Хроматофильная субстанция в нервных клетках

С) преобладание в ядре гетерохроматина,

14. Выберите один неправильный ответ.

Для нейронов характерно:

B) содержание в теле и отростках хроматофильного вещества;

15. Выберите один неправильный ответ.

Секреторные нейроны характеризуются:

C) расположением хроматофильной субстанции вокруг ядра;

16. Выберите один неправильный ответ.

К макроглии относятся:

B) глиальные макрофаги;

17. Биполярные нейроциты входят в состав:

D) сетчатой оболочки глаза.

18. Хроматофильная субстанция-это:

B) скопление уплощенных цистерн гранулярной ЭПС и свободных полисом;

19. Нейрофибриллы на электроннограммах представлены:

C) микротрубочками диаметром 20-30нм и микрофиламентами толщиной 6-10нм;

20. Классификация нейронов: Морфолог. Принципы, лежащие в основе классификации:

В) количество отростков,

21. Классификация нейронов: Физиолог. Принципы, лежащие в основе классификации:

Е) функция нейрона в рефлекторной дуге.

22. Класификация нейронов: Биохим. Принципы, лежащие в основе классификации:

А) химическая структура медиатора,

23.Типы нейронов: Рецепторные (чувствительные, афферентные) Функции: С) генерируют нервный импульс под влиянием воздействия внешней и внутренней среды,

24. Типы нейронов: Функции: Двигательные (эфферетные).

А) проводят нервный импульс к тканям рабочего органа,

25. Типы нейронов: Вставочные. Функции:

В) осуществляют связи между нейронами, переработку и анализ информации,

26. Виды нейронов: Униполярный. Морфологические признаки:

В) нервная клетка с одним отростком (нейритом),

27. Виды нейронов: Биполярный. Морфологические признаки:

А) нервная клетка с двумя отростками (дендритом, нейритом),

28. Типы нейронов: Мультиполярный. Морфологические признаки:

С) нервная клетка с множеством отростков (одним нейритом и большим числом дендритов),

29. Части нейрона: Тело нервной клетки (перикарион). Строение:

С) в нейроплазме обилие параллельно расположенных цистерн гранулярной эндоплазматической сети, множество свободных полисом, развиты аппарат Гольджи, агранулярная эндоплазматическая сеть лизосомы, митохондрии, пучки нейрофиламентов и нейротубул, осуществляет синтез белков, контролирует целостность нейрона.

30. Части нейрона: Конусовидное основание (аксональный холмик). Строение:

А) центральная часть богата нейрофиламентами и митохондриями, на периферии располагаются цистерны агранулярной эндоплазматической сети и аппарата Гольджи, свободные рибосомы и пучки микротрубочек, генерируют нервный импульс,

31. Части нейрона: Нейрит. Строение:

В) слабо ветвится, образует коллатерали, в нейроплазме преобладают нейрофиламенты над нейротубулами, содержит цистерны агранулярной ЭПС, мультивезикулярные тельца и окаймленные пузырьки, проводит импульс от тела клетки,

32. Части нейрона: Дендрит. Строение:

С) выражена разветвленность, в нейроплазме преобладают нейротубулы над нейрофиламентами, в местах ветвления располагаются цистерны гранулярной и агранулярной ЭПС, митохондрии и свободные рибосомы, проводит нервный импульс к телу нейрона.

33. Виды глиоцитов: Протоплазматические астроциты. Морфофункциональная хар:

С) располагаются в сером веществе мозга, имеют крупное ядро и множество сильно ветвящихся коротких отростков, оканчивающихся на сосудах, нейронах, других глиоцитах, цитоплазма содержит немногочисленные микрофибриллы, выполняют разграничительную, трофическую, опорную функции.

