Для чего внутри нерва кровеносные сосуды

РЕГУЛЯЦИЯ КРОВООБРАЩЕНИЯ


Изменение просвета сосудов зависит в первую очередь от нервных влияний. Импульсы, которые поступают по иннервирующим сосуды нервам, могут вызвать либо расширение, либо сужение просвета сосуда. По своему действию различают двоякого рода сосудодвигательные нервы: сосудорасширяющие и сосудосуживающие.

Наличие сосудосуживающих нервов впервые было открыто в 1842 г. киевским физиологом А. П. Вальтером, который в опытах на лягушках доказал сосудосуживающее Действие симпатических нервов. В 1851 г. Клод Бернар, перерезав симпатический нерв на шее. кролика, наблюдал расширение сосудов уха (рис.); раздражение же отрезка нерва, Идущего к уху, вызывало сужение сосудов. Таким образом было доказано сосудосуживающее действие симпатических нервов.

Рис. У КРОЛИКА ПЕРЕРЕЗАН ПРАВЫЙ ШЕЙНЫЙ СИМПАТИЧЕСКИЙ НЕРВ. СОСУДЫ ПРАВОГО УХА РАСШИРЕНЫ.

Предполагают, что сосудорасширяющее действие оказывают некоторые парасимпатические волокна; подобным дей ствием обладает также небольшое количество симпатических волокон. Основная масса сосудорасширяющих волокон относится к соматической нервной системе и отходит от спинного мозга в составе задних корешков. Действие сосудорасширяющих волокон имеет преимущественно местное значение, способствуя увиденному притоку крови к работающему органу.

Импульсы, поступающие по указанным нервам, возникают в продолговатом мозгу, в особом центре, получившем название сосудодвигательногоцентра. В этом центре имеет место скопление двух групп клеток, функционально приспособленных к изменению просвета сосуда либо в сторону расширения, либо в сторону сужения.

Сосудодвигательный центр в свою очередь находится под влиянием высших отделов головного мозга.

В спинном мозгу также имеются сосудодвигательные центры, но они находятся под влиянием центров, расположенных в вышележащих отделах. Самостоятельно свою деятельность они проявляют тогда, когда выпадают вышележащие отделы центральной нервной системы. Так, после перерезки продолговатого мозга спинномозговые центры начинают регулировать просвет сосудов, вызывая их расширение или сужение.

Группа клеток, вызывающих сужение сосудов и получившая название сосудосуживающего центра, была открыта Ф. В. Овсянниковым.

В обычном нормальном организме стенки артерий несколько напряжены и их просвет сужен. Это состояние постоянного напряжения получило название тонуса.

Тонус сосудов, создается тем, что из сосудодвигательного центра непрерывно по сосудодвигательным нервам поступают импульсы, обусловливающие это напряжение. Импульсы возникают в нервном центре, находящемся в состоянии непрерывного возбуждения. Непрерывное возбуждение нервного центра поддерживается как нервными, так и гуморальными влияниями. Такое состояние беспрерывного возбуждения центральной нервной системы получило название тонуса нервных центров.

В поддержании тонуса сосудов, помимо импульсов, поступающих из центральной нервной системы, имеет значение и чувствительность самих сосудов. Рецепторы, заложенные в стенках сосудов, реагируют на изменение давления и химического состава крови. Импульсы, возникающие в этих рецепторах, поступают в центральную

Нервную систему и вызывают рефлекторные изменения деятельности сердечно-сосудистой системы.

В коре головного мозга находятся высшие центры регуляции кровяного давления. Из этих центров через подкорковые отделы и спинной мозг идут импульсы, вызывающие изменение тонуса мышц стенок сосудов и регулирующие величину кровяного давления.

Влияние коры головного мозга на кровяное давление было изучено В. Я. Данилевским, Н. А. Миславским и В. М. Бехтеревым. Эти ученые, раздражая кору головного мозга, наблюдали колебание кровяного давления, связанное с изменением тонуса сосудистых стенок.

Статья на тему Иннервация сосудов

Внешняя сосудистая сеть нерва

Внешняя сосудистая сеть образована сосудами, сопровождающими нерв на большем или меньшем протяжении. Различного калибра артериальные ветви подходят к крупным нервным стволам через каждые 2—10 см. Наибольшее практическое значение имеют следующие четыре основных типа кровоснабжения нервных стволов.

Тип 1 отличается отсутствием доминирующей артерии (рис. 2.5.1, а).

