Какие структурные элементы определяют особенности распространения возбуждения по нервной ткани

Рассматривая основные принципы и особенности распространения возбуждения в ЦНС, а по сути и свойства нервных центров, можно выделить следующие моменты.

1. Одностороннее проведение возбуждения. В ЦНС— в ее центрах, внутри рефлектор­ной дуги и нейронных цепей возбуждение, как правило, идет в одном направлении, напри­мер, от афферентного нейрона к эфферентному, а не наоборот. Обусловлено это особенно­стями расположения и характером функционирования химического синапса. В целом это,


организует деятель­ность ЦНС и является одним из принципов ко­ординационной дея­тельности ЦНС.

Рис. 15. Пространственная и последовательная суммация на уровне нейрона. 1 — приход импульса к нервной клетке, 2 — формирование биопотенциала.

2. Суммация воз­буждений (аналогично можно говорить и о суммации торможе­ния). На нейроне в об­ласти его аксонного холмика происходит интеграция событий, разыгрывающихся на отдельных участках мембраны нейрона. Если с определенным интервалом к нейрону в точку А приходят им­пульсы, они вызывают генерацию в этой обла­сти ВПСП. Если эти ВПСП не достигают критического уровня деполяризации, то по­тенциал действия не возникает. Если же ча­стота следования доста­точно большая, то про­исходит в этом месте суммация ВПСП, при достижении ВПСП критического уровня деполяризации возни­кает ПД, нейрон воз­буждается. Это явле­ние носит название вре­менной суммации (про­исходит суммация сле­дов возбуждения во времени). В ЦНС име­ет место и пространст­венная суммация: воз­буждения, приходящие в точку В, А, С нейрона (даже если они сами по себе — подпороговые), при одновременном появлении у данного нейрона могут привести к его возбуждению при условии, что сумми­рованный ВПСП достигает или превышает критический уровень деполяризации.

3. Явление окклюзии: за счет явления дивергенции (см. ниже) один и тот же нейрон может передавать сигналы на ряд других нейронов, в результате чего возникает определен­ный эффект (например, происходит активация 10 мышечных волокон в мышце, вследствие чего мышца развивает напряжение, равное 100 мгс). Второй нейрон возбуждает тоже 10 других волокон (100 мгс). Но если оба нейрона возбуждать одновременно, то суммарная

активность мышцы будет 180 мгс. Почему? Оказывается, часть волокон у них были общи­
ми (т. е. нейрон 1 и 2 передавали информацию на одни и те же волокна). Это явление полу­
чило название окклюзии или закупорки. ;

4. Трансформация ритма возбуждения. В отличие от скелетной мышцы или аксона ней­
рон способен трансформировать ритм возбуждений, приходящих к нему. Например, посту­
пает импульс, идущий с частотой 25 Гц, а нейрон в ответ на это, возбуждаясь, генерирует
50 имп/сек (50 Гц), или наоборот, поступает 100 имп/сек, а выходят 40 имп/сек.

6. Утомление нервных центров: это одно из важных свойств ЦНС. Оно обусловлено
особенностями синаптической передачи в ЦНС: при длительном возбуждении одного и того
же нейрона в синапсе может снизиться содержание медиатора, что приведет к снижению
работоспособности нейрона.


Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Особенности распространения возбуждения в ЦНС в основном определяются свойствами нервных центров:

1. ОДНОСТОРОННЕЕ ПРОВЕДЕНИЕ ВОЗБУЖДЕНИЯ. В ЦНС возбуждение может распространяться только в одном направлении: от ре-цепторного нейрона через вставочный к эфферентному нейрону, что обусловлено наличием синапсов.

