Где находится нервный центр поддержания гомеостаза ответ

Постоянство внутренней среды организма

Обмен веществ в каждом организме осуществляется непрерывно. Одни вещества расходуются и выводятся из организма, другие поступают извне. Мозг, а вместе с ним и железы внутренней секреции автоматически поддерживают равновесие между поступлением и использованием веществ. Обеспечивая колебание жизненно важных показателей в допустимых пределах. Благодаря этому поддерживается гомеостаз, относительное постоянство внутренней среды:

  • кислотно-щелочное равновесие;
  • количество минеральных солей;
  • количество кислорода и углекислого газа;
  • количество продуктов распада и питательных веществ, в крови – величина артериального давления и температура тела.

Согласованность работы всех органов

Строение головного мозга

Отделы головного мозга. Через затылочное отверстие спинной мозг сообщается с головным. Четкой границы перехода нет. Головной мозг состоит из следующих отделов:

  • продолговатый мозг;
  • мозжечок;
  • мост;
  • средний мозг;
  • промежуточный мозг;
  • большие полушария головного мозга.

Последние часто называют полушария большого мозга, в отличие от полушарий мозжечка, малого мозга. Продолговатый мозг, мост и мозжечок относят к заднему мозгу, а промежуточный мозг и большой – к переднему мозгу. На уровне моста и продолговатого мозга проходит единый ствол мозга, но на уровне среднего мозга в нем возникают две симметричные половины. В переднем мозге они разобщены и сообщаются между собой перемычками. Центральный канал спинного мозга продолжается и в головном. Между продолговатым мозгом и мозжечком образуется IY желудочек, а между симметричными половинами промежуточного мозга III желудочек. В левой половине большого мозга расположен I желудочек, в правой – II желудочек.

Продолговатый мозг по своему строению и функциям сходен со спинным мозгом, с которым имеет непосредственную нижнюю границу. В продолговатом мозге находятся ядра блуждающего нерва, иннервирующего сердце и другие внутренние органы. В ядрах серого вещества продолговатого мозга находятся центры защитных рефлексов – мигательного и рвотного, рефлексов кашля и чихания, некоторых других. Другая группа центров связана с питанием и дыханием – это центры вдоха и выдоха, слюноотделения, глотания и отделения желудочного сока. Через продолговатый мозг проходят пути, соединяющие спинной мозг с мозжечком, средним мозгом и другими его отделами, до коры больших полушарий включительно. Функции продолговатого мозга такие же, как у спинного, - рефлекторные и проводящие.

Мост тоже состоит из серого и белого вещества. Серое вещество представлено отдельными ядрами. В них находятся центры, связанные с движением глазных яблок, мимикой. Нервные пути, составляющие основную массу белого вещества моста, связывают полушария мозжечка и спинной мозг с другими отделами головного мозга. Через мост проходят в кору слуховые пути.

Мозжечок состоит из средней, наиболее древней части и полушарий, имеющих кору. Он находится над продолговатым мозгом и связан со всеми отделами мозга. Особенно тесна связь мозжечка со средним мозгом. Мозжечок осуществляет координацию движений, делает их плавными, точными и соразмеренными, устраняет лишние движения, например возникшие в силу инерции. Это бывает, когда сопротивление неожиданно исчезает или водитель транспорта меняет скорость. При этом нам приходится прилагать усилия, чтобы устоять на ногах и не потерять равновесие. Траектория любого движения от исходного положения до цели контролируется мозжечком.

Средний мозг - отдел мозга, где находятся центры, обеспечивающие четкость зрения и слуха. Они регулируют величину зрачка и кривизну хрусталика. В среднем мозге содержится ряд ядер, регулирующих мышечный тонус. Благодаря им поддерживается устойчивость тела при стоянии, ходьбе, беге, изменении позы. В среднем мозге находятся центры ориентировочного рефлекса. Средний мозг нередко сравнивают с ручками управления качеством изображения на телевизионном экране. Чтобы что-то увидеть, надо настроить телевизор. Нечто подобное совершает средний мозг. Так, он обеспечивает настройку оптики глаза на нужную резкость и контрастность изображения. В случае отклонения от устойчивого положения тела мозг восстанавливает нормальное положение.