В связи с тем, что большинство периферических нервов входят в состав сосудисто-нервных пучков, отсутствие доминирующей артерии может наблюдаться лишь на сравнительно небольших по протяженности участках крупных и мелких нервных стволов. Кровоснабжение в этих зонах осуществляется через мышечно-кожные и перегородочно-кожные перфорирующие артерии. Небольшие мелкие ветви нервов могут не сопровождаться сопутствующими сосудами и снабжаться за счет связей с сосудистыми сплетениями окружающих тканей.

Тип 2 характеризуется наличием одной доминирующей артерии (рис 2.5.1, б), которая может сопровождать нерв на значительном протяжении. Это —один из частых вариантов строения внешней сосудистой сети, характерный для большеберцового, межреберных нервов, нервов кисти и стопы, срединного и лучевого нервов (на уровне плеча) и других стволов.

Тип 3 предполагает питание нерва через множественные доминирующие артерии (рис. 2.5.1, в). Этот тип кровоснабжения характерен для локтевого нерва в верхней трети предплечья, для поверхностной ветви лучевого нерва и др.

Тип 4 встречается в той зоне нерва, где участок с преобладающей артерией переходит в свободный от доминирующих сосудов участок (рис. 2.5.1, г). Этот вариант кровоснабжения характерен для лучевого и малоберцового нервов в зоне их деления на конечные ветви.

Внутриствольная сосудистая сеть

Внутриствольная сосудистая сеть образуется ветвями расположенных вблизи нервов сосудов, которые подходят к нерву и делятся на восходящую и нисходящую ветви. Их конечные разветвления, анастомозируя между собой, образуют выраженную интраневральную непрерывную сеть, ячейки которой представлены прекапиллярами и капиллярами, вытянуты между волокнами и располагаются между ними

С практической точки зрения, целесообразнс выделить два основных варианта строения интраневральной сосудистой сети. Первый из них отличается наличием внутриствольно расположенной доминирующей артерии и характерен только для крупных нервных стволов на тех участках, где они проходят вне сосудистых пучков.

Это — срединный (на предплечье) и седалищный нервы, сосуды которых располагаются субэпиневрально или внутриствольно и могут достигать 1—2 мм в диаметре. Для второго варианта характерно отсутствие интраневральной доминирующей артерии. При этом внутриствольная сеть представлена сосудами малого калибра.

Следует отметить, что в любых крупных многопучковых нервах наиболее значительные по диаметру сосуды располагаются в наружном эпииеприи, что позволяет использовать их для идентификации соответствующих нервных пучков при сшивании и пластике.

Кровообращение в нервах с позиций пластической хирургии

Так, при отсутствии доминирующих артерий во внешней сосудистой сети (тип 1) внутриствольнос кровообращение в нерве обеспечивается в максимальной степени при выделении его концов из тканей вместе с прилегающей клетчаткой, когда сохраняют непрерывность сосудистой сети (рис. 2.5.2).

Однако клинические наблюдения показывают, что и в этом случае кровоснабжение концов нерва, выделенных на протяжении 8—10 см (или более), значительно снижается, особенно на периферическом отрезке. Эти нарушения выражены в минимальной степени, когда концы нерва выделяют вместе с доминирующей артерией. При этом протяженность участка выделения существенного значения не имеет.

Особенно просто задача выделения нерва из тканей решается при субэпиневральном расположении доминирующей артерии. При этом выделение концов нерва ограничивается прежде всего необходимостью выделения (пересечения) его ветвей.

При экстраневральном расположении доминирующей артерии (тип 2) выделение концов нерва из тканей следует по возможности осуществлять с включением сопутствующего сосудистого пучка, что сохраняет сосудистую сеть нерва практически неизменной.

При 3-м и 4-м типах строения внешней сосудистой сети нерва, когда рядом с ним на определенном участке проходит крупный сосудистый пучок (например, локтевой на предплечье или плечевой на плече), хирург может оказаться в трех различных ситуациях.

Прежде всего при сохранении целости магистральных сосудов их пересечение и выделение из тканей вместе с нервом, как правило, нецелесообразны, а часто —недопустимы. Поэтому нервный ствол выделяют так же, как и при 1-м типе его кровоснабжения.

