Филогенез нервной системы человека что это такое

Нервная система хордовых формируется из эктодермы, закладывается сначала в виде пластинки. Затем преобразуется в трубку над хордой с полостью внутри – невроцелем. передний конец трубки расширен. Здесь формируется головной мозг, который у взрослых позвоночных состоит из 5 отделов – переднего, промежуточного, среднего, заднего и продолговатого.

Нервная система выполняет следующие функции:

· Координирующая - объединяет структуры организма в единое целое, обеспечивает согласование их работы;

· Регуляторная - регулирует работу органов и систем;

· Осуществляет связь организма с внешней средой;

· Интегрирующая - лежит в основе высшей нервной деятельности, т.е. обеспечивает психику человека, поведенческие реакции, психические особенности, членораздельную речь, абстрактное мышление и т.д.

Основные направления эволюции нервной системы:

1. Разделение нервной трубки на головной и спинной мозг.

2. Эволюция головного мозга: увеличение объема, дифференцировка отделов, появление изгибов, от ихтиопсидного к зауропсидному и к маммальному типу.

3. Дифференцировка периферической нервной системы.

Пороки головного мозга, обусловленные онтофилогенетически (механизм – рекапитуляции):

Нервная система столь важна, что многие пороки ее развития несовместимы с жизнью. Среди них рахисхиз – незамыкание нервной трубки и прозенцефалия – недоразвитие полушарий и коры. При агирии (отсутствие извилин), а также олигогирии и пахигирии (уменьшение числа и утолщение извилин) развивается грубая олигофрения с нарушением многих рефлексов. Такие дети обычно умирают в течение первого года жизни.

РАЗВИТИЕ НЕРВНОЙ СИСТЕМЫ У ПОЗВОНОЧНЫХ

У хордовых нервная система развивается на раннем этапе эмбрионального периода из эктодермы. Сначала она закладывается в виде нервной пластинки, которая вскоре, прогибаясь и смыкаясь, образует нервную трубку с полостью (невроцель) внутри.

У позвоночных на ранних этапах развития нервная трубка, дифференцируясь, образует головной и спинной мозг. Головной мозг возникает в виде выпячивания, состоящего из трех мозговых пузырей (рис. 1): переднего, среднего и заднего. Позже из переднего мозгового пузыря образуется передний (telencephalon) и промежуточный (diencephalon) мозг. Из среднего мозгового пузыря развивается средний мозг (mesencephalon), а из заднего (rhombencephalon) – комплекс в виде мозжечка (cerebellum), моста (pons) и продолговатого мозга (myelencephalonилиmedullaoblongata). Канал, проходящий внутри трубки (невроцель), в обласчти головного мозга образует расширения в виде полостей (желудочков мозга).


Рис. 1. Схема нервной трубки в стадии трех мозговых пузырей.

Образование у позвоночных головного мозга (цефализация) определилось в связи с усилением у них двигательной активности и необходимостью постоянного анализа информации, поступающей от органов чувств.

Полагают, что передний мозг сформировался в ходе развития динамических координаций с органом обоняния, средний – с органами зрения, а задний – со статокинетическим анализатором.

Мозговые желудочки сообщаются между собой и в области продолговатого мозга – со спинномозговым каналом. Все они заполнены спинномозговой жидкостью, которая образуется в сосудистых сплетениях за счет фильтрации плазмы крови. В желудочках различают дно (основание) и крышу (мантию).

В веществе головного мозга нейроны располагаются в виде скоплений, образуя серое вещество, а скопление их отростков – белое вещество. Слой серого вещества в крыше любого отделения мозга называется корой, а в толще белого вещества – ядрами.

Таким образом, у всех классов позвоночных головной мозг состоит из пяти отделов: переднего, промежуточного, среднего, мозжечка и продолговатого. Но у различных представителей степень развития этих отделов мозга неодинакова (рис.2 ).