2. БОЛЕЕ МЕДЛЕННОЕ ПРОВЕДЕНИЕ ВОЗБУЖДЕНИЯ ПО СРАВНЕНИЮ С НЕРВНЫМИ ВОЛОКНАМИ. Промежуток времени от момента нанесения раздражения на рецептор до ответной реакции исполнительного органа называется временем рефлекса. Большая его часть тратится на проведение возбуждения в нервных центрах, где возбуждение проходит через синапсы. На выделение и диффузию медиатора в синапсе требуется промежуток времени в 1,5-2 мс (синоптическая задержка). Чем больше нейронов в рефлекторной дуге, тем продолжительнее время рефлекса.

3. СУММАЦИЯ ВОЗБУЖДЕНИЙ (ИЛИ ТОРМОЖЕНИЯ). Нервные центры могут суммировать афферентные импульсы, что проявляется в усилении рефлекса при увеличении частоты раздражений или числа раздражаемых рецепторов. Различают два вида суммации: временная суммация — если импульсы приходят к нейрону по одному и тому же пути через один синапс с коротким интервалом; пространственная суммация связана с суммированием ВПСП, возникающих одновременно в разных синапсах одного нейрона.

4. КОНВЕРГЕНЦИЯ. В нервном центре несколько клеток могут передавать импульсы к одному нейрону, т. е. возбуждения конвергируют на нем. Конвергенция может быть результатом прихода возбуждающих или тормозных входных сигналов ог различных источников.

5. ДИВЕРГЕНЦИЯ И ИРРАДИАЦИЯ. Возбуждение даже единственного нервного волокна, по которому импульсы поступают в нервный центр, может послужить причиной возбуждения множества выходящих из центра нервных волокон. Морфологическим субстратом широкого распространения импульсов (иррадиации) возбуждения является ветвление аксонов и наличие большого числа вставочных нейронов в пределах центра.

15. Физиология автономной (вегетативной) нервной системы

ВНС (вегетативная нервная система) приспосабливает работу внутренних органов к изменениям окружающей среды. ВНС обеспечивает гомеостаз (постоянство внутренней среды организма). ВНС также участвует во многих поведенческих актах, осуществляемых под управлением головного мозга, влияя не только на физическую, но и на психическую деятельность человека.

ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА - часть нервной системы, обеспечивающая деятельность внутренних органов, регуляцию сосудистого тонуса. Взаимодействуя с соматической нервной системой и эндокринной системой, она обеспечивает поддержание постоянства гомеостаза и адаптацию в меняющихся условиях внешней среды.

Это автономная нервная система, активность которой не контролируется нашим сознанием. Поэтому мы не можем по своему желанию остановить собственное сердце или прекратить процесс переваривания пищи в желудке. Под контролем этой системы находится активность различных желез, сокращение гладких мышц, работа почек, сокращение сердца и многие другие функции. Вегетативная нервная система поддерживает на заданном природой уровне кровяное давление, потоотделение, температуру тела, обменные процессы, деятельность внутренних органов, кровеносных и лимфатических сосудов. Вместе с эндокринной системой она регулирует постоянство состава крови, лимфы, тканевой жидкости (внутренней среды) в организме, управляет обменом веществ и осуществляет взаимодействие отдельных органов в системах органов (дыхания, кровообращения, пищеварения, выделения и размножения).

Вегетативная нервная система состоит из двух отделов: СИМПАТИЧЕСКОГО И ПАРАСИМПАТИЧЕСКОГО, функции которых, как правило, противоположны.

Если нервы симпатического отдела стимулируют какую-то реакцию, то нервы парасимпатического ее подавляют. Эти процессы разнонаправленного воздействия в конечном итоге взаимно уравновешивают друг друга, в результате функция поддерживается на соответствующем уровне. Действие лекарств часто направлено именно на возбуждение или торможение одного из таких противоположных по своей направленности влияний.

Возбуждение симпатических нервов вызывает расширение сосудов головного мозга, кожи, периферических сосудов; расширение зрачка; снижение выделительной функции слюнных желез и усиление - потовых; расширение бронхов; ускорение и усиление сердечных сокращений; сокращение мышц, поднимающих волос; ослабление моторики желудка и кишечника; усиление секреции гормонов надпочечников; расслабление мочевого пузыря и оказывает возбуждающее действие на половые органы, также вызывая сокращение матки.