Когда поврежден весь сосудисто-нервный пучок и когда нет необходимости в восстановлении магистральных сосудов (рис. 25.3, а), концы нерва можно выделять одним блоком с сосудами до того участка, где сосуды уходят в сторону (рис. 2 53, б). Если - же необходимо выделить нерв и более проксимально, то включать сосудистый пучок в выделяемый лоскут, как правило, нецелесообразно (рис. 2 5 3, в).

Следует отметить, что протяженность участка выделения концов нерва из тканей и техника этого этапа операции определяются не только архитектоникой сосудистой сети в зоне повреждения, но и такими факторами, как тип оперативного вмешательства (сшивание нерва, пластика, транспозиция и пр.), выраженность и распространенность рубцовых изменений окружающих тканей, наличие сопутствующих повреждений других сосудов сегмента и т. д.

Структурно-функциональная единица нервной системы – нервная клетка с ее отростками. Трофическим центром клетки является тело (перикарион); воспринимающие (центрипетальные) отростки носят название дендритов. Отросток, по которому нервный импульс идет центрифугально, от тела клетки к рабочему органу, обозначается как аксон (нейрит). Нервное волокно состоит из аксона (нейрита, осевого цилиндра) и окружающих его шванновских клеток (леммоцитов), образующих неврилемму. В мякотных (миелинизированных) нервных волокнах кнаружи от миелинового слоя располагается неврилемма или шванновская оболочка. На относительно правильных промежутках миелиновая обкладка прерывается и нервное волокно разделяется на сегменты. Каждый сегмент образован одним леммоцитом. Между сегментами имеются промежутки, в которых отсутствует миелиновая оболочка (перехваты Ранвье); именно в этих местах активно происходят обменные процессы, способствующие проведению нервного импульса по аксону.

Источником симпатической иннервации на шейно-грудном уровне являются тела нейронов в боковых рогах серого вещества спинного мозга, от которых идут прегангглионарные миелинизированные волокна, покидающие передние корешки и контактирующие затем с паравертебральными симпатическими ганглиями (симпатический ствол) или входящие в состав черепных нервов. Подобно этому, преганглионарные парасимпатические волокна идут из передних спинальных корешков в область таза, а на краниальном уровне входят в состав III, IX и X пар черепных нервов. Парасимпатические ганглии расположены в связанных с ними эффекторных органах или вблизи от них.

При осмотре невооруженным глазом нерв выглядит как белая шнуроподобная структура с довольно гладкой поверхностью, покрытой плотно прилегающей, но не спаянной с нервом, жировой тканью. В наиболее мощных нервах, таких как седалищный, через нее просвечивают крупные нервные пучки – фасцикулы. На поперечном гистологическом срезе наружная поверхность нерва окружена соединительнотканным футляром – периневрием, состоящим из концентрических слоев жировых клеток, разделенных слоями коллагена. Наконец, эндоневрий также представляет собой футляр, содержащий нервные волокна, шванновские клетки (леммоциты), кровеносные сосуды вместе с пучками тонких эндоневральных коллагеновых волокон, ориентированных вдоль нервных пучков. В эндоневрии содержится также небольшое количеств офибробластов.. Эндоневральный коллаген плотно прилегает к поверхности каждого нервного пучка.

Структура нервных волокон неоднородна. Большинство нервов содержит миелинизированные и немиелинизированные или слабо миелинизированные волокна с неодинаковым соотношением их между собой. Клеточный состав эндоневральных пространств отражает уровень миелинизации. В норме 90% обнаруживаемых в этом пространстве клеточных ядер относится к клеткам Шванна (леммоцитам), а остальные принадлежат фибробластам и капилярному эндотелию. При 80% шванновских клеток окружают немиелинизированных аксоны; рядом с миелинизированными волокнами их количество уменьшено в 4 раза. Тотальный диаметр нервного волокна, т. е. аксон-цилиндра (нейрита) и миелинового футляра, вместе взятых, имеет не только морфологический интерес. Миелинизированные волокна большого диаметра проводят импульсы в значительно более быстром темпе, чем слабо миелинизированные или немиелинизированные. Наличие такой корреляции послужило основой для создания ряда морфолого-физиологических классификаций. Так, Warwick R,. Williams P. (1973) выделяют три класса волокон: А, В и С. А-волокна – соматические афферентные и афферентные миелинизированные нервные волокна, В-волокна – миелинизированные преганглионарные вегетативные волокна, С-волокна – немиелинизированные вегетативные и сенсорные волокна. А. Paintal (1973) модифицировал эту кассификацию с учетом функциональных особенностей волокон, их размеров и скорости проведения импульсов.

