Какая ткань участвует в транспорте кислорода и углекислого газа 1 нервная

Биология | 1 - 4 классы

Какая ткань участвует в транспорте кислорода и углекислого газа и животных 1)нервная 2)мышечная 3)эпителиальная 4)соединительная.



Конечно соединительная(кровь если точнее)

Тканям относят хрящи, кости и т.

П. , но они выполняют опорно - двигательную функцию.


Особенности строения и свойства эпителиальных, соединительных, мышечных и нервных тканей?

Особенности строения и свойства эпителиальных, соединительных, мышечных и нервных тканей.


Какая ткань участвует в транспорте кислорода и углекислого газа?

Какая ткань участвует в транспорте кислорода и углекислого газа?


Охарактеризуйте животные ткани : а) эпителиальные , )соединительные в)мышечные г)нервная?

Охарактеризуйте животные ткани : а) эпителиальные , )соединительные в)мышечные г)нервная.


Эпителиальная, соединительная, мышечные и нервная ткани?

Эпителиальная, соединительная, мышечные и нервная ткани.


В отличие от растений животные имеют ткань а )соединительную Б )нервную в )эпителиальную г) мышечную?

В отличие от растений животные имеют ткань а )соединительную Б )нервную в )эпителиальную г) мышечную.


Кровь относится к тканям : нервным , мышечным , соединительной , эпителиальным ?

Кровь относится к тканям : нервным , мышечным , соединительной , эпителиальным ?


Местоположение эпителиальной, соединительной, мышечной и нервной ткани?

Местоположение эпителиальной, соединительной, мышечной и нервной ткани.


Пять загадок про ткани Эпителиальная, соединительная, мышечная и нервная?

Пять загадок про ткани Эпителиальная, соединительная, мышечная и нервная.


Чем характеризуются эпителиальная, соединительная, мышечная и нервная ткани?

Чем характеризуются эпителиальная, соединительная, мышечная и нервная ткани?

Какие функции выполняет каждая из перечисленных тканей в организме животных?


Признаки нервной, эпителиальной, соединительной и мышечной ткани человека?

Признаки нервной, эпителиальной, соединительной и мышечной ткани человека.


Белки же состоят из аминогруппы и карбоксильной группы. Аминокислоты имеют одинаковый принцип строения и различаются разве что только по радикалу. Всего есть 20 аминокислот, которые участвуют в образовании белка. Представь, что белок состоит из 50..


Найхарактернішою рисою рослин є їхня здатність до фотосинтезу.


Почва это его среда обитания, в которой он всё время находится, под землей ему продвигаться легче из за того что его тело покрыто слизью, которая уменьшает трение земли о его , , тело, , , а на листе бумаги ему сложнее передвигаться потому что бумага..


Это точно, точно биоценоз.


Найбільше розвинені кутні зуби. Вони виконуют функцію перетирання їжі і на відміну від ікл і різців мають по три корені кожний.


Например : горит дом, а в нем кто - то кто тебе дорог, и ты рискуешь своей жизнью чтобы спасти его. А иногда из - за большого выброса адреналина человек способен на сумашедшие поступки (героические). Вот. )).


Ответ : У берёзы нет прилистника)))).



Какие животные типа Хордовые имеют наружное ухо? 1)Пресмыкающиеся ; 2)Бесхвостые земноводные ; 3)Хвостатые земноводные ; 4)Млекопитающие. Ответ : 4.


Весной питательные вещества из почвы поднимаются от корней к почкам. Акрахмал запасается в корне и стволе, ипри тёплой погоде вода поступает по корням и крахмал растворяется и превращается в сахара.

Газообмен между альвеолярным воздухом и притекающей к легким венозной кровью — это совокупность процессов, обеспечивающих переход кислорода внешней среды в кровь, а углекислого газа из крови в альвеолы. Перемещение газов (легкие — кровь) осуществляется под влиянием разности парциальных давлений и напряжений этих газов в каждой из сред организма (табл.8.1).

Таблица 8.1.