По парасимпатическим нервным волокнам отдаются "приказы", обратные по своей направленности: например, сосудам и зрачку - сузиться, мускулатуре мочевого пузыря - сократиться и так далее.

Вегетативная нервная система очень чувствительна к эмоциональному воздействию. Печаль, гнев, тревога, страх, апатия, половое возбуждение - эти чувства вызывают изменения функций органов, находящихся под контролем вегетативной нервной системы. Например, внезапный испуг заставляет сильнее биться сердце, дыхание становится более частым и глубоким, в кровь из печени выбрасывается глюкоза, прекращается выделение пищеварительного сока, появляется сухость во рту.

В нашем теле все внутренние ткани и органы, "подчиненные" вегетативной нервной системе, снабжены нервами, которые как датчики собирают информацию о состоянии организма и передают ее в соответствующие центры, а от них доносят до периферии корректирующие воздействия.

Так же как и центральная нервная система, вегетативная система имеет чувствительные (афферентные) окончания (входы), обеспечивающие возникновение ощущений, и исполнительные (двигательные, или эфферентные) окончания, которые передают из центра модифицирующие воздействия к исполнительному органу. Физиологически этот процесс выражается в чередовании процессов возбуждения и торможения, в ходе которых происходит передача нервных импульсов, возникающих в клетках нервной системы (нейронах).

На основании структурно-функциональных свойств автономную нервную систему принято делить на симпатическую, парасимпатическую и метасимпатическую части.

Основные свойства процесса передачи возбуждения в центральной нервной системе. Причины задержки проведения возбуждения в нервных центрах. Цели и задачи кибернетики нервной системы. Теория нейронных сетей. Модификация связей между нейронами мозга.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 04.12.2011
Размер файла 26,7 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Центральная нервная система человека по признанию многих ученых является одной из самых сложных и малоисследованных структур, знакомых человечеству. С ее сложностью может сравниться только ее жизненная важность для организма, ведь ни для кого не секрет, что даже незначительные изменения в нервной системе могут приводить к поистине огромным последствиям. Центральная нервная система руководит всеми остальными системами нашего организма, обеспечивая их скоординированную работу. Главной тканью нервной системы является нервная ткань, состоящая из двух основных типов клеток: нейронов и клеток нейроглии или клеток-спутниц. Количество нейронов в головном мозге взрослого человека колеблется от 10-20млрд, при этом клеток глии примерно в 10 раз больше. Каждый нейрон связан со множеством других нейронов, образуя чрезвычайно сложную сеть. Аналогией головного мозга может служить современная всемирная компьютерная сеть Интернет. По своей сути нервная система представляет собой совокупность множества генераторов электрического тока и его проводников. Представляя мозг такого рода простой моделью, ученые до сих пор не перестают удивляться многообразию функций, которые он способен обеспечить. Исследования мозга проходят сейчас на грани технологического прогресса и сулят множество поразительных и важных открытий. В данной работе собраны последние данные, касающиеся особенностей распространения сигналов в ЦНС, а также небольшой экскурс в теорию нейронных сетей.

Особенности распространения возбуждения в ЦНС

Всем нам хорошо известно, что электрический сигнал передается от нейрона к нейрону с помощью синапса. Однако, это весьма упрощенный механизм передачи и, как показывают исследования нейрофизиологов, передача возбуждения в ЦНС обладает рядом специфических свойств, без которых невозможна нормальная нервная деятельность.

Свойства нервной системы можно рассматривать на уроне нервных центров. Нервный центр - совокупность нервных клеток, более или менее строго локализованная в нервной системе и непременно участвующая в осуществлении рефлекса или другого вида нервной деятельности. Основными свойствами передачи возбуждения являются:

· одностороннее проведение возбуждения;

· задержка проведения возбуждения;

· трансформация ритма возбуждений;

Одностороннее проведение возбуждения в центральной нервной системе обусловлено наличием в нервных центрах синапсов, в которых передача возбуждения возможна только в одном направлении - от нервного окончания, выделяющего медиатор, к постсинаптической мембране.