Рис.2 Эволюция головного мозга позвоночных: а - рыба; б - земноводное; в - пресмыкающееся; г - млекопитающее; 1 - обонятельные доли; 2 - передний мозг; 3 - средний мозг; 4 - мозжечок; 5 - продолговатый мозг; 6 - промежуточный мозг

ГОЛОВНОЙ МОЗГ РЫБ (КОСТИСТЫХ)

1. Передний мозг у рыб меньше других отделов мозга и имеет примитивное строение. Основную массу мозга составляют скопления нейронов - полосатые тела, над ними располагается один общий желудочек с тонкой мантией, которая не содержит нервных клеток и образована эпителием. От переднего мозга отходят парные обонятельные доли с обонятельными нервами. По существу, передний мозг рыб является только обонятельным центром.

2. Промежуточный мозг имеет небольшой размер. Образован эпителамусом, таламусом и гипотпламусом, которые характерны для всех позвоночных, хотя степень их выраженности варьирует. На дорсальной его стороне находится эпифиз, на вентральной стороне – гипофиз и зрительные нервы, образующие перекрест.

3. Средний мозг хорошо развит. Его крыша образовани двухолмием. В нем сосредоточены зрительные и слуховые центры. Средний мозг рыб является высшим интегративным центром (ихтиопсидный тип мозга).

4. Мозжечок имеет вид пластинки, крупный, хорошо развит в связи со сложной координацией движений.

5. Продолговатый мозг содержит скопление нервных клеток в виде ядер. В нем находятся: дыхательный центр, сердечно-сосудистый центр, центр регуляции пищеварения. От ствола мозга (средний мозг, продолговатый мозг, варолиев мост) отходит 10 пар черепно-мозговых нервов. Все отделы мозга расположены в одной плоскости (у акул - изгиб в области среднего мозга).

ГОЛОВНОЙ МОЗГ ЗЕМНОВОДНЫХ

1. Передний мозг развит лучше, чем у рыб. Состоит из двух разделенных щелью полушарий с самостоятельными желудочками. Мантия остается тонкой, но в глубине мантии появляются нервные клетки (серое вещество), а на поверхности располагаются только нервные волокна (белое вещество). В основании мозга, под дном желудочков лежат полосатые тела. Передняя стенка полушарий имеет неясно отграниченные выпячивания – обонятельные доли и передний мозг остается обонятельным центром.

2. Промежуточный мозг, так же как и у рыб, образован эпиталамусом, таламусом (буграми) и подбугровой областью (гипоталамусом). На дорсальной его стороне находится эпифиз, а на вентральной – гипофиз.

3. Средний мозг – наиболее крупный отдел, представлен двухолмием, покрытым корой. Он является высшим интегративным центром где происходит анализ получаемой информации и вырабатываются ответные импульсы (ихтиопсидный тип мозга).

4. Мозжечок имеет вид небольшого поперечного валика. По сравнению с рыбами развит слабо, что объясняется примитивностью и однообразием движений у амфибий.

5. Продолговатый мозг содержит скопление нервных клеток в виде ядер, от которых берет начало большинство черепно-мозговых нервов. У земноводных от головного мозга, так же как и у рыб, отходит 10 пар черепно-мозговых нервов.

Все отделы мозга расположены в одной плоскости.

ГОЛОВНОЙ МОЗГ ПРЕСМЫКАЮЩИХСЯ

В связи с выходом на сушу и более активной жизнедеятельностью, характерной для высших позвоночных, все отделы мозга пресмыкающихся достигают более прогрессивного развития. У них возрастает способность к образованию условных рефлексов.

1. Передний мозг значительно преобладает над другими отделами. Состоит из двух полушарий, которые прикрывают промежуточный мозг. Мантия остается тонкой, но на ее поверхности появляются медиальное и латеральное скопления нервных клеток – серое вещество, представляющее зачаточную кору больших полушарий. У рептилий кора еще не играет роли высшего отдела мозга, она является высшим обонятельным центром (древняя кора - archicortex). Но в процессе филогенеза, разрастаясь и принимая другие виды чувствительности, помимо обонятельной, она привела к возникновению коры головного мозга млекопитающих. Увеличение размеров переднего мозга происходит в основном за счет полосатых тел, лежащих в области дна желудочков. Они же выполняют роль высшего интегративного центра (зауропсидный тип мозга)

2. Промежуточный мозг на тонкой крыше имеет два пузыревидных выроста – эпифиз и особый теменной орган, который вместе с эпифизом является регулятором суточной активности животных и выполняет к тому же светочувствительную функцию. На вентральной стороне находится гипофиз.

