Есть ли нервная система у мухи

Мухи – насекомые, обитающие в непосредственной близости с человеком. Они проникают в жилища, селятся в хлеву и на огороде. Иногда действия насекомых выглядят обдуманными. Поэтому у многих людей возникает вопрос, есть ли у мух мозги или они действуют инстинктивно. Поговорим об этом в рамках статьи.

Анатомия насекомого

Общий план мухи такой же, как у большинства двукрылых насекомых. Они имеют:

  • голову;
  • грудь;
  • брюшко.

Брюшко включает пищеварительную и половую систему. Это касается всех видов мушек. Грудь оснащена мускулатурой, которая необходима для полетов. У насекомого также имеется 3 пары ног.

Строение мозга

Думая о мозге, у многих перед глазами всплывает картинка с округлым веществом, имеющим извилины. С мухой дела обстоят иначе. Мозг двукрылого состоит из 3 отделов, а именно:

  • тритоцеребрума;
  • протоцеребрума;
  • дейтоцеребрума.

Несмотря на достаточно простое строение, мозг отвечает за функционирование всего организма. При этом, муха не способна думать. Она действует инстинктивно.

Благодаря расположению клеток в наружном слое и идущим к ним волокнам, мозг мухи, можно сравнить с управляющим органом человека или животного.

Внутри протоцеребрума имеются дополнительные отделы. Которые делятся на:

  • центральное тело;
  • межцеребральную часть;
  • протоцеребральные лопасти;
  • протоцеребральный мост;
  • вентральные тельца;
  • зрительные доли;
  • стебельчатые тела.

Важно: подобные дополнительные отделы имеются у пчел и муравьев.

  • сенсорными;
  • моторными.

У некоторых видов мух этих корешков не наблюдается.

Дейтоцеребрум отличается от протоцеребрум простотой. Схема строения соответствует обычному ганглию. Объяснить это можно только тем, что данный отдел является нервным центром только одного сегмента – усов.

Отдел принято называть третичным мозгом. Его положение ясное. Тритоцеребрум расположен между остальными отделами. При этом определенной формы у мозга нет. Единственное, с уверенностью сказать, что он разделен на;

  • правый;
  • левый.

Между двумя половинками расположена небольшая перемычка. Она проходит под кишечником.

Основной задачей тритоцеребрума является контроль рта и верхней губы. Вторая может отсутствовать у некоторых видов мух.

Важно: тритоцеребрум связан с симпатической нервной системой.

Важно: перед тем, как взлететь, муха расставляет лапки таким образом, чтобы оттолкнуться в противоположную от приближающегося объекта сторону.

Мозг успевает оценить ситуацию и принять решение, даже если насекомое:

  • чистит крылышки;
  • питается;
  • передвигается в пространстве или по поверхности стены.

Мухи, как и большинство насекомых способны обучаться. Все зависит от ситуаций, в которое попадал вредитель. Конечно, это не тоже самое, что происходит с человеком. Насекомое запоминает все на генетическом уровне.

Функцию мозга насекомых, и мушек в том числе, исследуют во многих университетах. Опыты позволяют понять, как выживали вредители в прошлом и на сколько они изменились.

Заключение

Несмотря на то, что насекомые кажутся довольно примитивными существами, у любопытных исследователей нередко появляются вопросы. Как устроена их нервная система? Каким образом отдельные виды организуют иерархию? Если они настолько организованы, означает ли это, что у них есть мозг? А если мозг есть, то отличается ли он у разных видов насекомых? В статье мы попробуем ответить на эти вопросы.

  • Исследование интеллекта насекомых
  • Строение мозга
  • Особенности мозга насекомых

Исследование интеллекта насекомых

Насекомые представляют собой огромный класс беспозвоночных членистоногих. Ареал их обитания практически безграничный. Они встречаются в любом климате и почти на любой широте. Каждый из видов имеет свои отличительные особенности поведения и образа жизни. На протяжении многих столетий ученые пытались выяснить, каким образом связано поведение и образ жизни особей с их мозгом. Причем отношение к интеллекту этого класса сильно менялось с течением времени.