Задержка проведения возбуждения в нервных центрах связана с наличием большого количества синапсов. На выделение медиатора, его диффузию через синаптическую щель, возбуждение постсинаптической мембраны требуется больше времени, чем на распространение возбуждения по нервному волокну.

Суммация возбуждений в нервных центрах возникает или при нанесении слабых, но повторяющихся (ритмичных) раздражений, или при одновременном действии нескольких подпороговых раздражений. Механизм этого явления связан с накоплением медиатора на постсинаптической мембране и повышением возбудимости клеток нервного центра. Примером суммации возбуждения может служить рефлекс чихания. Этот рефлекс возникает при длительном раздражении рецепторов слизистой оболочки носа.

Трансформация ритма. Нервные центры способны изменять ритм поступающих к ним импульсов. Они могут на одиночные раздражители отвечать серией импульсов или на раздражители небольшой частоты - возникновением более частых ПД. В результате ЦНС посылает к рабочему органу количество импульсов, относительно независимое от частоты раздражений. Это связано с тем, что нейрон является изолированной единицей нервной системы, к нему в каждый момент приходит множество раздражений. Под их влиянием происходит изменение мембранного потенциала клетки. Если создается небольшая, но продолжительная деполяризация (длительный ВПСП), то при этом один стимул вызывает серию импульсов. Частота возбуждений, поступающих из нервных центров на периферию к рабочему органу, колеблется от 50 до 200 в секунду. Этой особенностью центральной нервной системы объясняется то, что все сокращения скелетных мышц в организме являются тетаническими.

Рефлекторные акты заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длительный, период. Это явление получило название рефлекторного последействия. Оно проявляется в том, что после прекращения раздражения афферентных нервов по эфферентным путям от ЦНС продолжают следовать импульсы к рабочему органу, вследствие чего рефлекторная реакция некоторое время сохраняется и после выключения раздражения. Последействие зависит от силы раздражения.

Нервные центры легко утомляемы в отличие от нервных волокон. При продолжительном раздражении афферентных нервных волокон утомление нервного центра проявляется постепенным снижением, а затем и полным прекращением рефлекторного ответа.

Облегчение проведения, или проторение пути. Установлено, что после возбуждения, возникшего в ответ на ритмическое раздражение, следующий стимул вызывает больший эффект или для поддержания прежнего уровня ответной реакции требуется меньшая сила последующего раздражения. Это явление получило название облегчения. Его можно объяснить тем, что при первых стимулах ритмического раздражителя происходит перемещение пузырьков медиатора ближе к пресинаптической мембране и при последующем раздражении медиатор быстрее выделяется в синаптическую щель. Это, в свою очередь, приводит к тому, что вследствие суммации ВПСП быстрее достигается критический уровень деполяризации и возникает распространяющийся потенциал действия.