Передний мозг состоит из двух отделов: промежуточного мозга и больших полушарий головного мозга. Это самый большой отдел головного мозга, состоящий из правой и левой половин.

Промежуточный мозг состоит из трех частей – верхней, центральной и нижней. Центральная часть промежуточного мозга называется таламусом. Он состоит из двух парных образований, разделенных III желудочком мозга. Сюда стекается вся информация от органов чувств. Здесь происходит первая оценка ее значимости. Благодаря таламусу только важная информация поступает в кору большого мозга. Нижняя часть промежуточного мозга называется гипоталамусом. Он регулирует обмен веществ и энергии. В его ядрах имеются центры жажды и ее утоления, голода и насыщения. Гипоталамус контролирует удовлетворение потребностей и поддержание постоянства внутренней среды – гомеостаза. С участием промежуточного мозга и других отделов головного мозга осуществляются многие циклические движения: ходьба, ьег, прыжки, плавание, а также сохранение позы между движениями.

Большие полушария головного мозга разделены глубокой переднезадней щелью на левую и правую части. В ее глубине находится соединяющая их перемычка из белого вещества – мозолистое тело. Поверхность большого мозга образована корой, состоящей из серого вещества. Там сосредоточены тела нейронов. Они располагаются столбиками, образуя несколько слоев. Под корой находится белок вещество, состоящее из массы нервных волокон, связывающих нейроны коры между собой и с нижележащими отделами мозга. В толще полушарий среди белого вещества находятся в виде ядер островки серого вещества, образующие подкорковые центры. Поверхность полушарий собрана в складки. Выступающие части поверхности образуют извилины, в углубления - борозды. Они намного увеличивают поверхность коры больших полушарий. Самые глубокие борозды делят каждое полушарие на четыре доли:

  • лобную,
  • теменную,
  • затылочную,
  • височную.

Они примыкают к соответствующим костям и потому носят их название. Центральная борозда отделяет лобную долю от теменной, боковая – височную долю от лобной и теменной. В нейронах коры больших полушарий происходит анализ нервных импульсов, поступающих от органов чувств. Он осуществляется в чувствительных зонах, которые занимают среднюю и заднюю части головного мозга. Так, в затылочной доле сосредоточены нейроны зрительной зоны, в височной – слуховой. В теменной зоне, позади центральной извилины, находится зона кожно-мышечной чувствительности. Обонятельные и вкусовые зоны находятся на внутренней поверхности височных долей. Центры, регулирующие активное поведение, находятся в передних частях головного мозга, в лобных долях коры больших полушарий. Двигательная зона расположена впереди центральной извилины. Правое полушарие управляет органами левой части туловища и получает информацию от пространства слева. Левое полушарие регулирует работу органов правой части туловища и воспринимает информацию от пространства справа. Основная особенность большого мозга человека заключается в том, что правое и левое полушария функционально различны. В левом полушарии, как правило, у правшей находятся центры речи. Здесь происходит анализ обстановки и связанных с ним действий по отдельным параметрам, вырабатываются обобщения, строятся логические выводы. Правое полушарие воспринимает обстановку в целом. Здесь возникают так называемые интуитивные решения. В правом полушарии происходит распознавание образов и мелодий, запоминание лиц. В полушариях большого мозга образуются временные связи между сигнальными, условно-рефлекторными раздражителями и жизненно значимыми событиями. Благодаря этим связям накапливается индивидуальный опыт. Старая и новая кора большого мозга. Старая кора имеется уже у рептилий. У млекопитающих ее появление связано с развитием обоняния. Она как пояс окружает основание мозга и включает подкорковые ядра. Здесь сосредоточены центры, связанные со сложными инстинктами, эмоциями, памятью. Старая кора дает возможность организму различать благоприятные и неблагоприятные события и реагировать на них испугом, радостью, агрессией, тревогой. Здесь в памяти хранится информация о пережитых событиях. Это дает возможность при сходных обстоятельствах предпринять действия, которые приведут к успеху. В отличие от новой коры, старая кора не может точно распознавать объекты, оценивать вероятность будущих событий и планировать ответы на их появление. В новую кору поступает информация от внутренних органов и от органов чувств. В лобных долях из многочисленных потребностей отбирается самая важная и формируется цель деятельности, план достижения цели на основании анализа обстановки и прошлого опыта. Здесь с участием речевых центров вырабатываются сценарии будущего поведения. Они реализуются другими отделами головного и спинного мозга, связанными с исполнительными органами. Сведения о достигнутых результатах приходят по обратным связям в лобные доли полушарий и, в зависимости от полученного эффекта, деятельность прекращается или продолжается в измененном виде.