34. Виды глиоцитов: Волокнистые астроциты. Морфофункциональная хар:

А) располагаются преимущественно в белом веществе мозга, имеют многочисленные, длинные, слабо ветвящиеся отростки, в цитоплазме содержат многочисленные микрофибриллы, отростки оканчиваются на гемососуде и поверхности мозга, образуя глиальные пластинки, выполняют опорную функцию, участвуют в образовании гематоэнцефалического барьера,

35. Виды глиоцитов: Эпендимоциты. Морфофункциональная характеристика:

В) выстилают спинномозговой канал, желудочки мозга, могут иметь цилиндрическую или кубическую форму, на апикальной поверхности содержат реснички, от базальной части отходит длинный отросток, участвуют в образовании цереброспинальной жидкости, регулирует ее состав,

36. Виды глиоцитов: Олигодендроциты. Морфофункциональная характеристика:

С) локализуются в цнс в непосредственной близости к составным частям нейрона, имеют небольшие размеры и немногочисленные отростки, лишенные нейрофиламентов, выполняют опорную, трофи ческую,разграничительную функции, участвуют в образовании оболочек,нервных волокон и окончаний.

37. Обеспечивает гидролитические процессы.

А) Хроматофильная субстанция,

В) Плазмолемма нервной клетки,

D) Ни та, ни другая.

38. Синтезируют белки, необходимые для поддержания массы перикариона, отростков и окончаний нервной клетки.

А) Хроматофильная субстанция,

39. Характеризуется возбудимостью и способностью проводить возбуждение.

В) Плазмолемма нервной клетки,

40. Содержит скопления уплощенных, параллельно расположенных цистерн гранулярной эндоплазматической сети и свободных рибосом (полисом).

А) Хроматофильная субстанция,

41. Представлены базофильными глыбками и зернами перикариона и начальных участков дендритов.

В) Хроматофильная субстанция,

42. Имеет фибриллярные структуры перикариона и отростки нейрона, выявляемые при импрегнации солями серебра.

А) Нейрофибриллы,

43. Содержит аппарат, обеспечивающий высокий уровень синтеза белков, необходимых для поддержания массы тела и отростков нейрона.

В) Хроматофильная субстанция,

44. Содержит структуры, проводящий нервный импульс.

В) Хроматофильная субстанция,

D) Ни то, ни другое.

45. Осуществляет связи между нервными клетками, переработку и анализ информации.

А) Чувствительный нейроцит,

В) Двигательный нейроцит,

D) Ни тот, ни другой.

46. Генерирует нервный импульс под влиянием воздействий внешней и внутр. среды.

Часть вторая – клеточный состав нервной ткани, характеристика нервных и глиальных клеток.

Клеточный состав нервной ткани

Нейроны, или нейроциты, — специализированные клетки нервной системы, ответственные за получение, обработку и передачу сигнала (на: другие нейроны, мышечные или секреторные клетки). Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги — звенья цепи, из которой построена нервная система. В зависимости от функции в рефлекторной дуге различают три типа нейронов:

  • афферентные
  • ассоциативные
  • эфферентные

Афферентные (или рецепторные, чувствительные) нейроны воспринимают импульс, эфферентные (или двигательные) передают его на ткани рабочих органов, побуждая их к действию, а ассоциативные (или вставочные) осуществляют связь между нейронами.

Подавляющее большинство нейронов (99,9%) - ассоциативные.

Нейроны отличаются большим разнообразием форм и размеров. Например, диаметр тел клеток-зерен коры мозжечка 4—6 мкм, а гигантских пирамидных нейронов двигательной зоны коры большого мозга — 130—150 мкм. Нейроны состоят из тела (или перикариона) и отростков: одного аксона и различного числа ветвящихся дендритов. По количеству отростков различают три типа нейронов:


  • биполярные,
  • мультиполярные (большинство) и
  • униполярные нейроны.

Униполярные нейроны имеют только аксон (у высших животных и человека обычно не встречаются). Биполярные - имеют аксон и один дендрит. Мультиполярные нейроны (подавляющее большинство нейронов) имеют один аксон и много дендритов. Разновидностью биполярных нейронов является псевдо-униполярный нейрон, от тела которого отходит один общий вырост — отросток, разделяющийся затем на дендрит и аксон. Псевдоуниполярные нейроны присутствуют в спинальных ганглиях, биполярные — в органах чувств. Большинство нейронов - мультиполярные. Их формы чрезвычайно разнообразны. Аксон и его коллатерали оканчиваются, разветвляясь на несколько веточек, называемых телодендронами, последние заканчиваются терминальными утолщениями.

Трехмерная область, в которой ветвятся дендриты одного нейрона, называется дендритным полем нейрона.