В древние времена люди боготворили насекомых, считая их умнейшими существами на планете. Так, древние египтяне полагали, что пчелиный улей представляет собой маленькое государство с пчелиным фараоном. А некоторые античные философы и учены всерьез думали, что у пчел может быть рабовладельческий строй.


Изображение пчел на древнеегипетской фреске

В средние века точка зрения на интеллект насекомых поменялась. Теперь отдельные ученые-натуралисты считали жуков своеобразными механизмами, не способным к мышлению и анализу и полагающимся только на рефлексы.

В 19 веке ученые вернулись к обсуждению вопроса о наличии интеллекта у этого класса. Теперь великие умы того времени разделились на два лагеря. Одни считали, что общественные насекомые способны мыслить, другие пытались доказать, что поведение и образ жизни – это всего лишь набор рефлексов. Лишь немногие ученые объясняли поведение пчел их способностью к обучению, большинство полагало, что это инстинкты. Такое суждение связывали с маленьким размером мозга.

Мозг букашек действительно значительно отличается от человеческого, количество нейронов в нем около 1 миллиона, в то время, как человеческий мозг состоит из 86 миллиардов нейронов. По этой причине ученые долгое время не изучали подробно мозг насекомых, считая его примитивным. Однако несколько проведенных исследований показало, что когнитивные способности букашек сопоставимы со способностями многих позвоночных! Это открытие вновь вызвало интерес со стороны научного сообщества к изучению нервной системы жучков.


В конце 20 века благодаря достижениям генетики было доказано, что у насекомых нет ни исключительно врожденных, ни исключительно приобретенных навыков. И хотя их поведение является врожденным, на него накладываются приобретенный опыт, который позволяет им приспосабливаться к определенному типу пищи или к определенной местности.

Строение мозга

Центральная нервная система этого класса состоит из ганглиевых узлов, соединенных в цепочку. Несколько пар ганглиев соединяются в мозг. Он состоит из трех отделов: первичный (протоцеребрум), вторичный (дейтоцеребрум), и третичный (тритоцеребрум). Дейтоцеребрум и тритоцеребрум являются достаточно простыми отделами, по структуре это обычные ганглии, это объясняется тем, что они посылают нервные сигналы только к тем частям организма, с которыми они связаны, то есть усиками и ротовой полости. Протоцеребрум гораздо сложнее по строению, т.к. он координирует работу всего организма.


Головной мозг насекомых

Первичный мозг или протоцеребрум является самым большим отделом. Он отвечает за все процессы, протекающие в организме. Эта часть разделена на несколько зон, имеющих разное строение и отвечающих за разные функции. Протоцеребрум состоит из нейронов, отвечающих за обработку и анализ информации. Внешне протоцеребрум напоминает большой мозг млекопитающих. Внутри первичного отдела находятся волокнистые массы, называемые нейропилярными массами, образованные из отростков нервных клеток. С помощью нейропилей мозг делится на несколько отдельных частей.

Этот отдел, кроме координации работы организма, отвечает за зрение, а также за взаимодействие между отдельными особями. Благодаря протоцеребруму, некоторые виды способны к организации.

Ученые заметили, что у насекомых с более сложной организацией протоцеребрум развит сильнее. В помощью стебельчатых тел формируются ассоциации и происходит более подробная обработка информации, помогающая образовывать связи между особями. У коллективных насекомых количество стебельчатых тел значительно больше. Например у пчел эти тела занимают до 20 % мозга, а у мух или тараканов менее 2 %.

Располагается перед тритоцеребрумом, передаем сигналы нервной системы в усики. Нервные волокна антенн – единственные волокна, связанные с этим отделом. Они очень развиты, начинаются со спинного (моторного) и брюшного (сенсорного) нервных корешков. Вторичный отдел разделен на две части, соединенные между собой комиссурой.

Располагается между остальными отделами мозга спереди от него и брюшной нервной цепочкой позади. Находится над кишечником и разделен на две части, соединенные между собой дугой, огибающей кишечник. Изначально тритоцеребрум отвечал за подачу сигнала нервной системы в усики, но позднее эта функция атрофировалась. Сейчас третичный отдел передает сигналы по нервным волокнам к мышцам ротовой полости и верхней губы.