Класс А (миелинизированные волокна), афферентные, сенсорные.

Группа I. Волокна размером более 20 мкм в диаметре, со скоростью проведения импульса до 100 м/сек. Волокна этой группы несут импульсы от рецепторов мышц (мышечных веретен, интрафузальных мышечных волокон) и рецепторов сухожилий.

Группа II. Волокна размером от 5 до 15 мкм в диаметре, со скоростью проведения импульсов от 20 до 90 м/сек. Эти волокна несут импульсы от механорецепторов и вторичных окончаний на мышечных веретенах интрафузальных мышечных волокон.

Группа III. Волокна размером от 1 до 7 мкм в диаметре, со скоростью проведения импульса от 12 до 30 м/сек. Функцией этих волокон является болевая рецепция, а также иннервация волосяных рецепторов и сосудов.

Класс А (миелинизированные волокна), эфферентные, двигательные.

Альфа-волокна. Более 17 мкм в диаметре, скорость проведения импульса от 50 до 100 м/сек. Они иннервируют экстрафузальные поперечнополосатые мышечные волокна, преимущественно стимулируя быстрые сокращения мышц (мышечные волокна 2-го типа) и крайне незначительно – медленные сокращения (мышц 1-го типа).

Бета-волокна. В отличие от альфа-волокон иннервируют мышечные волокна 1-го типа (медленные и тонические сокращения мышц) и частично интрафузальные волокна мышечного веретена.

Гамма-волокна. Размером 2-10 мкм в диаметре, скорость проведения импульса 10-45 см/сек, иннервирует только интрафузальные волокна, т. е. мышечное веретено, тем самым участвуя в спинальной саморегуляции мышечного тонуса и движений (кольцевая связь гамма-петли).

Класс В – миелинизированные преганглионарные вегетативные.

Это небольшие нервные волокна, около 3 мкм в диаметре, со скоростью проведения импульса от 3 до 15 м/сек.

Класс С – немиелинизированные волокна, размерами от 0,2 до 1,5 мкм в диаметре, со скоростью проведения импульса от 0,3 до 1,6 м/сек. Этот класс волокон состоит из постганглионарных вегетативных и эфферентных волокон, преимущественно воспринимающих (проводящих) болевые импульсы

Очевидно, что эта классификация интересует и клиницистов, помогая понять некоторые особенности эфферентной и сенсорной функций нервного волокна, в том числе закономерности проведения нервных импульсов, как в норме, так и при различных патологических процессах.

Электрофизиологические исследования показывают, что в состоянии покоя существует разница в электрическом потенциале на внутренней и внешней сторонах неврональной и аксональной клеточной мембраны. Внутренняя часть клетки имеет отрицательный разряд 70-100 мВ по отношению к интерстициальной жидкости снаружи клетки. Этот потенциал поддерживается различием в концентрации ионов. Калий (и белки) преобладают внутри клетки, в то время как ионы натрия и хлориды имеют более высокую концентрацию вне клетки. Натрий постоянно диффундирует в клетку, а калий имеет тенденцию выходить из нее. Дифференциал концентрации натрий-калий поддерживается путем энергозависимого насосного механизма в покоящейся клетке, причем это равновесие существует при слегка сниженной концентрации положительно заряженных ионов внутри клетки, чем снаружи от нее. Это приводит к отрицательному внутриклеточному заряду. Ионы кальция также вносят вклад в поддержание равновесия в клеточной мембране, и когда их концентрация снижается, возбудимость нерва нарастает.

Под влиянием естественной или вызванной внешними факторами стимуляции аксона происходит нарушение селективной проницаемости клеточной мембраны, что способствует проникновению ионов натрия в клетку и редукции потенциала покоя. Если мембранный потенциал снижается (деполяризуется) до критического уровня (30-50 мВ), то возникает потенциал действия и импульс начинает распространяться вдоль клеточной мембраны как волна деполяризации. Важно отметить, то в немиелинизированных волокнах скорость распространения импульса прямо пропорциональна диаметру аксона, и возбуждение длительно прямолинейно захватывает соседствующие мембраны.

Большинство нервов имеет смешанный состав нервных волокон по их диаметру, степени миелинизации (миелинизированные и немиелинизированные волокна), включение вегетативных волокон, дистанциям между перехватами Ранвье, и поэтому каждый нерв имеет свой, смешанный (сложный) потенциал действия и суммированную скорость проведения импульса. Например, у здоровых лиц скорость проведения по нервному стволу, измеренная при накожном наложении электродов, варьирует от 58 до 72 м/сек для лучевого нерва и от 47 до 51 м/сек для малоберцового нерва (M. Smorto, J. Basmajian, 1972).