Дендриты представляют собой истинные выпячивания тела клетки. Они содержат те же органеллы, что и тело клетки: глыбки хроматофильной субстанции (т.е. гранулярной эндоплазматической сети и полисом), митохондрии, большое количество нейротубул (или микротрубочек) и нейрофиламентов. За счет дендритов рецепторная поверхность нейрона увеличивается в 1000 и более раз.

Аксон — это отросток, по которому импульс передается от тела клетки. Он содержит митохондрии, нейротубулы и нейрофиламенты, а также гладкую эндоплазматическую сеть.

Подавляющее большинство нейронов человека содержит одно округлое светлое ядро, расположенное в центре клетки. Двуядерные и тем более многоядерные нейроны встречаются крайне редко.

Плазмолемма нейрона является возбудимой мембраной, т.е. обладает способностью генерировать и проводить импульс. Ее интегральными белками являются белки, функционирующие как ионно-избирательные каналы, и рецепторные белки, вызывающие реакции нейронов на специфические стимулы. В нейроне мембранный потенциал покоя равен —60 —70 мВ. Потенциал покоя создается за счет выведения Na+ из клетки. Большинство Na+- и К+-каналов при этом закрыты. Переход каналов из закрытого состояния в открытое регулируется мембранным потенциалом.

В результате поступления возбуждающего импульса на плазмолемме клетки происходит частичная деполяризация. Когда она достигает критического (порогового) уровня, натриевые каналы открываются, позволяя ионам Na+ войти в клетку. Деполяризация усиливается, и при этом открывается еще больше натриевых каналов. Калиевые каналы также открываются, но медленнее и на более продолжительный срок, что позволяет К+ выйти из клетки и восстановить потенциал до прежнего уровня. Через 1—2 мс (т.н. рефрактерный период) каналы возвращаются в нормальное состояние, и мембрана может вновь отвечать на стимулы.

Итак, распространение потенциала действия обусловлено вхождением в нейрон ионов Na+, которые могут деполяризовать соседний участок плазмолеммы, что в свою очередь создает потенциал действия на новом месте.

При окрашивании нервной ткани анилиновыми красителями в цитоплазме нейронов выявляется хроматофильная субстанция в виде базофильных глыбок и зерен различных размеров и форм (другие названия хроматофильной субстанции - тигроид, тельца Ниссля). Базофильные глыбки локализуются в перикарионах и дендритах нейронов, но никогда не обнаруживаются в аксонах и их конусовидных основаниях — аксональных холмиках. Базофилия глыбок объясняется высоким содержанием рибонуклеопротеидов. Каждая глыбка хроматофильной субстанции состоит из цистерн гранулярной эндоплазматической сети, свободных рибосом и полисом. Для поддержания целостности нейронов и выполнения ими функций нейронам требуется огромное количество белков. Для аксонов, не имеющих органелл белкового синтеза, характерен постоянный ток цитоплазмы от перикариона к терминалям со скоростью 1—3 мм в сутки.

Из элементов цитоскелета в цитоплазме нейронов присутствуют нейрофиламенты и нейротубулы. Пучки нейрофиламентов на препаратах, импрегнированных серебром, видны в виде нитей — нейрофибрилл. Нейрофибриллы образуют сеть в теле нейрона, а в отростках расположены параллельно. Нейротубулы и нейрофиламенты участвуют в поддержании формы клеток, росте отростков и аксональном транспорте.

Аксональный (точнее аксоплазматический) транспорт — это перемещение веществ от тела в отростки и от отростков в тело нейрона. Он направляется нейротубулами, а в транспорте участвуют белки — кинезин и динеин. Транспорт веществ от тела клетки в отростки называется прямым, или антероградным, транспорт веществ от отростков к телу — обратным, или ретроградным. Аксональный транспорт представлен двумя главными компонентами: быстрым компонентом (400—2000 мм в сутки) и медленным (1—2 мм в сутки). Обе транспортные системы присутствуют как в аксонах, так и в дендритах.


Антероградная быстрая система проводит мембранные структуры, включая компоненты мембраны, митохондрии, пузырьки, содержащие пептиды, предшественники нейромедиаторов и другие белки. Ретроградная быстрая система проводит использованные материалы для деградации в лизосомах, распределения и рециркуляции и, возможно, факторы роста нервов.