3. Средний мозг образован двухолмием. Он имеет связь с каждой из сенсорных систем, со всеми моторными ядрами мозжечка, взаимодействует с нейтронами крыши среднего и продолговатого мозга.

4. Мозжечок имеет вид полукруглой пластинки, развит слабо, но лучше, чем у амфибий, в связи с усложнением координации движений.

5. Продолговатый мозг образует резкий изгиб в вертикальной плоскости, характерный для высших позвоночных.

ГОЛОВНОЙ МОЗГ ПТИЦЫ

Нервная система в связи с общим усложнением организации, при­способленностью к полету и обитанием в самых различных средах, развита значительно лучше, чем у пресмыкающихся.

Дня птиц характерно дальнейшее увеличение общего объема головного мозга, особенно переднего.

Передний мозгуптиц - это высший интегративный центр. Его ве­дущим отделом являются полосатые тела (зауропсидный тип мозга).

Крыша остается слабо развитой. В ней сохраняются только медиаль­ные островки коры, которые выполняют функцию высшего обоня­тельного центра. Они оттесняются к перемычке между полушариями и носят название гиппокампа. Обонятельные доли развиты слабо.

Промежуточный мозгнебольших размеров и связан с гипофизом и эпифизом.

Средний мозгимеет хорошо развитые зрительные доли, что обу­словлено ведущей ролью зрения в жизни птиц.

Мозжечоккрупный, имеет среднюю часть с поперечными бороз­дами и небольшие боковые выросты.

Продолговатый моттакой же, как у рептилий. 12 пар черепно-мозговых нервов.

ГОЛОВНОЙ МОЗГ МЛЕКОПИТАЮЩИХ

Передний мозг - это наиболее крупный отдел головного мозга. У разных видов его абсолютный и относительный размеры весьма варьируют. Главная особенность переднего мозга - значительное раз­витие коры полушарий, которая собирает всю сенсорную информа­цию от органов чувств, производит высший анализ и синтез этой ин­формации и становится аппаратом тонкой условно-рефлекторной деятельности, а у высокоорганизованных млекопитающих - и психи­ческой деятельности (маммальный тип мозга).

У наиболее высокоорганизованных млекопитающих кора имеет борозды и извилины, что значительно увеличивает ее поверхность.

Для переднего мозга млекопитающих и человека характерна функ­циональная асимметрия. У человека, она выражается в том, что пра­вое полушарие отвечает за образное мышление, и левое - за абстракт­ное. Кроме того, в левом полушарии находятся центры устной и письменной речи.

Промежуточный мозгсодержит около 40 ядер. Специальные яд­ра таламуса перерабатывают зрительные, тактильные, вкусовые и интероцептивные сигналы, направляя их затем в соответствующие зоны коры больших полушарий.

В гипоталамусе сосредоточены высшие вегетативные центры, управляющие работой внутренних органов через нервные и гуморальные­ механизмы

В среднем мозгена смену двухолмия приходит четверохолмие. Его передние холмы являются зрительными, а задние связаны со слухо­выми рефлексами. В центре среднего мозга проходит ретикулярная.

формация, которая служит источником восходящих влияний, активи­рующих кору больших полушарий. Хотя передние доли являются зрительными, анализ зрительной информации осуществляется в зри­тельных зонах коры, а на долю среднего мозга приходится главным образом управление глазной мускулатурой - изменение просвета зрачка, движения глаз, напряжение аккомодации. В задних холмах расположены центры, регулирующие движения ушных раковин, на­тяжение барабанной перепонки, перемещение слуховых косточек. Средний мозг также участвует в регуляции тонуса скелетной мускулатуры.