Соматическая нервная система

Соматическая нервная система регулирует работу поперечнополосатой мышечной ткани скелетных мышц. Высшим центром соматической нервной системы является кора больших полушарий. Сюда стекается вся информация от органов чувств к внутренней среде организма. Здесь изыскиваются способы удовлетворения потребностей. В лобных долях коры созревает план будущих действий, который реализуется соматической нервной системой. Цели человека много сложнее, чем цели животных, но и они в конечном счете сводятся к мышечному движению – будь то работа на станке, письмо, речевое общение или даже чтение (движение глаз, произнесение слов про себя). Приспособление к природной и социальной среде, связанное с изменением поведения, осуществляется соматической нервной системой.

Автономная нервная система

Вегетативная (автономная) нервная система имеет

  • центральную,
  • периферическую части.

Высшим органом автономной нервной системы считается гипоталамус. Он регулирует не только автономную нервную систему, но и эндокринные железы через гипофиз. Автономная нервная система подразделяется на два подотдела:

  • симпатический,
  • парасимпатический.

Симпатический отдел автономной нервной системы называют системой аварийных ситуаций, так как он активизируется всякий раз, когда организм находится в напряжении. Его высшие центры расположены в боковых столбах верхней и средней частей спинного мозга. От них идут нервы к нервным узлам, расположенным вдоль позвоночника. Это парные узлы нервного ствола. Кроме того, имеются и дополнительные узлы, например в области живота – солнечное сплетение, а также в некоторых других местах. Под влиянием симпатической иннервации сердце усиливает свою работу, повышается кровяное давление, увеличивается содержание сахара в крови, сосуды кожи сужаются, человек бледнеет. Органы пищеварения под действием симпатических нервов затормаживают свою деятельность.

Парасимпатический отдел автономной нервной системы. Высшие центры находятся в стволе головного мозга и в крестцовой части спинного мозга. Самый крупный из них – центр блуждающего нерва – находится в продолговатом мозге на дне IV желудочка. Блуждающий нерв идет параллельно нервному стволу и дает ответвления ко многим внутренним органам. Нервные узлы парасимпатической системы располагаются либо в самих органах, либо недалеко от них. Парасимпатическую систему называют системой отбоя. Она возвращает деятельность сердца в состояние покоя, уменьшает давление и содержание сахара в крови. Под ее влиянием дыхание становится более редким, но более глубоким, что позволяет избавиться от продуктов неполного окисления, оставшихся после напряженной работы. Блуждающий нерв расширяет кожные сосуды и активизирует органы пищеварения.

Взаимодействие симпатического и парасимпатического подотделов. Оба подотдела автономной нервной системы работают по принципу дополнительности. В состоянии ли покоя, в состоянии ли интенсивной работы находится человек, его внутренние органы и гладкие мышцы получают нервные импульсы, как от симпатического, так и от парасимпатического подотделов.