Нейротубулы — органеллы, ответственные за быстрый транспорт, который называется также нейротубулозависимым. Каждая нейротубула содержит несколько путей, вдоль которых движутся различные частички. АТФ и ионы Са2+ обеспечивают эти движения. На одной микротубуле пузырьки могут обгонять другие пузырьки, движущиеся в том же направлении. Два пузырька могут двигаться в противоположных направлениях одновременно по различным путям одной нейротубулы.

Медленный транспорт — это антероградная система, проводящая белки и другие вещества для обновления и поддержания аксоплазмы зрелых нейронов и обеспечения аксоплазмой роста аксонов и дендритов при развитии и регенерации.

Отдельной разновидностью нейронов являются секреторные нейроны. Способность синтезировать и секретировать биологически активные вещества, в частности нейромедиаторы, свойственна всем нейроцитам. Однако существуют нейроциты, специализированные преимущественно для выполнения этой функции, — секреторные нейроны, например клетки нейросекреторных ядер гипоталамической области головного мозга. В цитоплазме таких нейронов и в их аксонах находятся различной величины гранулы нейросекрета, содержащие белок, а в некоторых случаях липиды и полисахариды. Гранулы нейросекрета выводятся непосредственно в кровь (например, с помощью т.н. аксо-вазальных синапсов) или же в мозговую жидкость. Нейросекреты выполняют роль нейрорегуляторов, участвуя во взаимодействии нервной и гуморальной систем интеграции.

Нейроглия

Нейроны — это высокоспециализированные клетки, существующие и функционирующие в строго определенной среде. Такую среду им обеспечивает нейроглия. Нейроглия выполняет следующие функции: опорную, трофическую, разграничительную, поддержание постоянства среды вокруг нейронов, защитную, секреторную. Различают глию центральной и периферической нервной системы.

Клетки глии центральной нервной системы делятся на макроглию и микроглию.

Макроглия развивается из глиобластов нервной трубки и включает: эпендимоциты, астроциты и олигодендроглиоциты.


Эпендимоциты выстилают желудочки головного мозга и центральный канал спинного мозга. Эти клетки цилиндрической формы. Они образуют слой типа эпителия, носящий название эпендимы. Между соседними клетками эпендимы имеются щелевидные соединения и пояски сцепления, но плотные соединения отсутствуют, так что цереброспинальная жидкость может проникать между эпендимоцитами в нервную ткань. Большинство эпендимоцитов имеют подвижные реснички, вызывающие ток цереброспинальной жидкости. Базальная поверхность большинства эпендимоцитов ровная, но некоторые клетки имеют длинный отросток, идущий глубоко в нервную ткань. Такие клетки называются таницитами. Они многочисленны в дне III желудочка. Считается, что эти клетки передают информацию о составе цереброспинальной жидкости на первичную капиллярную сеть воротной системы гипофиза. Эпендимный эпителий сосудистых сплетений желудочков продуцирует цереброспинальную жидкость (ликвор).


Астроциты — клетки отростчатой формы, бедные органеллами. Они выполняют в основном опорную и трофическую функции. Различают два типа астроцитов - протоплазматические и волокнистые. Протоплазматические астроциты локализуются в сером веществе центральной нервной системы, а волокнистые астроциты - преимущественно в белом веществе.


Олигодендроциты – имеют более мелкие по сравнению с астроцитами и более интенсивно окрашивающиеся ядра. Их отростки немногочисленны. Олигодендроглиоциты присутствуют как в сером, так и в белом веществе. В сером веществе они локализуются вблизи перикарионов. В белом веществе их отростки образуют миелиновый слой в миелиновых нервных волокнах, причем, в противоположность аналогичным клеткам периферической нервной системы – нейролеммоцитам, один олигодендроглиоцит может участвовать в миелинизации сразу нескольких аксонов.

В развивающемся мозгу млекопитающих обнаруживается временная форма микроглии — амебоидная микроглия. Клетки амебоидной микроглии формируют выросты – филоподии и складки плазмолеммы. В их цитоплазме присутствуют многочисленные фаголизосомы и пластинчатые тельца. Амебоидные микроглиальные тельца отличаются высокой активностью лизосомальных ферментов. Активно фагоцитирующая амебоидная микроглия необходима в раннем постнатальном периоде, когда гематоэнцефалический барьер еще не вполне развит и вещества из крови легко попадают в центральную нервную систему. Считают также, что она способствует удалению обломков клеток, появляющихся в результате запрограммированной гибели избыточных нейронов и их отростков в процессе дифференцировки нервной системы. Полагают, что, созревая, амебоидные микроглиальные клетки превращаются в ветвистую микроглию.