Мозжечокимеет развитые боковые доли (полушария), покрытые корой, и червь. Мозжечок связан со всеми отделами нервной системы, имеющими отношение к управлению движениями - с передним моз­гом, стволом мозга и вестибулярным аппаратом. Он обеспечивает координацию движений.

Продолговатый мозг. В нем по бокам обособляются пучки нерв­ных волокон, идущих к мозжечку, а на нижней поверхности - продол­говатые валики, получившие название пирамид.

От основания мозга отходит 12 пар черепно-мозговых нервов.

В процессе филогенеза развитие нервной системы проходит ряд основных этапов:

1-й этап – сетевидная нервная система.

На этом этапе нервная система, состоит из нервных клеток, многочислен­ные отростки которых соединяются друг с другом в разных направлениях, образуя сеть, диффузно пронизывающую все тело животного.

При раздражении любой точки тела возбуждение разливается по всей нервной сети, и животное реагирует движением всего тела. Отражением этого этапа у человека является сетевидное строение интрамуральной нервной системы.

2-й этап – узловая нервная система. На этом этапе нервные клетки сближа­ются в отдельные скопления или группы, причем из скоп­лений клеточных тел получаются нервные узлы – центры, а из скоплений отростков – нервные стволы – нервы. Они соединяют узлы в двух направлениях: поперечном и продольном. Благодаря этому нервные импульсы, возникающие в какой-либо точке тела, не разливаются по все­му телу, а распространяются по попереч­ным стволам данного сегмента. Про­дольные стволы связывают нервные сегменты в одно целое.

На головном конце животного, кото­рый при движении вперед соприкасает­ся с различными предметами окружаю­щего мира, развиваются органы чувств, в связи с чем головные узлы развивают­ся сильнее остальных, являясь прообра­зом будущего головного мозга. Отражением этого этапа является сохра­нение у человека примитивных черт (разбросанность на периферии узлов и микроганглиев) в строении автономной нервной системы.

На этом этапе выделяют несколько типов развития нервной системы:

1) ортогональная НС;

2) соматогастрическая НС;

3) лестничная НС;

4) цепочечная НС;

5) разбросанноузлового типа.

3-й этап – трубчатая нервная система.

Такая ЦНС у хордовых (ланцетник) возникла в виде метамерно построенной нервной трубки с отходящими от нее сегментарными нервами ко всем сегментам тела, включая и аппарат движения – туловищный мозг. У позвоночных и человека туловищный мозг становится спинным. Так как большинство органов чувств возникает на том конце тела животного, который обращен в сторону движения, то для восприятия поступающих через них внешних раздражений развивается передний конец туловищного мозга и образуется головной мозг, что совпада­ет с обособлением переднего конца тела в виде головы – цефализация.

На этом этапе выделяют такие типы эволюции нервной системы:

ФИЛОГЕНЕЗ НЕРВНОЙ СИСТЕМЫ У БЕСПОЗВОНОЧНЫХ

Говоря об эволюции нервной системы беспозвоночных, было бы упрощением представлять ее как линейный процесс. Факты, полученные в нейроонтогенетических исследованиях беспозвоночных, позволяют допустить множественное (полигенетическое) происхождение нервной ткани беспозвоноч­ных. Следовательно, эволюция нервной системы беспозвоночных могла идти широким фронтом от нескольких источников с изначальным многообразием.

Простейшие, будучи одноклеточными организмами, не имеют настоящей нервной системы. Хотя они обладают, несомненно, сенсорными спо­собностями. Из простейших нервные органоиды, вероятно, имеются только у наиболее сложно организованных, энергично пе­редвигающихся и быстро реагирующих, как инфузории, в виде нитей или волоконец. У губок нервные элементы с достоверностью не найдены, и реакции в их теле протека­ют крайне медленно (от 0,5 до 1 см в минуту).