Располагается в черепной коробке в полости мозгового черепа. Масса около 1,5кг, объем 1500см 3 . От ГМ отходят 12 пар ч-м нервов. Сильнее всех развит конечный отдел - самое молодое образование ЦНС,представленное большими полушариями. По весу составляет 80% массы ГМ. Стволом мозга называются отделы ГМ, расположенные ближе к СМ: продолговатый, мост заднего мозга, мозжечок, средний, промежуточный. Это самая древняя часть ГМ. В отличие от СМ, у ГМ отсутствует разделение на сегменты, а серое вещество распределено виде ядер, образующих нервные центры. Полушария также покрыты слоем серого вещества, которое образует высший отдел ЦНС - кору ГМ.

В соответствии с выполняемыми функциями выделяют чувствительные и двигательные центры; центры вегетативных и психических функций.

Функции и строение отделов ГМ

1) Продоговатый мозг

Продолжение СМ. Спинномозговой канал в нем расширяется и образует 4 ый желудочек мозга. В сером веществе находятся чувствительные и двигательные ядра некоторых черепно-мозговых нервов. В случае его повреждения наступает немедленная смерть, из-за остановки дыхания или остановки сердца.

- проводящая функция: волокна белого вещества образует восходящие чувствительные и нисходящие двигательные проводящие пути.

- рефлекторная: тут расположены жизненно важные центры регуляции обмена веществ, пищеварения, дыхания, кровообращения (тонус сосудов, работа сердца), безусловных, защитных и вестибулярных рефлексов (поддержание положения тела в пространстве)

2) Задний мозг

Варолиев мост лежит перед продолговатым мозгом ввиде утолщенного валика. Его белое вещество образует нисходящие и восходящие пути. Серое вещество - ядра ч-м нервов и собственные ядра моста.

- проводящая: волокна белого вещества связывают вышележащие отделы ГМ с продолговатым и спинным мозгом.

- рефлекторная: здесь лежат центры безусловных рефлексов, регуляции жевательных и мимических мышц, движения глаз и тд.

Мозжечок располагается позади моста и прикрывает продолговатый мозг снизу. Состоит из 2х полушарий, соединенных червем. Серое в-во мозжечка располагается в глубине ввиде ядер и на его поверхности ввиде извилистой коры, слоем от 1-2,5мм. Белое вещество образует проводящие пути со средним мозгом, мостом, продолговатым и спинным мозгом.

- координация всех сложных движений

- сохранение равновесия тела в пространстве

- регуляция поз и мышечного тонуса

3) Средний мозг = ножки + четверохолмие.

Располагается между мостом и промежуточным мозгом. Полость представлена узким каналом - сильвиев водопровод, который сообщается с 3 им 4 ым желудочками мозга. Через средний мозг проходят все восходящие пути к коре БП и мозжечку; к спинному и продолговатому мозгу идут нисходящие пути.

- красное ядро - регуляция мышечного тонуса и рефлекторное поддержание тела при его движении.

- черная субстанция - регуляция сложных двигательных реакций, глотание, жевание, движение пальцев рук.

-бугры 4 х холмия: первичные слуховые центры (нижние). Ориентировочные реакции на световое раздражение осуществляют первичные зрительные центры (верхние)

4) Промежуточный мозг - гипо\эпи\мета\таламус

Таламус - 2зрительных бугра и коленчатые тела. Чувствительные импульсы от всех органов чувств, кроме обонятельных, идут в таламус, перерабатываются, получают соответствующую эмоциональную окраску, а затем идут к коре БП.

- подкорковый центр всех видов общей чувствительности: боль, зрение, слух.

- участвует в образовании эмоциональных реакций: гнев, печаль

Гипоталамус - подбугровая область - главный подкорковый центр регуляции всех жизненно важных функций. Через нервную ткань, при помощи желез внутренней секреции гипоталамус выполняет регуляторную функцию: в нейросекреторных клетках образуются нейросекреты: биологически активные вещества, поступающие в гипофиз. Вместе с они образуют единую гипоталамо-гипофизарную систему, работающую по принципу обратной связи.


- регуляция обмена веществ,

- обеспечение поддержания гомеостаза

- центр деятельности желез внутренней секреции

- регуляция поддержания t тела и потоотделения

- обеспечения защитных реакций: голос, страх

- участие в смене сна и бодрствования

- регуляция мотивированного поведения

Эпиталамус отвечает за синхронизацию биоритмов с ритмами внешней среды.