Информация, передаваемая по нерву, распространяется не только стереотипными электрическими сигналами, но и с помощью химических передатчиков нервного возбуждения – медиаторов или трансмиттеров, освобождаемых в местах соединения клеток – синапсах. Синапсы – специализированные контакты, через которые осуществляется поляризованная, опосредованная химически, передача из нейрона возбуждающих или тормозящих влияний на другой клеточный элемент. В дистальной, терминальной части нервное волокно лишено миелина, образуя терминальную арборизацию (телодендрон) и пресинаптический терминальный элемент. Этот элемент морфологически характеризуется расширением окончания аксона, что напоминает булаву и нередко именуется как пресинаптический мешок, терминальная бляшка, бутон, синаптический узелок. Под микроскопом в этой булаве можно увидеть различных размеров (около 500 А) гранулярные пузырьки или синаптические везикулы, содержащие медиаторы (например, ацетилхолин, катехоламины, пептидные гормоны и др.).

Подмечено, что присутствие круглых пузырьков отвечает возбуждению, а плоских – торможению синапса. Под терминальной бляшкой лежит синаптическая щель размерами 0,2-0,5 мкм в поперечнике, в которую из везикул поступают кванты медиатора. Затем следует субсинаптическая (постсинаптическая) мембрана, воздействуя на которую химический передатчик вызывает изменения электрического потенциала в подлежащих клеточных элементах.

Кровеносные сосуды нервов являются ветвями близрасположенных сосудов. Подходящие к нерву артерии разделяются на восходящую и нисходящую ветви, которые распространяются по нерву. Артерии нервов анастомозируют между собой, образуя непрерывную сеть по ходу всего нерва. Наиболее крупные сосуды расположены в наружном эпиневрии. От них отходят ветви в глубину нерва и проходят в нем между пучками в рыхлых прослойках внутреннего эпиневрия. От этих сосудов ветви проходят к отдельным пучкам нерва, располагаясь в толще периневральных влагалищ. Тонкие ветви этих периневральных сосудов расположены внутри пучков нервных волокон в прослойках эндоневрия (эндоневральные сосуды). Артериолы и прекапилляры вытянуты по ходу нервных волокон, располагаясь между ними.

По ходу седалищного и срединного нерва обычно расположены заметные и достаточно длинные артерии (артерия седалищного нерва, артерия срединного нерва). Эти собственные артерии нервов анастомозируют с ветвями близрасположенных сосудов.

Количество источников кровоснабжения каждого нерва индивидуально различно. Большей или меньшей величины артериальные веточки подходят к крупным нервам через каждые 2-10 см. В связи с этим выделение нерва из окружающей его околонервной клетчатки в какой-то мере сопряжено с повреждением подходящих к нерву сосудов.

Микроваскулярное кровоснабжение нерва, исследованное прижизненным микроскопическим методом показало, что обнаруживаются эндоневральные анастомозы между сосудами в различных слоях нерва. При этом преобладает наиболее развитая сеть внутри нерва. Изучение эндоневрального кровотока имеет большое значение как показатель степени повреждения нерва, при этом кровоток претерпевает немедленные изменения даже при слабой компрессии в эксперименте на животных и на людях, производимой на поверхности нерва или же если компремируются экстраневральные сосуды. При такой экспериментальной компрессии только часть глубокорасположенных в нерве сосудов сохраняют нормальный кровоток (Lundborg G,. 1988).

Вены нервов формируются в эндоневрии, периневрии и эпиневрии. Наиболее крупными венами являются эпиневральные. Вены нервов впадают в близрасположенные вены. Следует отметить, что при затруднениях венозного оттока вены нервов могут расширяться, образуя варикозные узлы.

Лимфатические сосуды нерва. В эндоневрии и в периневральных футлярах имеются лимфатические щели. Они находятся в связи с лимфатическими сосудами в эпиневрии. Отток лимфы от нерва происходит по лимфатическим сосудам, тянущимся в эпиневрии вдоль нервного ствола. Лимфатические сосуды нерва впадают в близрасположеные крупные лимфатические протоки, которые идут к регионарным лимфатическим узлам. Межтканевые эндоневральные щели, пространства периневральных влагалищ являются путями перемещения внутритканевой жидкости.

ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА. СПИННОМОЗГОВЫЕ НЕРВЫ

Нервная система человека подразделяется на центральную, периферическую и автономную части. Периферическая часть нервной системы представляет собой совокупность спинномозговых и черепных нервов. К ней относятся образуемые нервами ганглии и сплетения, а также чувствительные и двигательные окончания нервов. Таким образом, периферическая часть нервной системы объединяет все нервные образования, лежащие вне спинного и головного мозга. Такое объединение в известной мере условно, так как эфферентные волокна, входящие в состав периферических нервов, являются отростками нейронов, тела которых находятся в ядрах спинного и головного мозга. С функциональной точки зрения периферическая часть нервной системы состоит из проводников, соединяющих нервные центры с рецепторами и рабочими органами. Анатомия периферических нервов имеет большое значение для клиники, как основа для диагностики и лечения заболеваний и повреждений этого отдела нервной системы.

Строение нервов

Периферические нервы состоят из волокон, имеющих различное строение и неодинаковых в функциональном отношении. В зависимости от наличия или отсутствия миелиновой оболочки волокна бывают миелиновые (мякотные) или безмиелиновые (безмякотные). По диаметру миелиновые нервные волокна подразделяются на тонкие (1-4 мкм), средние (4-8 мкм) и толстые (более 8 мкм). Существует прямая зависимость между толщиной волокна и скоростью проведения нервных импульсов. В толстых миелиновых волокнах скорость проведения нервного импульса составляет примерно 80-120 м/с, в средних - 30-80 м/с, в тонких - 10-30 м/с. Толстые миелиновые волокна являются преимущественно двигательными и проводниками проприоцептивной чувствительности, средние по диаметру волокна проводят импульсы тактильной и температурной чувствительности, а тонкие - болевой. Безмиелиновые волокна имеют небольшой диаметр - 1-4 мкм и проводят импульсы со скоростью 1-2 м/с. Они являются эфферентными волокнами вегетативной нервной системы.

Таким образом, по составу волокон можно дать функциональную характеристику нерва. Среди нервов верхней конечности наибольшее содержание мелких и средних миелиновых и безмиелиновых волокон имеет срединный нерв, а наименьшее число их входит в состав лучевого нерва, локтевой нерв занимает в этом отношении среднее положение. Поэтому при повреждении срединного нерва бывают особенно выражены болевые ощущения и вегетативные расстройства (нарушения потоотделения, сосудистые изменения, трофические расстройства). Соотношение в нервах миелиновых и безмиелиновых, тонких и толстых волокон индивидуально изменчиво. Например, количество тонких и средних миелиновых волокон в срединном нерве может у разных людей колебаться от 11 до 45%.

Нервные волокна в стволе нерва имеют зигзагообразный (синусоидальный) ход, что предохраняет их от перерастяжения и создает резерв удлинения в 12-15% от их первоначальной длины в молодом возрасте и 7-8% в пожилом возрасте.

Нервы обладают системой собственных оболочек. Наружная оболочка, эпиневрий, покрывает нервный ствол снаружи, отграничивая его от окружающих тканей, и состоит из рыхлой неоформленной соединительной ткани. Рыхлая соединительная ткань эпиневрия выполняет все промежутки между отдельными пучками нервных волокон. Некоторые авторы называют эту соединительную ткань внутренним эпиневрием, в отличие от наружного эпиневрия, окружающего нервный ствол снаружи.

В эпиневрии в большом количестве находятся толстые пучки коллагеновых волокон, идущих преимущественно продольно, клетки фибробластического ряда, гистиоциты и жировые клетки. При изучении седалищного нерва человека и некоторых животных установлено, что эпиневрия состоит из продольных, косых и циркулярных коллагеновых волокон, имеющих зигзагообразный извилистый ход с периодом 37-41 мкм и амплитудой около 4 мкм. Следовательно, эпиневрия - очень динамичная структура, которая защищает нервные волокна при растяжении и изгибе.

Из эпиневрия выделен коллаген I типа, фибриллы которого имеют диаметр 70-85 нм. Однако некоторые авторы сообщают о выделении из зрительного нерва и других типов коллагена, в частности III, IV, V, VI. Нет единого мнения о природе эластических волокон эпиневрия. Одни авторы считают, что в эпиневрии отсутствуют зрелые эластические волокна, но обнаружены два вида близких к эластину волокон: окситалановые и элауниновые, которые располагаются параллельно оси нервного ствола. Другие исследователи считают их эластическими волокнами. Жировая ткань является составной частью эпиневрия. Седалищный нерв содержит обычно значительное количество жира и этим заметно отличается от нервов верхней конечности.