Одним из самых важных процессов, сопровождающих возбуждение в ЦНС, является процесс торможения. Торможение в центральной нервной системе -- активный процесс, проявляющийся внешне в подавлении или в ослаблении процесса возбуждения и характеризующийся определенной интенсивностью и длительностью. Торможение в норме неразрывно связано с возбуждением, является его производным, сопутствует возбудительному процессу, ограничивая и препятствуя чрезмерному распространению последнего. При этом торможение часто ограничивает возбуждение и вместе с ним формирует сложную мозаику активированных и заторможенных зон в центральных нервных структурах. Формирующий эффект тормозного процесса развивается в пространстве и во времени. Торможение -- врожденный процесс, постоянно совершенствующийся в течение индивидуальной жизни организма. При значительной силе фактора, вызвавшего торможение, оно может распространяться на значительное пространство, вовлекая в тормозной процесс большие популяции нервных клеток. История развития учения о тормозных процессах в центральной нервной системе начинается с открытия И. М. Сеченовым эффекта центрального торможения (химическое раздражение зрительных бугров тормозит простые спинномозговые безусловные реакции). Вначале предположение о существовании специфических тормозных нейронов, обладающих способностью оказывать тормозные влияния на другие нейроны, с которыми имеются синаптические контакты, диктовалось логической необходимостью для объяснения сложных форм координационной деятельности центральных нервных образований. Впоследствии это предположение нашло прямое экспериментальное подтверждение (Экклс, Реншоу), когда было показано существование специальных вставочных нейронов, имеющих синаптические контакты с двигательными нейронами. Активация этих вставочных нейронов закономерно приводила к торможению двигательных нейронов. В зависимости от нейронного механизма, способа вызывания тормозного процесса в ЦНС различают несколько видов торможения: постсинаптическое, пресинаптическое, пессимальное. Постсиналтическое торможение -- основной вид торможения, развивающийся в постсинаптической мембране аксосоматических и аксодендритических синапсов под влиянием активации тормозных нейронов, в концевых разветвлениях аксонных отростков которых освобождается и поступает в синаптическую щель тормозной медиатор. Тормозной эффект таких нейронов обусловливается специфической природой медиатора -- химического переносчика сигнала с одной клетки на другую. Наиболее распространенным тормозным медиатором является гамма-аминомасляная кислота (ГАМК). Химическое действие ГАМК вызывает в постсинаптической мембране эффект гиперполяризации в виде тормозных постсинаптических потенциалов (ТПСП), пространственно-временная суммация которых повышает уровень мембранного потенциала (гиперполяризация), приводит к урежению или полному прекращению генерации распространяющихся ПД. Возвратным торможением называется угнетение (подавление) активности нейрона, вызываемое возвратной коллатералью аксона нервной клетки. Так, мотонейрон переднего рога спинного мозга прежде чем покинуть спинной мозг дает боковую (возвратную) ветвь, которая возвращается назад и заканчивается на тормозных нейронах (клетки Реншоу). Аксон последней заканчивается на мотонейронах, оказывая на них тормозное действие. Пресинаптическое торможение развертывается в аксоаксональных синапсах, блокируя распространение возбуждения по аксону. Пресинаптическое торможение часто выявляется в структурах мозгового ствола, в спинном мозге. Пессимальное торможение представляет собой вид торможения центральных нейронов. Оно наступает при высокой частоте раздражения. В первый момент возникает высокая частота ответного возбуждения. Через некоторое время стимулируемый центральный нейрон, работая в таком режиме, переходит в состояние торможения.

Еще одной важной особенностью передачи возбуждения в ЦНС является участие в этом процессе клеток нейроглии или клеток - спутниц. Ранее считалось, что эти клетки выполняют роль хелперов, помогая в трансформации питательных веществ к нейронам. Однако последние исследования показали, что клетки глии принимают непосредственное участие в передачи нервного импульса в синапсе.Вот один из примеров влияния нейроглиальных клеток. Астроциты регулируют синаптическую передачу сигнала несколькими способами. Аксон передает нервный сигнал дендриту за счет выброса нейротрансмиттера (обозначен зеленым цветом) - в данном случае глутамата. Кроме того, аксон высвобождает АТФ (желтый). Эти соединения вызывают перемещение кальция (фиолетовый) внутрь астроцитов, что побуждает их вступить в общение друг с другом за счет высвобождения собственного АТФ. Астроциты могут усилить передачу нервного сигнала с помощью выброса такого же нейротрансмиттера (глутамата) или ослабить сигнал путем поглощения нейротрансмиттера или выброса связывающих его белков (синие). Кроме того, астроциты могут выделить сигнальные молекулы (красные), которые заставят аксон увеличить или уменьшить выброс нейротрансмиттера, когда он возобновит импульсацию. Модификация связей между нейронами - один из способов, с помощью которых головной мозг корректирует свои реакции на раздражители по мере накопления опыта - так происходит процесс обучения. В периферической нервной системе синапсы окружены не астроцитами, а шванновскими клетками

