аминокислоты, аммоний, малые коли-чества молочной кислоты. рН пота варьирует от 4,2 до 7, в среднем рН = 6. Удельный вес -- 1,001--1,006. Так как пот -- это гипотоническая среда, то при обильном потоотделении боль-ше теряется воды, чем солей, и в крови может происходить повышение осмотического давле-ния. Таким образом, обильное потоотделение чревато изменением водно-солевого обмена.

Потовые железы иннервируются симпатическими холинергическими волокнами -- в их окончаниях выделяется ацетилхолин, который взаимодействует с М-холинорецепторами, повышая продукцию пота. Преганглионарные нейроны расположены в боковых столбах спин-ного мозга на уровне Th 2 --L 2 , а постганглионарные нейроны -- в симпатическом стволе.

При необходимости повышения теплоотдачи путем потоиспарения происходит актива-ция нейронов коры, лимбической системы и, главным образом, гипоталамуса. От гипоталамических нейронов сигналы идут к нейронам спинного мозга и постепенно вовлекают раз-личные участки кожи в процесс потоотделения: вначале лицо, лоб, шею, потом -- тулови-ще и конечности.

Холинорецепторами называют молекулы клетки, которые реагируют на медиатор ацетилхолин. Холинорецепторы по своей природе являются гликопротеинами и состоят из нескольких субъединиц. Большинство холинорецепторов клетки являются молчащими (избыточными): в скелетных мышцах количество избыточных рецепторов колеблется от 40 до 99%, а в гладкомышечных клетках от 90 до 99%.

В 1914 г. сэр HenryDaleустановил, что в тканях имеются 2 типа холинорецепторов. Рецепторы, которые стимулировались мускарином (ядом мухомораAmanita muscaria ) получили название мускариновых (М-холинорецепторов). Рецепторы, которые стимулировал никотин (яд табакаNicotiana tabacum ) получили название никотиновых (Н-холинорецепторов).

Никотиновые холинорецепторы. Являются пентамерными белками, т.е. состоят из 5 субъединиц и относятся к семейству мембранных рецепторов, связанных с ионными каналами.-субъединица рецептора содержит активный центр для связывания ацетилхолина и воротные механизмы, которые открывают и закрывают ионный канал. Субъединицы,,иформируют сам ионный канал в мембране, который пропускает ионы натрия. В состав рецептора всегда входят 2-субъединицы и 3 канальных субъдиницы белка. Методом молекулярного клонирования было установлено, что имеется 2 активных центра Н-холинорецепторов (поэтому активация рецептора происходит только после того, как с ним свяжется 2 молекулы ацетилхолина):

Н Н -холинорецепторы – располагаются в мембранах нейронов, состоят из 2и 3субъединиц.

Н М -холинорецепторы – располагаются в скелетных мышцах, состоят из 2-субъединиц и канального комплекса,,.

Мускариновые холинорецепторы. Относятся к семейству мембранных рецепторов, связанных сG-белками. Методом молекулярного клонирования было установлено, что имеется 5 типов М-холинорецепторов, которые могут быть объединены в 2 группы:

Семейство М 1 , М 3 , М 5 -холинорецепторов – связано сG q -белком и передает сигнал на фосфолипазу С, которая гидролизует фосфатидилинозитол бифосфат (PIP 2) до инозитол трифосфата (IP 3) и диацилглицерола (DAG). В дальнейшемIP 3 обеспечивает мобилизацию ионов кальция из внутриклеточных депо и активацию кальций-зависимых ферментов, аDAGактивирует протеинкиназу С, которая фосфорилирует ряд внутриклеточных белков, изменяя их активность.

Семейство М 2 и М 4 -рецепторов связано сG i -белками, которые снижают активность аденилатциклазы, а через-субъединицы эти белки активируют К + -каналы и блокируют работу Са 2+ -каналов клетки.

Подробная характеристика холинорецепторов, а также специфических эффекты их активации представлены в таблице 2.

Основные этапы холинергической передачи и их фармакологическая коррекция

1. Синтез и депонирование медиатора. Ацетилхолин синтезируется в пресинаптических окончаниях из ацетил-КоА и холина. В цитоплазме пресинаптического окончания содержится большое количество митохондрий, здесь путем окислительного декарбоксилирования-кетокислот синтезируется ацетил-КоА. Холин поступает в клетку извне благодаря специальному трансмембранному переносчику. Транспорт холина в нейрон сопряжен с переносом ионов натрия и может быть блокирован гемихолином.

Таблица 2. Сравнительная характеристика холинорецепторов клетки.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.