Содержание и парциальное давление (напряжение) кислорода и углекислого газа в различных средах

Среда Кислород Углекислый газ
% мм рт. ст. мл/л % мм рт. ст. мл/л
Вдыхаемый воздух 20,93 209,3 0,03 0,2 0,3
Выдыхаемый воздух 16,0 160,0 4,5
Альвеолярный воздух 14,0 140,0 5,5
Артериальная кровь - 100-96 200,0 - 560-540
Венозная кровь - 140-160 -
Ткань - 10-15 - - -
Около митохондрий - 01-1 - - -

Альвеолярный воздух осуществляет газообмен с притекающей к легким венозной кровью, являясь как бы внутренней газовой средой организма. Состав альвеолярного воздуха отличается постоянством, мало изменяясь при обычном дыхании. При спокойном дыхании в альвеолы с каждым вдохом взрослого человека поступает 350 мл воздуха, и альвеолярный воздух обновляется лишь на 1/7 своего объема (коэффициент вентиляции). При спокойном дыхании давление в альвеолах ниже атмосферного.

Решающим фактором, обусловливающим непрерывность газообмена, является постоянство газового состава альвеолярного воздуха.

Учитывая свойство газов диффундировать из области большего парциального давления в область с меньшим парциальным давлением, несложно понять направленность диффузии О2 и СО2 на том или ином уровне дыхания (рис.8.6).


Рис.8.6. Газообмен в легких.

Парциальное давление кислорода в воздухе, заполняющем альвеолы легких, около 106 мм рт. ст., а его напряжение в плазме венозной крови, притекающей к легким, около 40 мм рт.ст. Вследствие разности давлений кислород из альвеол направляется в плазму крови и далее в эритроциты, где его напряжение практически равно нулю. Там он связывается с гемоглобином эритроцитов.

Парциальное давление углекислого газа в альвеолярном воздухе составляет 40 мм рт.ст., а его напряжение в притекающей к легким венозной крови — 46 мм рт.ст. Вследствие разности давлений углекислый газ переходит в альвеолы.

В артериальной крови, притекающей к тканям, напряжение кислорода выше, чем в тканях, а напряжение углекислого газа наоборот значительно ниже. Оно составляет 60 мм рт.ст. в ткани и 40 мм рт.ст. в плазме крови. В эритроцитах напряжение углекислого газа практически равно нулю. Вследствие этого кислород переходит из крови в ткани и включается в цикл метаболических процессов, а углекислый газ, в избытке содержащийся в тканях, переходит в кровь и переносится затем в легкие.

Процесс газообмена происходит непрерывно до тех пор, пока существует разность парциальных давлений и напряжений газов в каждой из сред, участвующих в газообмене.

Величина газообмена является показателем интенсивности окислительных процессов, протекающих в тканях. Для оценки интенсивности газообмена определяют количество кислорода, использованного организмом за определенное время, и количество углекислого газа, выделенного организмом за это же время. Об уровне газообмена можно судить и по величине минутной вентиляции легких. При спокойном дыхании через легкие проходит около 8000 мл воздуха в 1 мин. При физических или эмоциональных напряжениях, различных заболеваниях, сопровождающихся усилением окислительных процессов в тканях, легочная вентиляция возрастает. Газообмен между тканями и кровью, кровью и легкими, легкими и внешней средой может в значительной степени нарушаться при различных заболеваниях легких, сердечно-сосудистой системы, крови. Следствием таких нарушений газообмена может явиться гипоксия — кислородное голодание тканей.

Газообмен в организме осуществляется двумя основными механизма­ми:

1. Конвективный, представляет собой механическое пе­редвижение молекул О2 и СО2 с током воздуха или крови. Таким образом, осуществляется перенос газов в воздухе или крови на большое расстояние.

2. Диффузия. Механизм газообмена между разными средами организма. Диффузия осуществляется из области с высоким парциальным давлением газов в область низкого их давления, причём на работу по переносу молекул затрачивается их собственная кинетическая энергия

В организме кислород и углекислый газ транспортируются кровью.

Кислород, поступающий из альвеолярного воздуха в кровь, связывается с гемоглобином эритроцитов, образуя так называемый оксигемоглобин, и в таком виде доставляется к тканям.

Количество кислорода, связанного гемоглобином в 100 мл крови, носит название кислородная ёмкость крови.