Образования головного мозга состоят из повторяющихся локальных нейронных сетей, модулей, которые варьируют от структуры к структуре по числу клеток, внутренним связям и способу обработки информации. Каждый модуль, или нейронный ансамбль, представляет собой совокупность локальных нейронных сетей, которая обрабатывает информацию, передает ее со своего входа на выход, подвергает трансформации, определяемой общими свойствами структуры и ее внешними связями. Один модуль может входить в состав различных функциональных образований. Группирование нейронов в ансамбли нервных клеток для совместного выполнения функций следует рассматривать как проявление кооперативного способа деятельности. Основным функциональным признаком ансамблевой организации является локальный синергизм реакций нейронов центральной ядерной структуры ансамбля, окруженной зоной заторможенных и нереагирующих нейронов (А. Б. Коган, О. Г. Чораян). Размеры группировок нейронов в горизонтальной плоскости в среднем достигают диаметра 100--150 мкм, что соответствует размерам клеточных объединений, выявляемых по функциональным показателям синергичности возбудительных реакций на адекватное раздражение их рецептивных полей. Размеры зоны синаптических окончаний вторичного специфического афферентного волокна в корковых структурах (100--150 мкм) близок к пространственным характеристикам элементарного нейронного ансамбля. Примерно такие же размеры имеет и сфера терминальных разветвлений отдельного неспецифического волокна, но общая зона всех ветвей неспецифического волокна образует сферу диаметром 600-- 700 мкм, что соответствует размерам зоны ветвления первичного специфического афферентного волокна. Схема активации нейронного ансамбля может быть представлена следующим образом.

Таким образом, ансамблевая конструкция центральных проекционных зон анализатора в коре большого мозга представляется как результат двух физиологических механизмов:

1) мощной активации большой зоны центральных нейронов, связанных с терминалами афферентных волокон;

2) центральными нейронами, в функциональном отношении аналогичными клеткам Реншоу в спинном мозге, препятствующими широкому растеканию центрального возбуждения путем формирования тормозной каемки вокруг возбужденных нервных клеток.

Когда индивидуальное участие нейрона в данной реакции становится не обязательным, а вероятностным и возможна относительная взаимозаменяемость элементов, повышаются надежность нервного механизма управления и связи в организме. Подвижная динамическая структура нейронных ансамблей, формируемая вероятностным участием в них отдельных нервных клеток, обусловливает большую гибкость и легкость перестроек межнейронных связей; эти перестройки объясняют высокую пластичность, характерную для нервных механизмов высших отделов мозга. Вероятностные нейронные ансамбли образуются структурно-функциональными блоками нервных клеток, воспринимающих и перерабатывающих идентичную афферентную информацию. Эти ансамбли составляют основу функциональной мозаики процессов центрального возбуждения и торможения. Мозаика вероятностных нейронных ансамблей на всех уровнях конструкции нервного контура управления, обеспечивающего разные формы целенаправленного поведения, образует функциональную систему мозга. Нейрокибернетика (кибернетика нервной системы) -- наука, изучающая процессы управления и связи в нервной системе.

Такое определение предмета и задач кибернетики нервной системы позволяет выделить три составных компонента (раздела) ее: организация, управление и информационная деятельность. В сложных полифункциональных интегративных системах мозга невозможно раздельное функционирование элементов организации, управления и информационной деятельности, они тесно связаны и взаимообусловлены. Организация нервной системы во многом предопределяет механизмы управления и эффективности передачи и переработки информации. Управление модифицирует механизмы организации и самоорганизации, обеспечивает эффективность и надежность информационной функции системы. Информационная деятельность является обязательным условием совершенствования процесса организации, управления как оперативный прием эффективного воздействия и целенаправленного видоизменения. Организация. В центре внимания теории организации и самоорганизации в нейрокибернетике лежит представление о системных свойствах конструкций мозга на разных морфологических и эволюционных уровнях конструкции нервной системы. Ведущим свойством системы является организация. Система -- совокупность элементов, где конечный результат кооперации проявляется не в виде суммы эффектов составляющих элементы, а в виде произведения эффектов, т. е. системность как характерное свойство организованной сложности предполагает неаддитивное сложение функций отдельных компонентов.