Особенности мозга насекомых

Итак, мы выяснили, что у насекомых есть мозг, и кроме того, он не самый простой по строению. Именно благодаря этой сложной структуре отдельные виды, например пчелы или муравьи, способны к образованию иерархии и структуры. Именно это помогает муравьям передавать опыт более молодым поколениям, показывая им путь к добыче пищи, или выращивать тлю в определенных местах, а пчелам запоминать соцветия, где можно найти нектар.


С помощью протоцеребрума особи могут усваивать новую информацию, которую они потом могут использовать например для добычи пищи. Пчела может запомнить цвета окружающих объектов и их расположение. Это помогает найти дорогу к цветку, где она накануне собрала большое количество нектара. Кроме того, исследования, проведенные недавно, доказали, что насекомых можно целенаправленно обучать. Так, ученые обучили шмеля двигать мячик в определенное место, после чего шмель получал сладкий сироп. Несколько особей легко запомнили порядок действий и повторяли его.

Также у букашек отлично развито ориентирование в пространстве. Пчелы или шмели запоминают окружающие предметы, муравьи прокладывают дорожки к пище, а жуки-навозники могут ориентироваться даже ночью по звездному небу.

Насекомые не самые примитивные существа, как многие из нас привыкли думать. Их мозг одновременно и простой, и сложный. Многим видам такая структура нервной системы помогает избежать опасности, найти пищу и даже организовать иерархию в гнезде.

Насекомые - самые многочисленные животные нашей планеты, распространившиеся практически повсеместно. Порой, эти существа демонстрируют отнюдь не заурядные способности: одни обладают отличной памятью, другие без труда планируют эффективные маршруты, справляясь с логическими задачками не хуже людей. Но как им это удается? Есть ли у насекомых мозг? Об их строении и умственных талантах мы и поговорим.

Особенности насекомых

Насекомые - отдельный класс беспозвоночных членистоногих животных, освоивший все мыслимые и немыслимые экологические ниши. Они обитают в воде, могут передвигаться по воздуху и под землей и встречаются даже в Антарктиде.

Внешний вид и расцветка насекомых очень разнообразны, а их размеры колеблются от 0,2 миллиметров до 30-40 сантиметров. Их симметричное тело состоит из нескольких отделов и сверху покрыто кутикулой из хитина, защищающей его от повреждений. У всех насекомых только три пары ног, что отличает их от других членистоногих. Многие виды обладают крыльями. Но конструкция их сильно отличается от крыльев птиц, представляя собой тонкие пластины, пронизанные жилками, которые играют роль каркаса.

Умственные способности насекомых всегда были спорным вопросом. В древности им нередко приписывали человеческие черты и считали интеллектуалами животного мира. Века спустя все изменилось, и внимание ученых было приковано к млекопитающим. С развитием нейронаук и психологии ученые снова обратили свой взгляд к насекомым, разглядев в них потенциал к усвоению новой информации.


Есть ли у насекомых мозг?

В нашем восприятии насекомые часто воспринимаются как примитивные создания. По строению и поведению он, действительно, уступают человеку и другим млекопитающим. Однако на вопрос, есть ли у насекомых мозг, ответ будет положительным.

Их центральная нервная система представлена цепочкой нервных узлов ганглиев, которые соединены между собой одиночными или парными стволами нервных волокон. В передней части ЦНС находится мозг. Конечно, он совсем не похож на человеческий, и очень упрощен в сравнении с ним. Мозг насекомых состоит из трех ганглиев, сросшихся друг с другом. Каждый из них представляет один отдел:

  • Протоцеребрум – отвечает за зрение и сложное поведение.
  • Дейтоцеребрум – отвечает за антенны, или усики насекомых.
  • Тритоцеребрум – отвечает за мышцы вокруг рта и деятельность внутренних органов.

Первые два отдела особенно важны для взаимодействия насекомых с окружающим миром и своими собратьями. Ученые отмечают, что протоцеребрум у видов с более сложным поведением развит лучше, а количество в нем грибовидных тел, отвечающих за выработку устойчивых ассоциаций, больше. Например, у пчелы около грибовидные тела занимают около 20% объема мозга, а у мухи дрозофилы только 2%.