Метаталамус содержит подкорковые центры зрения и слуха.

5) Конечный передний мозг

Самый молодой и крупный отдел ЦНС по размеру и количеству нервных клеток. В его состав входят кора БП и полосатые тела\ подкорковые ядра, расположенные внутри БП, между лобными долями и промежуточным мозгом.

- координация двигательной активности

- регуляция инстинктивного поведения


Слой серого вещества, покрывает поверхность БП слоем от 1,5-4мм. Большая площадь поверхности (1700-2000см 2 ) достигается засчет борозд и извилин. Три самые глубокие борозды ( центральная, боковая, теменно-затылочная) делят кору на 4 различных по функциям доли.В кору поступают центростремительные импульсы от всех рецепторов организма. Каждому рецепторному аппарату соответствует свой участок коры, где происходит декодирование импульса в ощущения. КБП - материальная основа психической деятельности человека.

Затылочная доля - зрение

Височные доли - слух, запоминание увиденного и услышанного.

Теменная доля - понимание речи; температурная, болевая, тактильная чувствительность.

Лобная доля - письмо, речь, мышление. Передний отдел участвует в формировании личностных качеств, творческих процессов и влечений.

Лимбическая зона контролирует деятельность внутренних органов. Её образуют 2 коры: древняя и новая, + подкорковые структуры.

Функции лимбической зоны:

- врожденные поведенческие акты

- регуляция вегетативных функций


Под корой находится белое вещество БП, которое образует мозолистое тело. Оно состоит из нервных волокон, связывающих КБП с нижерасположенными отделами ЦНС; отдельные участки в пределах 1 ого полушария; симметричные части обоих полушарий.

Для человеческого мозга характерна функциональная асимметрия полушарий.

Левое - абстрактно-логическое мышление. Там лежат центры речи. Правши

Правое - образное мышление, творческие процессы, способность к музыке. Левши.

Таким образом, БПГМ - высший отдел ЦНС, координирующий реакции всех внутренних органов.


ГОМЕОСТАЗ, гомеостазис (homeostasis; греч. homoios подобный, тот же самый + stasis состояние, неподвижность),— относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т. д.) организма человека и животных. Регуляторные механизмы, поддерживающие физиологическое состояние или свойства клеток, органов и систем целостного организма на оптимальном уровне, называются гомеостатическими.

Само представление о гомеостазе не соответствует концепции устойчивого (неколеблющегося) равновесия в организме — принцип равновесия не приложим к сложным физиологическим и биохимическим процессам, протекающим в живых системах. Неправильно также противопоставление гомеостаза ритмическим колебаниям во внутренней среде (биологические ритмы). Гомеостаз в широком понимании охватывает вопросы циклического и фазового течения реакций, компенсации (компенсаторные процессы), регулирования и саморегулирования физиологических функций (Саморегуляция физиологических функций), динамику взаимозависимости нервных, гуморальных и других компонентов регуляторного процесса. Границы гомеостаза могут быть жесткими и пластичными, меняться в зависимости от индивидуальных возрастных, половых, социальных, профессиональных и иных условий.

Особое значение для жизнедеятельности организма имеет постоянство состава крови — жидкой основы организма (fluid matrix), по выражению У. Кеннона. Хорошо известна устойчивость ее активной реакции (pH), осмотического давления, соотношения электролитов (натрия, кальция, хлора, магния, фосфора), содержания глюкозы, числа форменных элементов и т. д. Так, например, pH крови, как правило, не выходит за пределы 7,35—7,47. Даже резкие расстройства кислотно-щелочного обмена с патологическим накоплением кислот в тканевой жидкости, напр, при диабетическом ацидозе, очень мало влияют на активную реакцию крови (кислотно-щелочное равновесие). Несмотря на то, что осмотическое давление крови и тканевой жидкости подвергается непрерывным колебаниям вследствие постоянного поступления осмотически активных продуктов межуточного обмена, оно сохраняется на определенном уровне и изменяется только при некоторых выраженных патологических состояниях (осмотическое давление). Сохранение постоянства осмотического давления имеет первостепенное значение для водного обмена и поддержания ионного равновесия в организме (водно-солевой обмен). Наибольшим постоянством отличается концентрация ионов натрия во внутренней среде. Содержание других электролитов колеблется также в узких границах. Наличие большого количества осморецепторов в тканях и органах, в том числе в центральных нервных образованиях (гипоталамусе, гиппокампе), и координированной системы регуляторов водного обмена и ионного состава позволяет организму быстро устранять сдвиги в осмотическом давлении крови, происходящие, например, при введении воды в организм.