Реактивная микроглия появляется после травмы в любой области мозга. Она не имеет ветвящихся отростков, как покоящаяся микроглия, не имеет псевдоподий и филоподий, как амебоидная микроглия. В цитоплазме клеток реактивной микроглии присутствуют плотные тельца, липидные включения, лизосомы. Есть данные о том, что реактивная микроглия формируется вследствие активации покоящейся микроглии при травмах центральной нервной системы.

Рассмотренные выше глиальные элементы относились к центральной нервной системе.

Глия периферической нервной системы в отличие от макроглии центральной нервной системы происходит из нервного гребня. К периферической нейроглии относятся: нейролеммоциты (или шванновские клетки) и глиоциты ганглиев (или мантийные глиоциты).

Нейролеммоциты Шванна формируют оболочки отростков нервных клеток в нервных волокнах периферической нервной системы. Мантийные глиоциты ганглиев окружают тела нейронов в нервных узлах и участвуют в обмене веществ этих нейронов.

1. Какие функции выполняют клетки микроглии?

· Генерируют нервный импульс.

· Защитную.

2. Каковы эмбриональные источники развития нервной ткани?

· Эктодерма.

3. Каков источник развития макроглии?

· Нейроэктодерма.

4. Каков источник развития клеток микроглии?

· Промоноциты красного костного мозга.

5. Какими органоидами образована хроматофильная субстанция в цитоплазме

· Диктиосомы комплекса Гольджи.

· Гладкая цитоплазматическая сеть.

· Гранулярная эндоплазматическая сеть.

6. Какими структурами образованы нейрофибриллы?

· Микротрубочками.

· Нейрофиламентами.

7. Какие морфологические типы нейронов наиболее распространены у

· Мультиполярные.

8. Какие органеллы участвуют в активном транспорте веществ по отросткам

· Микротрубочки.

· Нейрофиламенты.

9. Нервная клетка имеет 5 отростков. Укажите возможное число в ней аксонов и

· 4 дендрита и 1 аксон.

· 3 дендрита и 2 аксона.

· 2 дендрита и 3 аксона.

· 1 дендрит и 4 аксона.

10. При введении колхицина происходит разрушение цитоскелета. Что

произойдет при этом в цитоплазме нейронов?

· Исчезновение комплекса Гольджи.

· Исчезновение нейрофибрилл.

· Нарушение аксотока.

· Угнетение биосинтеза белка.

11. По аксону транспортируется все, КРОМЕ:

· Рибосом.

12. В аксоне присутствует все, КРОМЕ:

· Базофильного вещества (субстанции Ниссля).

13. Структурные компоненты нервной ткани:

· Нейроны.

· Нейроглия.

· Основное (аморфное) вещество.

14. Чем образовано базофильное вещество цитоплазмы нейрона?

· Скоплениями гранулярной цитоплазматической сети.

· Цистернами комплекса Гольджи.

· Каналами гладкой цитоплазматической сети.

15. Что относится к макроглии?

· Эпендимоциты.

· Астроциты.

· Олигодендроциты.

· Гигантские нейроны коры мозга.

16. Какую функцию выполняют астроциты?

· Барьерную.

· Разграничительную.

· Опорную.

· Генерируют нервные импульсы.

17. Какие глиоциты образуют пласт, напоминающий однослойный

· Эпендимоциты.

18. Где располагаются эпендимоциты?

· Выстилают желудочки головного мозга и центральный канал спинного мозга.

· Окружают крупные нейроны мозга.

· Сопровождают нервные волокна.

· Окружают кровеносные сосуды.

19. Где располагаются олигодендроциты?

· Вокруг перикарионов нейронов.

· Вокруг отростков нейронов.

· Выстилают желудочки и каналы мозга.

· Вокруг кровеносных сосудов мозга.

20. Какую функцию выполняет микроглия?

· Защитную.

· Участвует в фагоцитозе разрушенной нервной ткани.