Объединение двух и более элементов в системе рождает новое качество, которое не может быть выражено через качество составляющих компонентов. Отдельный нейрон является носителем свойств, позволяющих ему интегрировать влияние других нейронов, строить свою активность на основании оценки результатов интеграции. С другой стороны, на основе таких свойств происходит объединение индивидуальных нейронов в системы, обладающие новыми свойствами, отсутствующими у входящих в их состав единиц. Характерной чертой таких систем является то, что активность каждого составного элемента в них определяется не только влияниями, поступающими по прямым афферентным путям каждого элемента, но и состоянием других элементов системы. Свойство системности в нервных образованиях возникает тогда, когда деятельность каждой нервной клетки оказывается функцией не только непосредственно поступившего к ней сигнала, но и функцией тех процессов, которые происходят в остальных клетках нервного центра (П. Г. Костюк). Оптимальная организация нервных конструкций обычно сочетается со значительной структурой или функциональной избыточностью, которой принадлежит решающая роль в обеспечении пластичности и надежности биологической системы.

возбуждение нервная система мозг

Особенности распространения возбуждения в ЦНС:

1. Одностороннее проведение возбуждения. В ЦНС возбуждение, идет, как правило, в одном направлении, например, от афферентного нейрона к эфферентному, а не наоборот. Обусловлено это особенностями расположения и характером функционирования химического синапса.

2. Суммация возбуждений (аналогично можно говорить и о суммации торможения). На нейроне в области его аксонального холмика происходит интеграция событий, разыгрывающихся на отдельных участках мембраны нейрона. Если с определенным интервалом к нейрону в точку А приходят импульсы, они вызывают генерацию в этой области ВПСП. Если эти ВПСП не достигают критического уровня деполяризации, то ПД не возникает. Если же частота следования достаточно большая, то происходит в этом месте суммация ВПСП, при достижении ВПСП критического уровня деполяризации возникает ПД, нейрон возбуждается. Это явление носит название временной суммации (происходит суммация следов возбуждения во времени). В ЦНС имеет место и пространственная суммация: возбуждения, приходящие в точку В, А, С нейрона (даже если они сами по себе - подпороговые), при одновременном появлении у данного нейрона могут привести к его возбуждению при условии, что суммированный ВПСП достигает или превышает критический уровень деполяризации.

3. Явление окклюзии: один и тот же нейрон может передавать сигналы на ряд других нейронов, в результате чего возникает определенный эффект (например, происходит активация 10 мышечных волокон в мышце, вследствие чего мышца развивает напряжение, равное 100 мгс). Второй нейрон возбуждает тоже 10 других волокон (100 мгс). Но если оба нейрона возбуждать одновременно, то суммарная активность мышцы будет 180 мгс. Это объясняется тем, часть волокон у них были общими (т. с. нейрон 1 и 2 передавали информацию на одни и те же волокна).

4. Трансформация ритма возбуждения. В отличие от скелетной мышцы или аксона нейрон способен трансформировать ритм возбуждений, приходящих к нему. Например, при поступлении импульса с частотой 25 Гц нейрон, возбуждаясь, генерирует 50 имп/сек (50 Гц), или наоборот, при поступлении 100 имп/сек выходят 40 имп/сек.

6. Утомление нервных центров. Это свойство обусловлено особенностями синаптической передачи в ЦНС: при длительном возбуждении одного и того же нейрона в синапсе может снизиться содержание медиатора, что приведет к снижению работоспособности нейрона.