Известно, что каждый грамм гемоглобина связывает 1,34-1,35 мл О2. Следовательно, КЕК здорового мужчины, у которого в 100 мл крови содержится 15 г Hb, составляет 20,4 объёмных процента (табл.8.2).

Таблица 8.2. Количество гемоглобина и кислородная емкость крови

Гемоглобин у мужчин у женщин 14-15 гр% Нb (на 100 мл крови) 13,5-14,5 гр% Нb (на 100 мл крови)
Кислородная ёмкость крови КЕК) в покое при мышечной работе 20 об % О2 (1 гр. Нb связывает 1,34-1,35 мл О2) увеличение на 5-10 %

В тканевых капиллярах кислород отщепляется и переходит в ткани, где включается в окислительные процессы. Свободный гемоглобин связывает водород и превращается в так называемый восстановленный гемоглобин. Углекислый газ, образующийся в тканях, переходит в кровь и поступает в эритроциты. Затем часть углекислого газа соединяется с восстановленным гемоглобином, образуя так называемый карбогемоглобин, и в таком виде углекислый газ и доставляется к легким. Однако большая часть углекислого газа в эритроцитах при участии фермента карбоангидразы превращается в бикарбонаты, которые переходят в плазму и транспортируются к легким. В легочных капиллярах бикарбонаты при помощи специального фермента карбоангидразы распадаются и выделяется углекислый газ. Отщепляется углекислый газ и от гемоглобина. Углекислый газ переходит в альвеолярный воздух и с выдыхаемым воздухом удаляется во внешнюю среду.

Следует знать, что более эффективно, чем углекислый газ с гемоглобином, связывается окись углерода известная как угарный газ. Образующийся в этом случае так называемый карбоксигемоглобин не способен связывать кислород.

Наконец, последним этапом дыхания является тканевое дыхание или окислительно-восстановительные реакции, протекающие в клетках организма. Существо этих реакций заключается в том, что сложные органические вещества окисляются при участии специальных ферментов кислородом до конечных продуктов в виде аммиака, воды и двуокиси углерода. Освобождающаяся при этом энергия выделяется частично в виде тепла, однако основная ее часть идет на образование известных всем молекул АТФ, которые являются источником энергии, необходимой для жизнедеятельности организма.

В тканевых капиллярах кислород отщепляется и переходит в ткани, где включается в окислительные процессы. Свободный гемоглобин связывает водород и превращается в так называемый восстановленный гемоглобин.

После диффузии кислорода из альвеол в капиллярную кровь его дальнейший транспорт в капилляры периферических тканей совершается почти полностью в связанной с гемоглобином форме. Наличие в эритроцитах гемоглобина позволяет крови транспортировать в 30-100 раз больше кислорода, чем могло бы транспортироваться в виде газа, растворенного в водной составляющей крови.

В клетках тканей тела кислород реагирует с разными веществами, формируя большое количество двуокиси углерода, который потом входит в капилляры ткани и транспортируется обратно в легкие. Двуокись углерода также связывается с разными химическими веществами, находящимися в крови, что увеличивает транспорт двуокиси углерода в 15-20 раз.

В этой статье представлены физические и химические принципы транспорта кислорода и двуокиси углерода в крови и тканевой жидкости как с количественной, так и качественной стороны.

Газы могут переместиться из одной точки в другую путем диффузии и причиной такого передвижения всегда является наличие градиента парциального давления между этими точками. Так, кислород диффундирует в легких из альвеол в капиллярную кровь, потому что парциальное давление кислорода (Рог) в альвеолах больше, чем в крови легочных капилляров. В других тканях тела Ро2 в капиллярной крови выше, чем в тканях, и это заставляет кислород диффундировать в ткани.


В метаболических процессах клеток кислород используется для образования двуокиси углерода, в результате внутриклеточное давление двуокиси углерода (Рсо2) поднимается до высоких значений, что приводит к диффузии двуокиси углерода в тканевые капилляры. Когда кровь доходит до легких, двуокись углерода диффундирует из крови в альвеолы, т.к. Рсог в крови легочных капилляров выше, чем в альвеолах. Таким образом, транспорт кислорода и двуокиси углерода кровью зависит как от диффузии, так и от кровотока. Далее рассмотрим количественную сторону факторов, определяющих эти явления.