Несмотря на то, что кровь представляет общую внутреннюю среду организма, клетки органов и тканей непосредственно не соприкасаются с ней. В многоклеточных организмах каждый орган имеет свою собственную внутреннюю среду (микросреду), отвечающую его структурным и функциональным особенностям, и нормальное состояние органов зависит от химического состава, физико-химических, биологических, и других свойств этой микросреды. Ее гомеостаз обусловлен функциональным состоянием гистогематических барьеров (барьерные функции) и их проницаемостью в направлениях кровь -> тканевая жидкость, тканевая жидкость -> кровь.

Особо важное значение имеет постоянство внутренней среды для деятельности центральной нервной системы: даже незначительные химические и физико-химических сдвиги, возникающие в цереброспинальной жидкости, глии и околоклеточных пространствах, могут вызвать резкое нарушение течения жизненных процессов в отдельных нейронах или в их ансамблях (гематоэнцефалический барьер). Сложной гомеостатической системой, включающей различные нейрогуморальные, биохимические, гемодинамические и другие механизмы регуляции, является система обеспечения оптимального уровня артериального давления. При этом верхний предел уровня АД определяется функциональными возможностями барорецепторов сосудистой системы тела (ангиоцепторы), а нижний предел — потребностями организма в кровоснабжении.

К наиболее совершенным гомеостатическим механизмам в организме высших животных и человека относятся процессы терморегуляции; у гомойотермных животных колебания температуры во внутренних отделах тела при самых резких изменениях температуры в окружающей среде не превышают десятых долей градуса.

Различные исследователи по-разному объясняют механизмы общебиологического характера, лежащие в основе гомеостаза. Так, У. Кеннон особое значение придавал в. н. с., Л. А. Орбели одним из ведущих факторов гомеостаза считал адаптационно-трофическую функцию симпатической нервной системы. Организующая роль нервного аппарата (принцип нервизма) лежит в основе широко известных представлений о сущности принципов гомеостаза (И. М. Сеченов, И. П. Павлов, А. Д. Сперанский и др.). Однако ни принцип доминанты (А. А. Ухтомский), ни теория барьерных функций (Л. С. Штерн), ни общий адаптационный синдром (Г. Селье), ни теория функциональных систем (П. К. Анохин), ни гипоталамическое регулирование гомеостаза (Н. И. Гращенков) и многие другие теории не позволяют полностью решить проблему гомеостаза.

Для оценки состояния гомеостатических механизмов в физиологическом эксперименте и в клин, практике применяются разнообразные дозированные функциональные пробы (холодовая, тепловая, адреналиновая, инсулиновая, мезатоновая и др.) с определением в крови и моче соотношения биологически активных веществ (гормонов, медиаторов, метаболитов) и т.д.

Биофизические механизмы гомеостаза

С точки зрения химической биофизики гомеостаз — это состояние, при которомром все процессы, ответственные за энергетические превращения в организме, находятся в динамическом равновесии. Это состояние обладает наибольшей устойчивостью и соответствует физиологическому оптимуму. В соответствии с представлениями термодинамики организм и клетка могут существовать и приспосабливаться к таким условиям среды, при которых в биол, системе возможно установление стационарного течения физико-химических процессов, т. е. гомеостаза. Основная роль в установлении гомеостаза принадлежит в первую очередь клеточным мембранным системам, которые ответственны за биоэнергетические процессы и регулируют скорость поступления и выделения веществ клетками (мембраны биологические).