21. Какие структуры нейрона участвуют в проведении нервного импульса?

· Цитолемма.

22. Укажите эмбриональные источники развития нервной ткани?

· Нервная трубка.

· Нервный гребень.

· Плакоды.

· Висцеральный листок спланхнотома.

23. Какие бывают нейроны по химической природе выделяемого

· Холинергические.

· Аминергические.

· ГАМКергические.

· Пептидергические.

24. Виды транспорта в отростках нейрона?

· Быстрый антероградный аксоновый.

· Медленный антероградный аксоновый.

· Ретроградный аксоновый.

· Дендритный.

25. Какие клетки секретируют спинномозговую жидкость (ликвор)?

· Эпендимоциты сосудистых сплетений желудочков мозга.

· Мотонейроны спинного мозга.

26. Каковы размеры нейронов человека?

· 4 - 130 мкм.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

12.1. Общие сведения

12.1.1. Функции клеток нервной ткани

12.1.1.1. Нейроны

I. Функции

Нервные клетки обладают 4-мя важнейшими свойствами.

б) Каждый вид нейронов настроен на восприятие строго определённых сигналов -

б) За счёт этого сигнал проходит большее или меньшее расстояние.

в) Так, определённые нейроны спинномозговых узлов с помощью своих отростков проводят сигналы


II. Способы передачи сигнала

Передача сигнала может происходить двумя способами.

12.1.1.2. Глия

12.1.2. Развитие нервной ткани

3. В процессе развития в перечисленных на схеме эмбриональных органах (нервной трубке, нервном гребешке и нейральных плакодах) образуются два типа бластных клеток . -

12.2. Нейроны

12.2.1. Подразделение по функции

12.2.1.1. Три типа нейронов

По функции нейроциты делятся на 3 вида:

Б. Эти сигналы передаются

б) Тела нейронов находятся всегда в ганглиях (т.е. вне центральной нервной системы) - в

т.е в спинном или головном мозгу (*) , где участвуют в замыкании центральных рефлекторных дуг,

б) Тела данных клеток находятся

(*) Правильно говорить: " в мозгу ", а не "в мозге".

12.2.1.2. Три типа проводящих путей

а) Отростки перечисленных нейронов могут образовывать проводящие пути, которые тоже делят на три вида.

б) Однако тип проводящих путей не всегда совпадает с типом образующих их нейронов.

б) Таким образом, в образовании этих путей принимают участие

б) В образовании этих путей участвуют

а) По форме и размерам нейроциты очень различны.

б) В нейроците выделяют тело ( перикарион ) и отростки.

12.2.2. Отростки нейронов

12.2.2.1. Дендриты и аксоны

Среди отростков нейронов различают дендриты и аксоны.

12.2.2.2. Подразделение нейронов по числу отростков

По общему количеству отростков нейроны и их предшественники делятся на несколько видов.

б) Таковыми являются

и кажется, будто клетка имеет всего один отросток,

Б. Следовательно, данные нейроны имеют

в) Большая длина дендрита обусловлена тем, что он должен обеспечивать проведение сигнала

б) Таковыми являются

12.2.3. Просмотр препаратов: общий вид нейронов

12.2.3.1. Мультиполярные нейроциты

а) На данном снимке видны нейроны


а) При данном методе окраски нейрон


12.2.3.2. Псевдоуниполярные нейроциты

б) Они окружены многочисленными мелкими глиальными клетками-сателлитами (2) .

в) Видны также нервные волокна (3) , образованные


Б. Отростки, отходящие от клетки, не видны.

б) Клетки-сателлиты (2) имеют


12.2.4. Цитоплазма нейроцитов

12.2.4.1. Специфические структуры цитоплазмы

а) Способность нейронов к возбуждению и его проведению связана с наличием в их плазмолемме систем транспорта ионов -

12.2.4.2. Базофильное вещество

б) Оно находится


в которой интенсивно происходит белковый синтез.

12.2.4.3. Нейрофибриллы

б) Они находятся также


12.2.4.4. Нейросекреторные гранулы



б) Поэтому, кроме тела нейрона, секреторные гранулы могут обнаруживаться

12.2.5. Дополнительные вопросы

12.2.5.1. Схема строения нейрона

2. а) Изображённая клетка имеет

б) Во всех отростках содержатся параллельно расположенные

3. В теле клетки показаны органеллы:

4. Видно также, что к нейрону подходят аксоны многих других нейронов, образуя

12.2.5.2. Транспорт веществ по отросткам нейронов

12.3. Нейроглия

Нейроглию подразделяют следующим образом.