В верхней части рисунка изображена альвеола, расположенная рядом с легочным капилляром, и показана диффузия молекул кислорода из альвеолярного воздуха в кровь. Ро2 в альвеолярной газовой смеси составляет 104 мм рт. ст., а Ро2 в венозной крови, входящей в легочный капилляр через его артериальный конец, составляет только 40 мм рт. ст., т.к. большое количество кислорода было поглощено из крови во время прохождения ее через периферические ткани. Таким образом, начальная разница в парциальном давлении, являющаяся причиной диффузии кислорода в легочные капилляры, составляет 104 - 40, или 64 мм рт. ст. На графике в нижней части рисунка виден резкий подъем Ро2 крови во время прохождения ее через капилляр; к моменту прохождения 1/3 длины капилляра Р02 в крови составляет около 104 мм рт. ст., т.е. почти достигает Р02 в альвеолярном воздухе.

Поглощение кислорода кровью в легких во время физической нагрузки. При тяжелой физической нагрузке потребление кислорода может оказаться в 20 раз выше нормы. При этом из-за повышения сердечного выброса при такой нагрузке время прохождения легочного капилляра кровью может сократиться более чем в 2 раза. Однако в силу существования большого фактора надежности для диффузии кислорода через легочную мембрану кровь ко времени выхода из капилляра все же насыщается кислородом почти до максимального уровня. Это объясняется следующим.

Во-первых, во время физической нагрузки диффузионный объем кислорода возрастает почти в 3 раза. Это происходит главным образом из-за увеличения площади поверхности капилляров, участвующих в процессе диффузии, а также из-за приближения вентиляционно-перфузионного коэффициента в верхних частях легких к идеальной величине. Во-вторых, при отсутствии физической нагрузки кровь достигает почти полного насыщения кислородом уже после прохождения первой трети легочного капилляра и во время прохождения следующих двух третей обычно в нее добавляется очень мало кислорода. Можно сказать, что в покое кровь остается в легочных капиллярах в 3 раза дольше, чем это необходимо для полного насыщения ее кислородом, поэтому во время физической нагрузки кровь может полностью или почти полностью насыщаться кислородом и после сокращения времени пребывания в капиллярах.

Внутренняя среда организма состоит из крови (течет по кровеносным сосудам), лимфы (течет по лимфатическим сосудам) и тканевой жидкости (находится между клетками).

Кровь состоит из клеток (эритроцитов, лейкоцитов, тромбоцитов) и межклеточного вещества (плазмы).

  • Эритроциты (красные кровяные клетки) содержат белок гемоглобин, в состав которого входит железо. Гемоглобин переносит кислород и углекислый газ. (Угарный газ прочно соединяется с гемоглобином и не дает ему переносить кислород.)
    • Имеют форму двояковогнутого диска,
    • не имеют ядра,
    • живут 3-4 месяца,
    • образуются в красном костном мозге.
  • Лейкоциты (белые кровяные клетки) защищают организм от инородных частиц и микроорганизмов, являются частью иммунной системы. Фагоциты осуществляют фагоцитоз, В-лимфоциты выделяют антитела.
    • Могут менять форму, выходить из кровеносных сосудов и передвигаться как амёбы,
    • имеют ядро,
    • образуются в красном костном мозге, дозревают в тимусе и лимфатических узлах.
  • Тромбоциты (кровяные пластинки) участвуют в процессе свертывания крови.
  • Плазма состоит из воды с растворенными веществами. Например, в плазме растворен белок фибриноген. При свертывании крови он превращается в нерастворимый белок фибрин.

Часть плазмы крови выходит из кровеносных капилляров наружу, в ткани, и превращается в тканевую жидкость. Тканевая жидкость непосредственно контактирует с клетками тела, доносит до них кислород и другие вещества. Чтобы возвращать эту жидкость обратно в кровь, имеется лимфатическая система.