С этих позиций основными причинами нарушения являются необычные для нормальной жизнедеятельности неферментативные реакции, протекающие в мембранах; в большинстве случаев это цепные реакции окисления с участием свободных радикалов, возникающие в фосфолипидах клеток. Эти реакции ведут к повреждению структурных элементов клеток и нарушению функции регулирования (радикалы, цепные реакции). К факторам, являющимся причиной нарушения гомеостаза, относятся также агенты, вызывающие радикалообразование,— ионизирующие излучения, инфекционные токсины, некоторые продукты питания, никотин, а также недостаток витаминов и т. д.

Одним из основных факторов, стабилизирующих гомеостатическое состояние и функции мембран, являются биоантиокислители, которые сдерживают развитие окислительных радикальных реакций (антиокислители).

Возрастные особенности гомеостаза у детей

Постоянство внутренней среды организма и относительная устойчивость физико-химических показателей в детском возрасте обеспечиваются при выраженном преобладании анаболических процессов обмена над катаболическими. Это является непременным условием роста и отличает детский организм от организма взрослых, у которых интенсивность метаболических процессов находится в состоянии динамического равновесия. В связи с этим нейроэндокринная регуляция гомеостаза детского организма оказывается более напряженной, чем у взрослых. Каждый возрастной период характеризуется специфическими особенностями механизмов гомеостаза и их регуляции. Поэтому у детей значительно чаще, чем у взрослых встречаются тяжелые нарушения гомеостаза, нередко угрожающие жизни. Эти нарушения чаще всего связаны с незрелостью гомеостатических функций почек, с расстройствами функций желудочно-кишечного тракта или дыхательной функции легких (дыхание).

Рост ребенка, выражающийся в увеличении массы его клеток, сопровождается отчетливыми изменениями распределения жидкости в организме (водно-солевой обмен). Абсолютное увеличение объема внеклеточной жидкости отстает от темпов общего нарастания веса, поэтому относительный объем внутренней среды, выраженный в процентах от веса тела, с возрастом уменьшается. Эта зависимость особенно ярко выражена на первом году после рождения. У детей более старших возрастов темпы изменений относительного объема внеклеточной жидкости уменьшаются. Система регуляции постоянства объема жидкости (волюморегуляция) обеспечивает компенсацию отклонений в водном балансе в достаточно узких пределах. Высокая степень гидратации тканей у новорожденных и детей раннего возраста определяет значительно более высокую, чем у взрослых, потребность ребенка в воде (в расчете на единицу массы тела). Потери воды или ее ограничение быстро ведут к развитию дегидратации за счет внеклеточного сектора, т. е. внутренней среды. При этом почки — главные исполнительные органы в системе волюморегуляции — не обеспечивают экономии воды. Лимитирующим фактором регуляции является незрелость канальцевой системы почек. Важнейшая особенность нейроэндокринного контроля гомеостаза у новорожденных и детей раннего возраста заключается в относительно высокой секреции и почечной экскреции альдостерона, что оказывает прямое влияние на состояние гидратации тканей и функцию почечных канальцев.

Регуляция осмотического давления плазмы крови и внеклеточной жидкости у детей также ограничена. Осмомолярность внутренней среды колеблется в более широком диапазоне (+ 50 мосм/л), чем у взрослых (+ 6 мосм/л). Это связано с большей величиной поверхности тела на 1 кг веса и, следовательно, с более существенными потерями воды при дыхании, а также с незрелостью почечных механизмов концентрации мочи у детей. Нарушения гомеостаза, проявляющиеся гиперосмосом, особенно часто встречаются у детей периода новорожденности и первых месяцев жизни; в более старших возрастах начинает преобладать гипоосмос, связанный главным образом с желудочно-кишечным заболеванием или болезнями почек. Менее изучена ионная регуляция гомеостаза, тесно связанная с деятельностью почек и характером питания.