Отдел дейтоцеребрум не менее полезен. Он отвечает не столько за умственные способности животных, сколько за их ориентацию в пространстве. Усики насекомых, которые контролирует этот отдел, являются органами чувств и выполняют множество функций одновременно. Они могут заменять зрительные, слуховые, осязательные, обонятельные рецепторы и чувствовать температуру воздуха.


Разум насекомых

Теперь, когда мы узнали, есть ли у насекомых мозг, давайте разберемся, на что он способен. Начнем с того, что его размеры невероятно малы. Весить он может всего один миллиграмм, и содержать около 100 миллионов нейронов. У человека же мозг весит 1,5-2 килограмма и содержит 100 миллиардов нейронов. Несмотря на это, насекомые могут выполнять довольно сложные действия и способны обучаться.


Обучение

Интеллект насекомых позволяет им усваивать новую информацию и использовать ее для поисков пищи. Например, пчела отлично различает цвета и запоминает расположение объектов. По ним она и ориентируется, чтобы возвращаться по нескольку раз к цветку, в котором нашла много нектара. Кроме того, она запоминает и время, когда бутон был раскрыт.

Как показали недавние исследования, шмели тоже способны к обучению. В Лондонском университете их сумели научить закатывать мячик в обозначенное место для получения сладкого сиропа. После того как им несколько раз показали принцип действия, шмели легко запомнили и повторяли его.


Навигация

Насекомые отлично ориентируются в пространстве и могут без труда находить места, где бывали ранее. Медоносные пчелы и муравьи запоминают обстановку нужной им локации, а также объекты-маркеры по дороге к ней. В отличие от них, жуков-навозников не останавливает даже ночь. Для поиска нужного пути они полагаются на звезды, а именно на Млечный путь, который отчетливо видно в ясную погоду.

Шмели, относящиеся к семейству настоящих пчел, тоже прекрасно ориентируются. Помимо запоминания местности, они способны прокладывать к местам кормежки наиболее эффективные маршруты. Ученые утверждают, что решая задачку коммивояжера, они используют те же схемы и алгоритмы, которые используют и люди.

Основной структурный и рабочий элемент нервной системы — нейрон. Это специализированная нервная клетка с собственной оболочкой, набором внутриклеточных органелл и нейрофибриллами (рис. 111). От её тела отходят длинный осевой отросток — аксон и короткие ветвящиеся дендриты. Получая нервные импульсы от других нейронов, дендриты переводят их на аксон, по которому возбуждение распространяется без затухания на другие нейроны или эффекторы — разного рода железы и мышцы.


Рисунок 111. Типы нейронов насекомых (по Gillot, 1980):

А, Б, В — соответственно униполярный, биполярный, мультиполярный нейрон; 1 — дендриты; 2 — аксон

В зависимости от исполняемых функций нейроны подразделяются на сенсорные (чувствительные), проводящие возбуждение от рецепторов к нервным центрам; ассоциативные (вставочные, или интернейроны), перерабатывающие поступающую в центры информацию; моторные (двигательные) нейроны, которые доносят в центробежном направлении до эффекторов возбуждение, полученное от ассоциативных нейронов (рис. 112). Сформированная таким образом трёхнейронная рефлекторная дуга обеспечивает целесообразное реагирование на стимулы, тогда как образованная только сенсорным и моторным нейронами двухнейронная дуга обусловливает однозначный ответ на раздражение. Свойственная более примитивным организмам, она не характерна для насекомых, рефлекторные дуги которых нередко включают по нескольку ассоциативных нейронов, обеспечивая тем самым весьма сложные формы реагирования.


Рисунок 112. Рефлекторные дуги насекомых (по Тыщенко, 1977):

1 — рецепторы; 2 — ассоциативные нейроны; 3 — эффектор

Взаимоотношения разных нейронов в нервных центрах показаны на схеме рефлекторных дуг (см. рис. 112), а их взаимное положение — на поперечном срезе одного из ганглиев брюшной нервной цепочки (рис. 113). Облечённый соединительнотканной оболочкой (нейрилемма) и подстилающим слоем клеток (перинейрум), каждый ганглий прямокрылых насекомых имеет дополнительную защиту от контакта с гемолимфой в виде слоя клеток жирового тела и эпителия трахей. Клетки перинейрума регулируют транспорт ионов через нейрилемму и, поддерживая постоянство ионного состава, обеспечивают проведение нервного возбуждения без внешних помех. Эти клетки также переводят из гемолимфы необходимые для нейронов вещества, передавая их внутриганглионарным (нейроглиальным) клеткам. Последние через цитоплазматическне выросты питают нейроны или образуют вокруг их аксонов плотные спирально закрученные оболочки со свойствами изоляторов.