12.3.1. Олигодендроглия и периферическая нейроглия

12.3.1.1. Виды и функциональная роль

а) У олигодендроглиоцитов отростки -

12.3.1.2. Препарат

б) При этом в поле зрения - часть тела псевдоуниполярного нейрона (1) - в том числе его ядро.

2. а) Клетки-сателлиты (2)


12.3.2.1. Виды и функциональная роль

б) Толщина и длина отростков зависит от типа астроглии.

12.3.2.2. Препарат

12.3.3. Эпендимная глия

12.3.3.1. Основные сведения

б) А. Эти клетки можно рас с матриват ь как разновидность эпителия ( п. 7.1.1 ).

Б. Однако, в отличие от других видов эпителия,

Б. Он заполнен жидкостью и выстлан эпендимой (2) .

а) Малое увеличение

б) Тем не менее, отсутствие между ними плотных контактов позволяет жидкости


12.3.3.2. Отростки клеток

б) А. Отростки имеются не у всех эпендимоцитов.
Б. Эпендимоциты с отростками называются таницитами .
В. Особенно многочисленны танициты в дне III желудочка.

в) По-видимому, отростки выполняют


12.4. Нервные волокна

12.4.1. Общие замечания

б) Сам же отросток нейрона, находящийся в составе волокна, называется

12.4.2. Безмиелиновые нервные волокна

12.4.2.1. Принцип строения


12.4.2.2. Просмотр препарата

I. Световая микроскопия

II. Электронная микроскопия

2. Под электронным микроскопом строение каждого из них соответствует вышеприведённому описанию:

12.4.3. Миелиновые нервные волокна

12.4.3.1. Принцип строения

I. Поперечное сечение



II. Продольное сечение: перехваты Ранвье

здесь остаётся только истончённая не й р о лемма.

а в тех участках цилиндра, которые покрыты миелиновой оболочкой, каналов нет.

б) Такое расположение Na + -каналов

12.4.3.2. Различия между безмиелиновыми
и миелиновыми волокнами

Различия в строении двух типов волокон сведены в таблицу.-

Безмиелиновые
нервные волокна
Миелиновые
нервные волокна
1. Обычно - несколько осевых цилиндров , располагающихся по периферии волокна. 1. Один осевой цилиндр находится в центре волокна.
2. Осевые цилиндры - это, как правило, аксоны эфферентных нейронов вегетативной нервной системы. 2. Осевой цилиндр может быть как аксоном, так и дендритом нейроцита.
3. Ядра олигодендроцитов находятся в центре волокон. 3. Ядра и цитоплазма леммоцитов оттеснены к периферии волокна.
4. Мезаксоны осевых цилиндров - короткие. 4. Мезаксон многократно закручивается вокруг осевого цилиндра, образуя миелиновый слой .
5. Na + -каналы располагаются по всей длине осевого цилиндра. 5. Na + -каналы - только в перехвате Ранвье.

12.4.3.3. Просмотр препаратов

I. Световая микроскопия: поперечный срез



II. Световая микроскопия: продольный срез


б) В этих местах концентрические листки мезаксона не так плотно прилегают друг к другу, отчего между ними сохраняются


III. Электронная микроскопия: продольный срез, перехват Ранвье

1. На снимке - миелиновое волокно в месте стыка соседних леммоцитов.

2. В центре волокна - осевой цилиндр (1) с обычными структурами:


4. а) Но в средней части снимка - в месте стыка леммоцитов - миелиновый слой сходит на нет, а нейролемма истончается:


IV. Электронная микроскопия: продольный срез, насечки миелина

1. Здесь увеличение почти в 10 раз больше, чем на предыдущем снимке.

2. Осевой цилиндр - правая светлая область снимка;
цифрой 1 обозначена его плазматическая мембрана ( аксолемма ).

3. а) Тёмные слоистые образования - миелиновая оболочка (многократно закрученный мезаксон).

б) Но в этой оболочке - светлое разрежение:

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.