У низших кишечнополостных, таких как полипы, нервная система имеет вид диффузной сети. Диффузная нервная сеть представляет собой скопление мультиполярных и биполярных нейронов, отростки которых могут перекрещиваться, прилегать друг к другу, и лишены функциональной дифференциации на аксоны и дендриты. Диффузная нервная сеть не разделена на центральный и периферический отделы. Концентрация нервных эле­ментов наблюдается в виде околоротового кольца, иногда – на щупальцах, всегда – на подошве. Передача раздражения достигает скорости 4–15 см в 1 с.

Нервная система трематод в связи с их паразитизмом упрощается, и только появление узелков в присосках несколько ее усложняет и специализирует. У ленточных червей число продольных стволов достигает 10–12, из них особенно значительны два боковых тяжа; кроме мозгового узла и узлов присосок имеются половые ганглии и нервы.

У немертин головной мозг образован парой дорсальных и парой вентральных ганглиев, связанных комиссурами. Здесь впервые вентральные ганглии го­ловного мозга дают два нерва к переднему отделу кишеч­ника – эквивалент стоматогастрической нервной системы.

Кольчатые черви имеют хорошо развитый головной мозг простомиального происхождения, состоящий из трех пар узлов: передней, средней и задней.

В головном мозге кольчецов дифференцируются стебельчатые или грибовид­ные тела – высшие ассоциативные центры, занимающие до 30 % (у афродиты) общего объема мозга. Ганглии одного сегмента у примитивных аннелид соединены между собой поперечными комиссурами, и это приводит к образованию лестничной нервной системы. В более продвинутых отрядах кольчатых червей наблюдается тенден­ция к сближению брюшных стволов вплоть до полного слияния ганглиев пра­вой и левой сторон и перехода от лестничной к цепочечной нервной системе.

Нервная система членистоногих по общему характеру строения принадлежит к тому же типу, что и нервная сис­тема кольчецов. В отличие от последней головной мозг здесь значительно сложнее. Головной мозг насекомых разде­лен на три части:

1) наибольший по размерам, более древний и сложный протоцеребрум (зрение);

2) позднее присоединившийся нервный центр сегментарного значения – дейтоцеребрум (обоняние и осязание);

3) позднее вошедший в состав головного мозга, тоже сегментарный центр – тритоцеребрум (симпатическая нервная система).

Эволюция нервной системы беспозвоночных идет не только по пути концентра­ции нервных элементов, но и в направлении усложнения структурных взаимоот­ношений в пределах ганглиев. Не случайно брюшную нервную цепочку сравнива­ют со спинным мозгом позвоночных животных. Как и в спинном мозгу, в ганглиях обнаруживается поверхностное расположение проводящих путей, дифференциа­ция нейропиля на моторную, чувствительную и ассоциативные области. Это сход­ство, являющееся примером параллелизма в эволюции тканевых структур, не исключает, однако, своеобразия анатомической организации. Так, например, рас­положение туловищного мозга кольчатых червей и членистоногих на брюшной стороне тела обусловило локализацию моторного нейропиля на дорсальной стороне ганглия, а не на вентральной, как это имеет место у позвоночных животных.

Процесс ганглионизации у беспозвоночных может привести к формированию нервной системы разбросанноузлового типа, которая встречается у моллюсков. Нервная система моллюсков представлена двумя типа­ми: нервными тяжами (у боконервных) и узлами (у осталь­ных классов).

Узловая система содержит 5 пар узлов:

I) це­ребральную, посылающую нервы к голове и органам чувств;

2) педальную, иннервирующую мышцу ноги;

3) плевраль­ную, дающую нервы к передней половине мантии;

4) пари­етальную, посылающую нервы к задней половине мантии и жабре;

5) висцеральную – к внутренним органам.

Среди головоногих лучше всего изучен осьминог. Его головной мозг содержит около 170 миллионов нейронов (у крупных рако­образных приблизительно 100 000) и состоит из 30 долей, многие из которых обладают собственными функциями. Больше половины нервной ткани мозга составляют зрительные доли. Они соединены с парой крупных глаз, наиболее развитых у беспозвоночных и соперничающих с глазами позвоночных.