При исследовании черепных нервов и ветвей крестцового сплетения взрослых людей установлено, что толщина эпиневрия колеблется в пределах от 18-30 до 650 мкм, но чаще составляет 70-430 мкм.

Эпиневрий - в основном питающая оболочка. В эпиневрии проходят кровеносные и лимфатические сосуды, vasa nervorum, которые проникают отсюда в толщу нервного ствола.

Следующая оболочка, периневрий, покрывает пучки волокон, из которых состоит нерв. Она является механически наиболее прочной. При световой и электронной микроскопии установлено, что периневрий состоит из нескольких (7-15) слоев плоских клеток (периневрального эпителия, нейротелия) толщиной от 0.1 до 1.0 мкм, между которыми располагаются отдельные фибробласты и пучки коллагеновых волокон. Из периневрия выделен коллаген III типа, фибриллы которого имеют диаметр 50-60 нм. Тонкие пучки коллагеновых волокон расположены в периневрии без особого порядка. Тонкие коллагеновые волокна образуют в периневрии двойную спиральную систему. Причем волокна образуют в периневрии волнистые сети с периодичностью около 6 мкм. Установлено, что пучки коллагеновых волокон имею в периневрии плотное расположение и ориентированы как в продольном, так и концентрическом направлениях. В периневрии найдены элауниновые и окситалановые волокна, ориентированные преимущественно продольно, причем первые в основном локализуются в поверхностном его слое, а вторые - в глубоком слое.

Толщина периневрия в нервах с многопучковой структурой находится в прямой зависимости от величины покрываемого им пучка: вокруг мелких пучков не превышает 3-5 мкм, крупные пучки нервных волокон покрываются периневральным футляром толщиной от 12-16 до 34-70 мкм. Данные электронной микроскопии свидетельствуют, что периневрий имеет гофрированную, складчатую организацию. Периневрию придается большое значение в барьерной функции и обеспечении прочности нервов.

Периневрий, внедряясь в толщу нервного пучка, образует там соединительнотканные перегородки толщиной 0.5-6.0 мкм, которые делят пучок на части. Подобная сегментация пучков чаще наблюдается в поздних периодах онтогенеза.

Периневральные влагалища одного нерва соединяются с периневральными влагалищами соседних нервов, и через эти соединения происходит переход волокон из одного нерва в другой. Если учесть все эти связи, то периферическую нервную систему верхней или нижней конечности можно рассматривать как сложную систему связанных между собой периневральных трубок, по которым осуществляется переход и обмен нервных волокон как между пучками в пределах одного нерва, так и между соседними нервами.

Самая внутренняя оболочка, эндоневрий, покрывает тонким соединительнотканным футляром отдельные нервные волокна. Клетки и внеклеточные структуры эндоневрия вытянуты и ориентированы преимущественно по ходу нервных волокон. Количество эндоневрия внутри периневральных футляров по сравнению с массой нервных волокон невелико. Эндоневрий содержит коллаген III типа с фибриллами диаметром 30-65 нм. Мнения о наличии в эндоневрии эластических волокон весьма противоречивы. Одни авторы считают, что эндоневрий не содержит эластических волокон. Другие обнаружили в эндоневрии близкие по свойствам к эластическим окситалановые волокна с фибриллами диаметром 10-12.5 нм, ориентированные, главным образом, параллельно аксонам.

Известно, что нервные волокна сгруппированы в отдельные пучки различного калибра. У разных авторов существуют различные определения пучка нервных волокон в зависимости от позиции, с которой эти пучки рассматриваются: с точки зрения нейрохирургии и микрохирургии или с точки зрения морфологии. Классическим определением нервного пучка является группа нервных волокон, ограниченная от других образований нервного ствола периневральной оболочкой. И этим определением руководствуются при исследовании морфологи. Однако при микроскопическом исследовании нервов часто наблюдаются такие состояния, когда несколько групп нервных волокон, прилежащих друг к другу, имеют не только собственные периневральные оболочки, но и окружены общим периневрием. Эти группы нервных пучков часто бывают видны при макроскопическом исследовании поперечного среза нерва во время нейрохирургического вмешательства. И эти пучки чаще всего описываются при клинических исследованиях. Из-за различного понимания строения пучка происходят в литературе противоречия при описании внутриствольного строения одних и тех же нервов. В связи с этим ассоциации нервных пучков, окруженные общим периневрием, получили название первичных пучков, а более мелкие, их составляющие, - вторичных пучков.