Рисунок 113. Поперечный срез через ганглий брюшной нервной цепочки. Тела ассоциативных (1) и моторных (2) нейронов (по Шванвичу, 1949)

Нейроны с обслуживающими их нейроглиальными клетками распределены во внешнем, корковом, слое ганглия, непосредственно под перинейрумом, тогда как центральная часть ганглия — нейропиль — занята сплетенными нервными волокнами. На периферии нейропиля с дорзальной стороны проходят аксоны моторных нейронов, формируя выходящие из ганглия дорзальные корешки боковых нервов. С вентральной стороны в нейропиле сосредоточены аксоны сенсорных нейронов, входящие в ганглий через вентральные корешки боковых нервов, а центр нейропиля заполнен разветвлениями ассоциативных нервных клеток.

Сквозь нейропиль проходят также пучки нервных волокон, связывающих нейроны обеих сторон одного ганглия и соседних ганглиев друг с другом. Общее число нейронов в пределах одного ганглия обычно не превышает 1 000, а в пределах всей нервной системы насекомого измеряется несколькими миллионами. Это весьма малые величины по сравнению с таковыми у млекопитающих, однако сложность реакций и форм поведения насекомых свидетельствует о совершенстве их нервной системы.

Центральная нервная система

Она образована двойной цепью ганглиев, связанных между собой продольными коннективами и поперечными комиссурами (рис. 114). Её передний отдел — надглоточный ганглий, по положению и функциям отвечающий головному мозгу позвоночных животных, происходит из слившихся между собой ганглиев по меньшей мере трёх сегментов. Вслед за ним расположен под-глоточный ганглий, связанный с головным мозгом окологлоточными коннективами. В его состав входят соединённые друг с другом ганглии трёх сегментов челюстей. Далее следуют три грудных ганглия, изредка образующие единую ганглиозную массу, и, наконец, ганглии брюшных сегментов. Закладывающиеся у эмбриона в виде сегментарных зачатков, они позднее смещаются вперёд и нередко объединяются. У имаго наиболее примитивных насекомых (Thysanura) сохраняется не более восьми парных ганглиев брюшка, причём последний, самый крупный из них, имеет следы объединения 2–3 ганглиев.


Рисунок 114. Центральная нервная система насекомых (по Шванвичу, 1949):

1 — ноги; 2 — надглоточный ганглий; 3 — антенна; 4 — подглоточный ганглий; 5 — крылья; 6 — ганглии брюшной нервной цепочки

У нимф подёнок и стрекоз в брюшке отмечено семь парных ганглиев, у прямокрылых — пять, другие насекомые имеют часто ещё большую концентрацию брюшной нервной цепочки. Например, центральная нервная система высших мух представлена лишь двумя ганглиозными массами (синганглиями): одна из них — головной мозг, другая — продукт объединения остальных ганглиев. Обычно личинки имеют менее концентрированную нервную систему, чем имаго, но у личинок мух единая ганглиозная масса вообще не разделена (рис. 115).


Рисунок 115. Центральная нервная система личинки и имаго мух:

А — личинка; Б — имаго; 1, 2 — соответственно головной и туловищный синганглий

Строение ганглиев брюшной нервной цепочки и ганглиев подглоточного нервного узла сходно; различия между ними определяются различиями иннервируемых органов. В частности, самый последний ганглий контролирует спаривание и откладку яиц и, как и впереди лежащие ганглии, имеет по две пары нервов, включающих сенсорные и моторные волокна. В ганглии крылоносных сегментов входят три пары нервов, обслуживающих ноги, крылья и туловищную мускулатуру, а в ганглий лишённой крыльев переднегруди и в ганглиозные массы подглоточного нервного узла — две пары нервов.

Головной мозг

Особой сложности в строении и во взаимодействии отдельных нервных центров достигает надглоточный ганглий (рис. 116). Образованный протоцеребрумом, дейтоцеребрумом и тритоцеребрумом, он включает ассоциативные центры и ганглиозные массы объединённых сегментов головы.