Иглокожие, в связи со слабым развитием органов чувств, имеют низкоорганизованную нервную систему типа нерв­ных тяжей. Она в соответствии с общим строением иг­локожих состоит из нервного кольца и радиальных тяжей.

Высшая нервная деятельность узловой нервной системы (кольчецы, моллюски, членистоногие) никогда не подни­мается выше уровня инстинктивной деятельности и в этом отношении принципиально отличается от высшей нервной деятельности позвоночных, особенно млекопитающих. Ту­ловищный мозг членистых и позвоночных обнаруживает в своем гистологическом строении большое и даже детальное сходство независимо от принадлежности к тому или иному филогенетическому ряду, но в соответствии с относитель­ной высотой организации.

Прогрессивное развитие мозга у головоногих моллюсков и насекомых созда­ет предпосылку для возникновения своеобразной иерархии командных систем управления поведением. Низший уровень интеграции в сегментарных гангли­ях насекомых и в подглоточной массе мозга моллюсков служит основой для автономной деятельности и координации элементарных двигательных актов. В то же время мозг представляет собой следующий, более высокий уровень интеграции, где могут осуществляться межанализаторный синтез и оценка биологической значимости информации. На основе этих процессов формиру­ются нисходящие команды, обеспечивающие вариантность запуска нейронов сегментарных центров. Очевидно, взаимодействие двух уровней интеграции лежит в основе пластичности поведения высших беспозвоночных, включающе­го врожденные и приобретенные реакции.

Дата добавления: 2018-05-09 ; просмотров: 479 ;

Эволюция структуры и функции нервной системы происходила как в направлении развития отдельных ее элементов (нервных клеток), так и по линии формирования ее новых прогрессивных свойств в условиях взаимодействия с окружающей средой. Важнейшими процессами на этом пути являются централизация, специализация, цефализация и кортикализация не рвной системы.

Под централизацией понимают группирование нервных элементов в морфофункциональные конгломераты в стратегических пунктах тела. Уже на уровне гидроидов отмечается сгущение нейронов в области гипостома (функция питания) и подошвы (фиксация к субстрату). Переход к свободному передвижению у медузы приводит к формированию дистантных рецепторов и чувствительных краевых телец. У беспозвоночных централизация выражена еще более ярко – появляются нервные ганглии (узлы), ассоциативные и двигательные клетки с их отростками собираются в несколько пар продольных стволов, соединенных поперечными нервными тяжами. Формируются брюшная нервная цепочка и головные ганглии. Каждый нервный узел обеспечивает деятельность определенного сегмента тела и функционирует относительно автономно. Эволюционно молодые структуры, как правило, оказывают тормозное влияние на более древние.

Специализация – это подчиненность одних ганглиев тела другим, дальнейшее развитие специфичности нервных клеток, появление афферентных и эфферентных систем. Специализация нервных клеток сопровождалась появлением синапсов, обеспечивающих односторонее проведение нервных импульсов. На этом этапе возникают простейшие кльцевые структуры регуляции отдельных функций

Дальнейшее эволюционное развитие нервной системы шло по пути цефализации (греч. kерhаlе – голова) – подчинения задних отделов ЦНС головным. Возникший осевой градиент тела является продолжением наметившегося еще у кишечнополостных процесса сгущения нервных элементов на переднем конце тела и представляет решающий момент эволюции головного мозга. В итоге в головном мозге сформировались жизненно важные центры автоматической регуляции различных функций организма. Эти центры находятся между собой в сложных иерархических взаимоотношениях.