Ранее считалось, что основным фактором, определяющим величину осмотического давления внеклеточной жидкости, является концентрация натрия, однако более поздние исследования показали, что тесной корреляции между содержанием натрия в плазме крови и величиной общего осмотического давления при патологии не существует. Исключение составляет плазматическая гипертония. Следовательно, проведение гомеостатической терапии путем введения глюкозосолевых растворов требует контроля не только за содержанием натрия в сыворотке или плазме крови, но и за изменениями общей осмомолярности внеклеточной жидкости. Большое значение в поддержании общего осмотического давления во внутренней среде имеет концентрация сахара и мочевины. Содержание этих осмотически активных веществ и их влияние на водно-солевой обмен при многих патологических состояниях могут резко возрастать. Поэтому при любых нарушениях гомеостаза необходимо определять концентрацию сахара и мочевины. В силу вышесказанного у детей раннего возраста при нарушении водно-солевого и белкового режимов может развиваться состояние скрытого гипер- или гипоосмоса, гиперазотемии (Э. Керпель-Фрониуш, 1964).

Перестройка нейроэндокринной системы в пубертатном периоде также сопряжена с изменениями гомеостаза. Однако функции исполнительных органов (почки, легкие) достигают в этом возрасте максимальной степени зрелости, поэтому тяжелые синдромы или болезни гомеостаза встречаются редко, чаще же речь идет о компенсированных сдвигах в обмене веществ, которые можно выявить лишь при биохимическом исследовании крови. В клинике для характеристики гомеостаза у детей необходимо исследовать следующие показатели: гематокрит, общее осмотическое давление, содержание натрия, калия, сахара, бикарбонатов и мочевины в крови, а также pH крови, pO2 и pCO2.

Особенности гомеостаза в пожилом и старческом возрасте

Один и тот же уровень гомеостатических величин в различные возрастные периоды поддерживается за счет различных сдвигов в системах их регулирования. Например, постоянство уровня АД в молодом возрасте поддерживается за счет более высокого минутного сердечного выброса и низкого общего периферического сопротивления сосудов, а в пожилом и старческом — за счет более высокого общего периферического сопротивления и уменьшения величины минутного сердечного выброса. При старении организма постоянство важнейших физиологических функций поддерживается в условиях уменьшения надежности и сокращения возможного диапазона физиологических изменений гомеостаза. Сохранение относительного гомеостаза при существенных структурных, обменных и функциональных изменениях достигается тем, что одновременно происходит не только угасание, нарушение и деградация, но и развитие специфических приспособительных механизмов. За счет этого поддерживается неизменный уровень содержания сахара в крови, pH крови, осмотического давления, мембранного потенциала клеток и т. д.

Существенное значение в сохранении гомеостаза в процессе старения организма имеют изменения механизмов нейрогуморальной регуляции, увеличение чувствительности тканей к действию гормонов и медиаторов на фоне ослабления нервных влияний.

При старении организма существенно изменяется работа сердца, легочная вентиляция, газообмен, почечные функции, секреция пищеварительных желез, функция желез внутренней секреции, обмен веществ и др. Изменения эти могут быть охарактеризованы как гомеорезис — закономерная траектория (динамика) изменения интенсивности обмена и физиологических функций с возрастом во времени. Значение хода возрастных изменений очень важно для характеристики процесса старения человека, определения его биол, возраста.

В пожилом и старческом возрасте снижаются общие потенциальные возможности приспособительных механизмов. Поэтому в старости при повышенных нагрузках, стрессах и других ситуациях вероятность срыва адаптационных механизмов и нарушения гомеостаза увеличиваются. Такое уменьшение надежности механизмов гомеостаза является одной из важнейших предпосылок развития патологических нарушений в старости.

Гомеостаз. Физиология человека (видео)

Лекция: Мозг и гомеостаз (дыхание, терморегуляция, сон и т.д.)

Дубынин Вячеслав Альбертович — доктор биологических наук, профессор кафедры физиологии человека и животных Биологического факультета МГУ.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.