Лимфатические сосуды открыто оканчиваются в тканях; тканевая жидкость, попавшая туда, называется лимфой. Лимфа – это прозрачная бесцветная жидкость, в которой нет эритроцитов и тромбоцитов, но много лимфоцитов. Лимфа движется за счет сокращения стенок лимфатических сосудов; клапаны в них не дают лимфе течь назад. Лимфа очищается в лимфатических узлах и возвращается в вены большого круга кровообращения.

Для внутренней среды организма характерен гомеостаз, т.е. относительное постоянство состава и других параметров. Это обеспечивает существование клеток организма в постоянных условиях, независимых от окружающей среды. Сохранением гомеостаза управляет гипоталамо-гипофизарная система.

Выберите один, наиболее правильный вариант. Функции межклеточного вещества в крови выполняет
1) плазма
2) сыворотка
3) тканевая жидкость
4) лимфа

Выберите один, наиболее правильный вариант. Лимфатические сосуды несут лимфу в
1) артерии малого круга
2) вены большого круга
3) артерии большого круга
4) вены малого круга

Выберите один, наиболее правильный вариант. Движение лимфы по лимфатическим сосудам в одном направлении обеспечивается
1) артериями большого круга
2) венами кровеносной системы
3) клапанами в их стенках
4) лимфатическими капиллярами

Выберите один, наиболее правильный вариант. Из кровеносных капилляров питательные вещества поступают непосредственно в
1) лимфу
2) клетки тканей
3) тканевую жидкость
4) лимфатические капилляры

Выберите один, наиболее правильный вариант. Клетки в организме человека получают питательные вещества и кислород непосредственно из
1) плазмы крови
2) лимфы
3) тканевой жидкости
4) лейкоцитов

ЭРИТРОЦИТЫ
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Эритроциты человека
1) теряют ядра при созревании
2) имеют форму двояковогнутых дисков
3) формируют иммунитет
4) обладают способностью к самостоятельному движению
5) обеспечивают клетки тела кислородом
6) участвуют в воспалительном процессе

Выберите три верных утверждения об этапах созревания эритроцитов.
1) Время жизни эритроцитов в кровяном русле ограничено - 100-120 дней.
2) Созревание эритроцитов происходит в клетках красного костного мозга.
3) После первичной дифференцировки происходит ряд трансформаций, в результате которых клетки теряют ядра, митохондрии и другие цитоплазматические органеллы.
4) Созревание эритроцитов происходит в клетках селезенки.
5) Время жизни эритроцитов в кровяном русле ограничено - 5-7 дней.

Кариотип собаки состоит из 78 хромосом. Сколько хромосом содержит зрелый эритроцит собаки? В ответе запишите только число.

ЭРИТРОЦИТЫ - ЛЕЙКОЦИТЫ
1. Установите соответствие между характеристикой и видом клеток крови, которому она соответствует: 1) лейкоциты, 2) эритроциты
А) содержат переносчик кислорода гемоглобин
Б) дозревают в лимфатических узлах
В) разрушаются в печени
Г) имеют крупное ядро и зернистую или незернистую цитоплазму
Д) имеют форму двояковогнутого диска

2. Установите соответствие между признаком форменных элементов крови и их видом: 1) лейкоциты, 2) эритроциты
А) продолжительность жизни – три-четыре месяца
Б) передвигаются в места скопления бактерий
В) участвуют в фагоцитозе и выработке антител
Г) безъядерные, имеют форму двояковогнутого диска
Д) участвуют в транспорте кислорода и углекислого газа

3. Установите соответствие между особенностями строения и функций и видами клеток крови: 1) эритроцит, 2) лейкоцит. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) содержит белок гемоглобин
Б) обеспечивает иммунитет
В) переносит кислород от легких к органам и тканям
Г) не имеет ядра
Д) может самостоятельно передвигаться между клетками в тканях

ЭРИТРОЦИТЫ - ЛЕЙКОЦИТЫ ОТЛИЧИЯ
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Эритроциты крови человека, в отличие от лейкоцитов,

ЭРИТРОЦИТЫ - ЛЕЙКОЦИТЫ - ТРОМБОЦИТЫ
1. Установите соответствие между функцией и клетками крови человека, которые ее выполняют: 1) лейкоциты, 2) эритроциты, 3) тромбоциты
А) защита организма от инфекций
Б) защита организма от потери крови
В) перенос углекислого газа
Г) осуществление фагоцитоза
Д) участие в свертывании крови
Е) перенос кислорода