Рисунок 116. Головной мозг насекомых (по Romoser, 1981):

1 — оптическая пластинка; 2 — медуллярные пластинки; 3 — оцеллярные нервы; 4 — протоцеребральный мост; 5, 6 —соответственно грибовидное и центральное тело; 7 — дейтоцеребрум; 8 — тритоцеребрум

Более крупный протоцеребрум обладает явственными оптическими долями (с тремя парами нейропилярных масс и оцеллярным центром), воспринимающими и перерабатывающими сенсорную информацию от сложных глаз и дорзальных глазков насекомого. При этом тела сенсорных нейронов глазков связываются с оцеллярными ганглиями, от которых отходят оцеллярные нервы к межцеребральной части головного мозга. Нейропилярные, то есть образованные отростками нервных клеток, массы протоцеребрального моста и центрального тела соединяют симметричные доли протоцеребрума и, воспринимая аксоны от других центров, координируют моторную активность сегментов тела, определяя, в частности, согласованность работы дыхалец. Примыкающие с обеих сторон к долям протоцеребрума парные стебельчатые (или грибовидные) тела являются высшим ассоциативным центром, где замыкаются условно-рефлекторные связи. Их разрушение ведёт к утрате приобретенных навыков, но безусловные рефлексы сохраняются.

В чашечках стебельчатых тел расположены многочисленные (например, у тараканов до 300 000–400 000) ассоциативные нейроны, аксоны которых проходят в два стебелька, где образуют контакты с аксонами других центров протоцеребрума. Один из этих стебельков (а-доля) связывается с сенсорными, второй (?-доля) — с моторными нейронами (рис. 117). Степень развития стебельчатых тел коррелирует со сложностью поведения насекомых. Например, у муравьёв эти тела занимают 1/5 объёма мозга, а у рабочих пчёл они развиты значительно сильнее, чем у маток или трутней.


Рисунок 117. Грибовидное (стебельчатое) тело головного мозга насекомых (по Тыщенко, 1977)

Следующий отдел головного мозга — дейтоцеребрум — образован парными антеннальными долями, связанными друг с другом и с сенсорными и моторными аксонами антенн. Отходящий от них ольфакторный тракт достигает чашечек стебельчатых тел, обеспечивая участие ольфакторных стимулов в общей координации нервной деятельности.

Наконец, самый задний отдел головного мозга — крошечный тритоцеребрум — иннервирует головную капсулу с верхней губой и соединяется со стоматогастрической нервной системой (см. ниже) посредством фронтального ганглия и с брюшной нервной цепочкой посредством окологлоточного нервного кольца. Связывающие волокна (поперечная комиссура) между правой и левой долями тритоцеребрума проходят позади рта. Это свидетельствует об исходной принадлежности тритоцеребрума к туловищным сегментам насекомых, лишь вторично вошедшим в состав головы.

Завершая обсуждение строения центральной нервной системы, отметим, что подглоточный ганглий, обслуживающий рецепторы и мышцы челюстей и шейной области, содействует поддержанию двигательной активности насекомого. В этом смысле он служит антагонистом тормозящих влияний головного мозга.

Симпатическая нервная система

Именуемая также висцеральной или вегетативной, она слагается из стоматогастрической (ротожелудочной) системы, системы непарного нерва и каудальной системы (рис. 118). Её высший нервный центр — тритоцеребрум, от которого отходят два фронтальных коннектива к непарному фронтальному ганглию. Образуемый из стенки передней кишки эмбриона, этот ганглий вскоре теряет с ней связь и, соединяясь с головным мозгом, отсылает пару нервов к верхней губе и непарный возвратный нерв к гипоцеребральному ганглию. Последний связывается с нейросекреторными органами ретроцеребрального комплекса и с двумя вентрикулярными ганглиями. Иннервируя передние отделы кишечника и аорту, ганглии стоматогастрической системы включают в себя не только моторные и ассоциативные нейроны, но и сенсорные. В этом отношении они противопоставляются ганглиям брюшной нервной цепочки, с которыми связана система непарного нерва.