Координационная деятельность ЦНС – согласованная работа нейронов ЦНС, основанная на взаимодействии нейронов между собой.

1) обеспечивает четкое выполнение определенных функций, рефлексов;2) обеспечивает последовательное включение в работу различных нервных центров для обеспечения сложных форм деятельности;3) обеспечивает согласованную работу различных нервных центров (при акте глотания в момент глотания задерживается дыхание, при возбуждении центра глотания тормозится центр дыхания).

Основные принципы КД ЦНС и их нейронные механизмы.

1. Принцип иррадиации (распространения). При возбуждении небольших групп нейронов возбуждение распространяется на значительное количество нейронов. Иррадиация объясняется:

· наличием ветвистых окончаний аксонов и дендритов, за счет разветвлений импульсы распространяются на большое количество нейронов;

· наличием вставочных нейронов в ЦНС, которые обеспечивают передачу импульсов от клетки к клетке. Иррадиация имеет границы, которая обеспечивается тормозным нейроном.

2. Принцип конвергенции. При возбуждении большого количества нейронов возбуждение может сходиться к одной группе нервных клеток.

3. Принцип реципрокности – согласованная работа нервных центров, особенно у противоположных рефлексов (сгибание, разгибание и т. д.).

4. Принцип доминанты. Доминанта – господствующий очаг возбуждения в ЦНС в данный момент. Это очаг стойкого, неколеблющегося, нераспространяющегося возбуждения. Он имеет определенные свойства: подавляет активность других нервных центров, имеет повышенную возбудимость, притягивает нервные импульсы из других очагов, суммирует нервные импульсы. Очаги доминанты бывают двух видов: экзогенного происхождения (вызванные факторами внешней среды) и эндогенными (вызванные факторами внутренней среды). Доминанта лежит в основе формирования условного рефлекса.

5. Принцип обратной связи. Обратная связь – поток импульсов в нервную систему, который информирует ЦНС о том, как осуществляется ответная реакция, достаточна она или нет. Различают два вида обратной связи:

· положительная обратная связь, вызывающая усиление ответной реакции со стороны нервной системы. Лежит в основе порочного круга, который приводит к развитию заболеваний;

· отрицательная обратная связь, снижающая активность нейронов ЦНС и ответную реакцию. Лежит в основе саморегуляции.

6. Принцип субординации. В ЦНС существует определенная подчиненность отделов друг другу, высшим отделом является кора головного мозга.

7. Принцип взаимодействия процессов возбуждения и торможения. ЦНС координирует процессы возбуждения и торможения:

Оба процесса способны к конвергенции, процесс возбуждения и в меньшей степени торможения способны к иррадиации. Торможение и возбуждение связаны индукционными взаимоотношениями. Процесс возбуждения индуцирует торможение, и наоборот. Различаются два вида индукции:

· последовательная. Процесс возбуждения и торможения сменяют друг друга по времени;

· взаимная. Одновременно существует два процесса – возбуждения и торможения. Взаимная индукция осуществляется путем положительной и отрицательной взаимной индукции: если в группе нейронов возникает торможение, то вокруг него возникают очаги возбуждения (положительная взаимная индукция), и наоборот.

По определению И. П. Павлова, возбуждение и торможение – это две стороны одного и того же процесса. Координационная деятельность ЦНС обеспечивает четкое взаимодействие между отдельными нервными клетками и отдельными группами нервных клеток. Выделяют три уровня интеграции.

· Первый уровень обеспечивается за счет того, что на теле одного нейрона могут сходиться импульсы от разных нейронов, в результате происходит или суммирование, или снижение возбуждения.

· Второй уровень обеспечивает взаимодействиями между отдельными группами клеток.

· Третий уровень обеспечивается клетками коры головного мозга, которые способствуют более совершенному уровню приспособления деятельности ЦНС к потребностям организма.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.