2. Установите соответствие между характеристикой клеток крови человека и их видом: 1) эритроциты, 2) лейкоциты, 3) тромбоциты. Запишите цифры 1-3 в правильном порядке.
А) переносят кислород
Б) содержат гемоглобин
В) участвуют в фагоцитозе
Г) участвуют в свёртывании крови
Д) имеют амёбовидную форму

Установите соответствие между признаком форменных элементов крови и их видом: 1) эритроциты, 2) лейкоциты, 3) тромбоциты
А) участвуют в образовании фибрина
Б) содержат гемоглобин
В) обеспечивают процесс фагоцитоза
Г) транспортируют углекислый газ
Д) играют важную роль в иммунных реакциях

ЛЕЙКОЦИТЫ
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Лейкоциты - клетки крови, которые
1) образуются в красном костном мозге
2) способны изменять свою форму
3) содержат ядра
4) синтезируют гемоглобин
5) выделяют вещества для образования тромба
6) дозревают в нервных узлах

ЛЕЙКОЦИТЫ - ЭРИТРОЦИТЫ ОТЛИЧИЯ
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Лейкоциты, в отличие от эритроцитов,

КРОВЬ
1. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Кровь как разновидность соединительной ткани
1) регулирует содержание углеводов в организме
2) имеет жидкое межклеточное вещество
3) развивается из мезодермы
4) выполняет секреторную функцию
5) состоит из не прилегающих друг к другу клеток
6) имеет упругое, эластичное межклеточное вещество

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. К функциям крови относят.
1) транспорт кислорода и углекислого газа
2) определение частоты дыхательных движений
3) формирование иммунитета
4) выработку антител
5) контроль сердечного ритма
6) поддержание автоматии работы сердца

КРОВЬ - ЛИМФА
1. Установите соответствие между функциями и системами органов: 1) кровеносная, 2) лимфатическая. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) транспортирует углекислый газ
Б) доставляет кислород к клеткам
В) переносит глюкозу из ворсинок тонкого кишечника
Г) транспортирует липиды от тонкого кишечника
Д) осуществляет отток тканевой жидкости от тканей и органов

2. Установите соответствие между характеристиками и жидкими соединительными тканями: 1) кровь, 2) лимфа. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) представлена большим количеством эритроцитов
Б) транспортирует газы
В) обеспечивает отток тканевой жидкости от всех органов
Г) образуется из тканевой жидкости
Д) доставляет питательные вещества к внутренним органам
Е) движется по системе сосудов от тканей к сердцу

КРОВЬ - ТКАНЕВАЯ ЖИДКОСТЬ
Установите соответствие между признаками и типами жидкостей, составляющих внутреннюю среду организма: 1) кровь, 2) тканевая жидкость. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) обеспечивает иммунитет
Б) снабжает клетки тканей кислородом и питательными веществами
В) переносит кислород от легких к тканям
Г) принимает от клеток продукты их жизнедеятельности
Д) переносит питательные вещества от кишечника к тканям
Е) переносит углекислый газ от тканей к легким

КРОВЬ - ЛИМФА - ТКАНЕВАЯ ЖИДКОСТЬ
1. Установите соответствие между характеристиками компонента внутренней среды организма и компонентами, обладающими этими характеристиками: 1) кровь, 2) лимфа, 3) тканевая жидкость. Запишите цифры 1-3 в правильном порядке.
А) образуется из тканевой жидкости
Б) её клетки образуются в красном костном мозге, лимфоузлах, селезёнке
В) выполняет дыхательную функцию
Г) возвращает в кровь белки, соли, воду
Д) находится в межклеточном пространстве
Е) образуется из плазмы

2. Установите соответствие между компонентами внутренней среды человека и их особенностями: 1) кровь, 2) лимфа, 3) тканевая жидкость. Запишите цифры 1, 2, 3 в порядке, соответствующем буквам.
А) обменивается веществами с клетками тела
Б) содержит форменные элементы: эритроциты, лейкоциты, тромбоциты
В) после приема пищи – белая непрозрачная жидкость
Г) функции: трофическая, дренажная, защитная
Д) источник образования - плазма крови
Е) источник образования - жидкость, находящаяся между клетками