Рисунок 118. Симпатическая нервная система насекомых (по Шванвичу, 1949):

1 — фронтальный ганглий; 2 — мозг; 3 — возвратный нерв; 4 — затылочный ганглий; 5 — прилежащие тела; 6 — пищевод; 7 — вентрикулярный ганглий

Обслуживая дыхальца, эта система связана с ними боковыми ветвями, но образующие их нейроны находятся в грудных и брюшных ганглиях центральной нервной системы. Непарный нерв, по-видимому, участвует в работе крыловых мышц, так как при его разрушении резко возрастает их утомляемость.

Каудальная система, образованная двумя нервами, отходящими от последнего ганглия брюшка, иннервирует заднюю кишку и органы размножения насекомых.

Периферическая нервная система

Все нервы, выходящие из ганглиев центральной и симпатической нервной системы, наряду с сенсорными нейронами органов чувств (рецепторов) образуют периферическую нервную систему насекомых. Некоторые её компоненты будут рассмотрены позднее в связи с сенсорными системами и рецепцией.

Проведение нервного возбуждения в ганглиях

При прохождении возбуждения через ганглий возникают дополнительные ограничения, связанные с необходимостью преодоления по крайней мере нескольких синапсов рефлекторных дуг.

Отличаясь односторонней проницаемостью, синапсы допускают распространение импульсов только в одном направлении — от сенсорных нейронов к моторным, а необходимость выделения медиаторов и их диффузии по синаптической щели всякий раз задерживает импульс на 1–4 мс. Эта задержка многократно возрастает в полинейронных рефлекторных дугах со многими нейронами и синапсами. Вместе с тем нередкое для насекомых объединение множества пресинаптических волокон в одно постсинаптическое проявляется в так называемой пространственной суммации возбуждения; лишь совместное одновременное раздражение нескольких из них генерирует потенциал действия (ПД) в постсинаптическом аксоне. Аналогичным образом слишком слабые, но многократные раздражения, чередуясь в определённом ритме, приводят к временной суммации раздражений и к преодолению синаптического барьера.

Отметим также трансформацию ритма возбуждения во многих синапсах ганглия, своеобразный эффект последействия, связанный с продолжающейся после выключения раздражителя генерацией импульсов, и способность к иррадиации возбуждения на другие рефлекторные дуги ганглия. Наряду с привыканием (то есть блокированием синапса в ответ на монотонные раздражения) и обучением (облегчением переноса возбуждения через синапс) эти свойства ганглиев и синапсов приводят к фильтрации и преобразованию информации, которая поступает в нервные центры от рецепторов. Все это определяет целесообразность реагирования и сложность форм поведения насекомых.

Медиаторы нервного возбуждения в нервно-мышечных контактах и в синапсах ганглиев различны. Есть веские основания считать, что здесь, как и у позвоночных животных, медиатором служит ацетилхолин, разрушаемый ацетилхолинэстеразой. В частности, среди веществ, блокирующих активность ацетилхолинэстеразы насекомых, основное значение имеют фосфорорганические инсектициды.

Не касаясь более сложных аспектов функционирования центральной нервной системы насекомых, укажем, что каждый ганглий брюшной нервной цепочки — первичный рефлекторный центр иннервируемого им сегмента. Однако роль вторичных рефлекторных центров, контролирующих частные функции отдельных ганглиев, принадлежит головному мозгу и подглоточному нервному узлу. Комбинирование сегментарных рефлексов в целостные акты поведения возможно благодаря неспецифическим системам торможения и возбуждения, сравнимым с соответствующими системами млекопитающих.

Головной мозг насекомых исполняет роль высшего анализатора. Принимая участие в анализе сигналов, поступающих от всех органов чувств, он синтезирует акты поведения целостного организма. Лишённые мозга насекомые ведут себя как автоматы с испорченной программой: спонтанные рефлексы теряют приспособительный смысл и противоречат друг другу.

Многие аспекты высшей нервной деятельности насекомых ещё не изучены, но не следует думать, что существование и поведение насекомых целиком подчинены безусловным рефлексам, предопределяющим стереотипные реакции на все стимулы окружающего мира. Некоторые виды (например, пчела) способны к обобщению зрительных образов, превосходя в этом отношении рыб и даже крыс.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.