У млекопитающих цефализация дополняется кортикализацией (лат. соrtех – кора) – формированием и совершенствовани ем коры больших полушарий и мозолистого тела, соединяющего правое и левое полуш ария между собой. Так, у человека площадь коры головного мозга занимает более 90 % всей поверхности мозга, причем около 1/3 приходится на лобные доли. Если в стволе мозга и подкорковых узлах специализированные ганглии морфологически и функционально обособлены друг от друга, то кора больших полушарий в этом отношении обладает рядом уникальных свойств. Наиболее важ ными из них являются высокая структурная и функциональная пластичность и надежность. Кора больших полушарий содержит не только специфические проекционные (соматочувствительные, зрительные, слуховые), но и значительные по площади ассоциативные зоны. Последние служат для интеграции различных сенсорных влияний с прошлым опытом с целью формирования поведенческих актов.

Основные этапы филогенеза нервной системы

Нервная система в процессе филогенеза проходит ряд основных этапов (типов) – диффузный, узловой и трубчатый.

II этап – узловая нервная система, характерна для членистоногих. На этом этапе нервные клетки сближаются в отдельные скопления или группы, причем из скоплений клеточных тел получаются нервные узлы – центры, а из скоплений отростков – нервные стволы – нервы. При этом в каждой клетке число отростков уменьшается, и они получают определенное направление. Соответственно сегментарному строению тела, например у кольчатого червя, в каждом сегменте имеются сегментарные нервные узлы и нервные стволы. Последние соединяют узлы в двух направлениях: поперечные стволы связывают узлы данного сегмента, а продольные – узлы разных сегментов. Благодаря этому нервные импульсы, возникающие в какой-либо точке тела, не разливаются по всему телу, а распространяются по поперечным стволам в пределах данного сегмента. Продольные стволы связывают нервные сегменты в одно целое. На головном конце животного, который при движении вперед соприкасается с различными предметами окружающего мира, развиваю ся органы чувств, в связи с чем головные узлы развиваются сильнее остальных, являясь прообразом будущего головного мозга. Отражением этого этапа является сохранение примитивных черт в строении вегетативной нервной системы человека в виде разбросанности на периферии узлов и микроганглиев.

III этап – трубчатая нервная система – высший этап структурной и функциональной эволюции нервной системы (характерна для хордовых). Все позвоночные, начиная от самых примитивных форм (ланцетник) и заканчивая человеком, имеют ЦНС в виде нервной трубки, оканчивающейся в головном конце большой ганглиозной массой – головным мозгом. Описанные выше тенденции развития нервной системы – централизация, специализация, цефализация – получают дальнейшее развитие на этом этапе.

Филогенетические уровни структурно-функциональной организации ЦНС (по В.А. Карлову)

В клиническом аспекте выделяют пять филогенетических уровней структурно-функциональной организации ЦНС: спинальный, стволовой, подкорковый, кора головного мозга, вторая сигнальная система.

Спинальный уровень. Сегментарный спинальный аппарат представлен серым веществом и спинномозговыми узлами, в которых располагаются чувствительные нейроны. Сегментарный аппарат спинного мозга реализует простейшие спинальные рефлексы (безусловные, врож денные, видовые). При ограниченном повреждении сегментарного спинального аппарата развиваются изолированные повреждения в виде периферических параличей, расстройств поверхностной чувствительности и трофических нарушений.

Стволовой уровень. Мозговой ствол ( продолговатый мозг, мост, средний мозг) содержит сегментарный аппарат (двигательные и чувствительные ядра черепных нервов), специализированные структуры (нижняя и верхняя оливы, черная субстанция, красное ядро и др.), проводящие пути и ретикулярную формацию. Даже незначительные поражения мозгового ствола могут приводить к тяжелым последствиям. Под корковый уровень включает стриопаллидарную систему (чечевицеобразное и хвостатое ядра) и структуры, реализующие видовые безусловные рефлексы инстинктивного поведения (красное ядро и черная субстанция). Осно ными при поражении подкорковых ядер являются характерные расстройства движений в виде акинезии или, наоборот, избыточных движений – гиперкинезов.