На поперечном срезе нервов человека соединительнотканные оболочки (эпиневрий, периневрий) занимают значительно больше места (67.03-83.76%), чем пучки нервных волокон. Показано, что количество соединительной ткани зависит от числа пучков в нерве. Ее значительно больше в нервах с большим количеством мелких пучков, чем в нервах с немногими крупными пучками.

Показано, что пучки в нервных стволах могут располагаться относительно редко с промежутками в 170-250 мкм, и более часто - расстояние между пучками менее 85-170 мкм.

В зависимости от строения пучков выделяют две крайние формы нервов: малопучковую и многопучковую. Первая характеризуется небольшим количеством толстых пучков и слабым развитием связей между ними. Вторая состоит их множества тонких пучков с хорошо развитыми межпучковыми соединениями.

Когда количество пучков небольшое, пучки имеют значительные размеры, и наоборот. Малопучковые нервы отличаются сравнительно небольшой толщиной, наличием небольшого количества крупных пучков, слабым развитием межпучковых связей, частым расположением аксонов внутри пучков. Многопучковые нервы отличаются большей толщиной и состоят из большого количества мелких пучков, в них сильно развиты межпучковые связи, аксоны располагаются в эндоневрии рыхло.

Толщина нерва не отражает количества содержащихся в нем волокон, и не существует закономерностей расположения волокон на поперечном срезе нерва. Однако установлено, что в центре нерва пучки всегда тоньше, на периферии - наоборот. Толщина пучка не характеризует количества заключенных в нем волокон.

В строении нервов установлена четко выраженная асимметрия, то есть неодинаковое строение нервных стволов на правой и левой сторонах тела. Например, диафрагмальный нерв имеет слева большее количество пучков, чем справа, а блуждающий нерв - наоборот. У одного человека разница в количестве пучков между правым и левым срединными нервами может варьировать от 0 до 13, но чаще составляет 1-5 пучков. Разница в количестве пучков между срединными нервами разных людей равняется 14-29 и с возрастом увеличивается. В локтевом нерве у одного и того же человека разница между правой и левой сторонами в количестве пучков может колебаться от 0 до 12, но чаще составляет также 1-5 пучков. Различие в количестве пучков между нервами разных людей достигает 13-22.

Разница между отдельными субъектами в количестве нервных волокон колеблется в срединном нерве от 9442 до 21371, в локтевом нерве - от 9542 до 12228. У одного и того же человека разница между правой и левой стороной варьирует в срединном нерве от 99 до 5139, в локтевом нерве - от 90 до 4346 волокон.

Источниками кровоснабжения нервов являются соседние близлежащие артерии и их ветви. К нерву обычно подходят несколько артериальных ветвей, причем интервалы между входящими сосудами варьируют в крупных нервах от 2-3 до 6-7 см, а в седалищном нерве - до 7-9 см. Кроме того, такие крупные нервы, как срединный и седалищный, имеют собственные сопровождающие артерии. В нервах, имеющих большое количество пучков, в эпиневрии содержится много кровеносных сосудов, причем они имеют сравнительно малый калибр. Наоборот, в нервах с небольшим количеством пучков сосуды одиночные, но значительно более крупные. Артерии, питающие нерв, в эпиневрии Т-образно делятся на восходящую и нисходящую ветви. Внутри нервов артерии делятся до ветвей 6-го порядка. Сосуды всех порядков анастомозируют между собой, образуя внутриствольные сети. Эти сосуды играют значительную роль в развитии коллатерального кровообращения при выключении крупных артерий. Каждая артерия нерва сопровождается двумя венами.

Лимфатические сосуды нервов находятся в эпиневрии. В периневрии между его слоями образуются лимфатические щели, сообщающиеся с лимфатическими сосудами эпиневрия и эпиневральными лимфатическими щелями. Таким образом, по ходу нервов может распространяться инфекция. Из больших нервных стволов обычно выходят несколько лимфатических сосудов.

Оболочки нервов иннервируются ветвями, отходящими от данного нерва. Нервы нервов имеют в основном симпатическое происхождение и по функции являются сосудодвигательными.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.