ЛИМФА
Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Особенности строения и функционирования лимфатической системы человека заключается в том, что
1) система незамкнутая
2) впадает в пищеварительную систему
3) защищает организм от болезнетворных микробов
4) всасывает липиды из кишечника
5) отсутствуют узлы
6) представлена одинаковыми сосудами


Установите соответствие между характеристиками и типами клеток крови, изображенными на рисунках. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) участвует в формировании иммунитета
Б) переносит кислород
В) не имеет ядра
Г) способна к фагоцитозу
Д) содержит гемоглобин
Е) способна к активному передвижению

Кислород проникает из крови в клетки тканей путем диффузии, обуслов­ленной разностью (градиентом) его парциальных давлений по обе стороны, так называемого гематопаренхиматозного барьера. Так, среднее Ро2 артериальной крови составляет около 100 мм рт. ст., а в клетках, где кислород непрерывно утилизируется, стремится к нулю.

Функция газотранспортной системы организма в конечном счете направлена на поддержание парциального давления кислорода на клеточной мембране не ниже критического, т. е. минимального, необходимого для работы ферментов дыхательной цепи в митохондриях. Для клеток, интенсивно потребля­ющих кислород, критическое Ро2 составляет около 1 мм рт. ст.

Вместе с тем следует иметь в виду, что напряжение О2 в тканях зависит не только от снабжения кислородом, но и от его потребления клетками. Наиболее чувствительны к недостатку кислорода клетки кардиомиоцитов и нейроны мозга, где окислительные про­цессы очень интенсивны (реанимация, инфаркт). В отличие от этих клеток, скелетные мыш­цы относительно устойчивы к кратковременному прекращению кислородного снабжения, т.к. они могут использовать анаэробные процессы получения энергии, а также содержат (особенно красные волокна) миоглобин.

Перенос СО2 из клеток тканей в кровь тоже происходит главным образом путем диффузии, т. е. в силу разности напряжений СО2 по обе стороны гематопаренхиматозного барьера. Среднее артериальное значение Рсо2 в среднем составляет 40 мм рт. ст., а в клетках может достигать 60 мм рт. ст. Локальное парциальное давление углекислого газа и, следовательно, скорости его диффузионного транспорта в значительной мере определяются продукцией СО2 (т. е. интенсивностью окислительных процессов) в данном органе.

По той же причине Рсо2 и Ро2 в различных венах не одинаковы. Так, в крови, оттекающей от работающей мышцы, напряжение О2 гораздо ниже, а напряжение СО2 гораздо выше, чем, например, в крови, оттекающей от соеди­нительной ткани.

6. Регуляция дыхания.

Деятельность системы дыха­ния всегда подчинена удовлетворению дыхательной потребности организма, которая в значительной степени определяется тканевым метаболизмом. Так, при мышечной работе по сравнению с покоем возрастает потреб­ность в кислороде и удалении двуокиси углерода. Для компенсации повы­шенной дыхательной потребности увеличивается интенсивность легочной вентиляции, что выражается в увеличении частоты и глубины дыхания. Стабилизация дыхательных показателей происходит в процессе регуляции дыхания.

В механизмах регуляции дыхания можно выделить афферентное, центральное и эфферентное звенья.

6.2. Афферентное звено

Величина дыхательных показателей в организме определяется: периферическими хеморецепторами сосудистых рефлексогенных зон, центральными хеморецепторами, находящимися в области продолговатого мозга и рецепторами легких. Хеморецепторы воспринимают изменения парциального давления СО2 и кислорода, а также рН крови, механорецепторы – степенно растяжения легких. Так, повышение давления СО2 (явление гиперкапнии), снижение рН крови (ацидоз) и снижение содержания О2 (гипоксемия) вызывают стимуляцию бульбарных хемочувствительных структур, что приводит к увеличению легочной вентиляции. Снижение же давления CO2 (явление гипокапнии) и повышение рН крови (алкалоз) вызывают торможение бульбарных хемочувствительных структур, что приводит к снижению напряжения СО2.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.