Кора головного мозга – следующий филогенетический уровень ЦНС. Она является базой при обретенных рефлексов. У человека практически вся произвольная моторика, включая прямохождение, является приобретенной и сугубо индивидуальной. В коре наружной поверхности больших полушарий головного мозга выделяют две функционально различные части: сенсорную (теменная, затылочная и височная кора) и моторную (лобная кора). Сенсорная часть представлена корковыми отделами кожно-кинестетического, зрительного и слухового анализаторов, при ее поражении нарушаются соответствующие сенсорные функции. Моторная часть контролирует произвольные движения противоположной половины тела, а также обеспечивает высшие психические функции.

Высшим уровнем филогенетического развития является вторая сигнальная система – речь, представленная в ряде областей левого полушария. Благодаря речевой функции стало возможным использование всего социального опыта, накопленного человечеством.

Поможем написать любую работу на аналогичную тему

Что такое филогенез нервной системы

Нервная система всех беспозвоночных (черви, моллюски, иглокожие, членистоногие—рис. 1, 2) построена довольно просто—по диффузному или диффузно-ганглионарному типу, т. е. клетки рассеяны по всему орга­низму или часть их скапливается в виде ганглиев (подглоточный, надглоточный и др.). Постепенно происходит специ­ализация нервных клеток, узлов и нервных центров—они разделяются на афферентные, эфферентные и вегетативные.С появлением синапсов возможно только одностороннее проведение нервных импульсов.

Рис. 1. Строение червя. 1 — нервная система; 2 — пищевод.


Афферентная система претерпевает дальнейшее усовершенствование: из нее образуются пять высокоспециализированных органов чувств—осязание, вкус, обоняние, зрение и слух. Нервная система хордовых (рыбы, амфибии, рептилии, птицы, млекопитающие — рис. 3, 4, 5) приобретает сложное строение и состоит из головного и спинного мозга и связанных с ними периферических нервов. Головной мозг подразделяется на несколько отделов — продолговатый мозг, мозжечок, средний мозг, промежуточный мозг и подкорковые узлы. Филогенез нервной системы у хордовых — это прогрессирующее развитие конечного (или большого) мозга, подкорковых узлов и особенно полушарий большого мозга. В кору теменной, височной и затылочной долей большого мозга перемещаются из среднего мозга центры общей чувствительности, вкуса, обоняния, слуха, зрения; в коре лобной Доли формируется двигательный анализатор.

Рис. 2. Строение насекомого. 1— подглоточный узел.


Развитие нервной системы в значительной степени подчинено задаче обеспечения необходимой для каждого вида моторной активности и те структуры, которые осуществляют эту функцию, тоже усложняются. На всех этапах эволюции способность к совершенным движениям имела большое значение. В условиях борьбы за существование медлительные и неловкие организмы погибали скорее.

Рис. 3. Нервная система рыбы. 1 — mesencephalon; 2 — cerebellum; 3 — medulla oblongata; 4 — hypophysis; 5 — diencephalon; 6 — corpus striatum.


У рыб, амфибии, птиц и даже низших млекопитающих подкорковые узлы, мозжечок и ствол являются высшими центрами всех локомоций, как произвольных, так и непроизвольных. Вся информация, имеющая отношение к регуляции движений, концентрируется поэтому в полосатом теле, таламусе и среднем мозге, откуда по нисходящим путям стриопаллидарной системы и мозжечка импульсы направляются в спинной мозг и затем к мышцам.

Рис. 4. Нервная система птицы. 1 — pallium; 2 — cerebellum; 3 — medulla oblongata; 4 — hypophysis; 5 — mesencephalon; 6 — corpus striatum.


При поражении прецентральной извилины у птиц и низших млекопитающих (голубь, кролик и др.) параличи или парезы не развиваются и отмечается только снижение общего тонуса и активности. У высших обезьян и особенно у человека центр произвольных движений переместился в кору лобной доли прежде всего в прецентральную извилину.

Рис. 5. Нервная система млекопитающего. 1 — pallium; 2 — cerebellum; 3 — medulla oblongata; 4 — pons; 5 — crura cerebri; 6 — hypophysis; 7 — lobus olfactorius.

Статья на тему Филогенез нервной системы

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.