Координирующей и интегрирующей деятельности цнс

Центральная нервная система координирует деятельность всех органов и систем, обеспечивает эффективное приспособление организма к изменениям окружающей среды, формирует целенаправленное поведение. Эти жизненно важные задачи решаются благодаря интегративной деятельности ЦНС.

Интегративная деятельность ЦНС – это ее способность объединять, обобщать все поступающие сигналы, отрабатывать их в связи с прошлым опытом. В результате формируется определенная реакция организма биологически или социально наиболее важная в данной ситуации.

В интегративной деятельности условно выделяют 4 основных уровня:

1. Интеграция на уровне рецептора. Рецептор, воспринимая информацию, осуществляет ее первичный отбор по интенсивности, продолжительности, модальности и формирует нервные импульсы.

2. Интегративная деятельность нейрона – это способность нейрона воспринимать возбуждение и торможение, обрабатывать их с учетом генетической и приобретенной памяти нейрона и вырабатывать временную последовательность потенциалов действия. Интегративная деятельность нейрона базируется на конвергентных свойствах нейрона и его структурных изменениях, лежащих в основе обучения и памяти.

3. Интеграция на уровне центра. Нервный центр – это совокупность нервных клеток, расположенных на различных уровнях ЦНС и обеспечивающих определенную физиологическую реакцию организма. Иерархический принцип строения нервных центров создает возможность тонко дифференцировать ответные реакции.

Свойства нервных центров обусловлены свойствами нейронов, центральных синапсов и типами связей между нейронами. Для нервных центров характерны:

· высокий аэробный обмен веществ и высокая чувствительность к гипоксии;

· чувствительность к фармакологическим препаратам;

· меньшая возбудимость, чем у нервных волокон;

· односторонняя передача возбуждения;

· последействие (продолжение рефлекса после прекращения действия раздражителя);

· суммация (способность центральных синапсов к суммации допороговых импульсов и явлениями облегчения и конвергенции).

4. Межцентральная интеграция обеспечивает согласование деятельности различных нервных центров и формирование сложных поведенческих, эмоциональных и адаптивных реакций, организовывая деятельность организма как единого целого.

В естественных условиях любой рефлекторный акт является результатом интегративной деятельности. В основе интегративной деятельности ЦНС лежат механизмы координации.

Координация – это согласованное взаимодействие процессов возбуждения и торможения в ЦНС. Координация процессов в нервных центрах происходит при осуществлении любого рефлекторного акта. Этот процесс базируется на принципах конвергенции, дивергенции и обратной связи (рисунок 13).

Конвергенция – схождение различных путей (тормозящих, возбуждающих) проведения нервных импульсов на одной нервной клетке. Это обуславливает интегративную функцию нейрона. Принцип конвергенции лежит в основе таких процессов, как общий конечный путь, пространственная суммация и окклюзия (см. ниже).

Дивергенция – это способность нейрона устанавливать многочисленные синаптические связи с другими нервными клетками. Благодаря процессу дивергенции один нейрон может участвовать в различных нервных реакциях и контролировать большое число других нейронов, а также каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.

Рис. 13. Схема дивергенции (А) и конвергенции (Б) сигналов в ЦНС. Схематически изображены нервные клетки, их аксоны и образуемые ими синапсы. Стрелки отмечают направление передачи сенсорной информации

Обратные связи – поступление нервных импульсов в ЦНС с иннервируемого органа или клетки. Обратные связи разделяют на центральные (кольцевой тип связи между нейронами) и рефлекторные (импульсы возвращаются в нервный центр с рецепторов иннервируемого органа). По эффекту обратные связи могут быть положительными и отрицательными.

В нервные центры от рецепторов обычно поступает ритмическая импульсация. При этом ответная реакция ЦНС не всегда линейно зависит от силы и частоты раздражителя. В нервных центрах можно наблюдать явление суммации допороговых стимулов и окклюзии сверхпороговых.

Суммация. Различают пространственную и последовательную суммацию. Последовательная суммация возникает при ритмической стимуляции одного рецептивного поля. В основе ее лежит механизм облегчения. Пространственная суммация допороговых стимулов происходит при одновременной стимуляции различных рецептивных полей. Она базируется на принципах облегчения и конвергенции.

Окклюзия- это процесс, при котором общая ответная реакция нервных центров на сверхпороговые стимулы меньше, чем алгебраическая сумма раздельных эффекторов каждого. Последовательная окклюзия происходит при быстрой повторной стимуляции нейрона. При этом нейрон не воспроизводит все поступающие к нему сигналы, в результате чего происходит уменьшение сильных сигналов.

В основе пространственной окклюзии лежит процесс конвергенции, который приводит к уменьшению количества суммарнореагирующих нейронов.

Различные рефлекторные реакции могут взаимодействовать между собой. Примером такого взаимодействия являются феномены иррадиации возбуждения, доминанта и принцип общего конечного пути.

Общий конечный путь. Данный принцип введен в физиологию Ч. Шеррингтоном и основан на способности различных проводящих путей создавать синаптические контакты на одной и той же эффекторной клетке. В основе этого лежит принцип конвергенции. К мотонейронам спинного мозга кроме первичных афферентных волокон конвергируют волокна различных нисходящих трактов, идущих из центральных структур мозга, а также аксоны возбуждающих и тормозных вставочных нейронов спинного мозга. Вследствие этого Ч. Шеррингтон именно мотонейроны рассматривал как общий конечный путь многочисленных структур мозга, связанных с регуляцией моторных функций. Принцип общего конечного пути показывает, каким образом одна и та же конечная реакция может быть получена при раздражении различных структур мозга. Этот принцип имеет важное значение для анализа рефлекторной деятельности нервной системы.

Иррадиация возбуждения – это широкое распространение возбуждения по различным нервным центрам. В основе этого процесса лежит большая продолжительность и сила поступающих стимулов в ЦНС, высокая возбудимость нейронов и ослабление центрального торможения. Механизм иррадиации – дивергенция.

Иррадиация возбуждения по нервным центрам способствует возможности одних нейронов участвовать в различных нервных реакциях и контролировать деятельность других нейронов. Однако иррадиация возбуждения может стать патологической в связи с возникновением сильного очага возбуждения и с изменением свойств нервной ткани, усиливающим распространение возбуждения по ней, как это бывает при эпилепсии.

Доминанта – временно господствующий очаг возбуждения в ЦНС, обуславливающий интегральный характер функционирования нервных центров в каждый данный период времени и определяющий целесообразное поведение человека.

Доминантный очаг возбуждения притягивает к себе возбуждение из других нервных центров и одновременно подавляет их деятельность. Доминантный очаг обладает также и свойством притягивания сигналов с других рецептивных полей.

Доминанта может исчезнуть при возникновении более сильной доминанты, реализации доминантного рефлекса или ее затухания в следствие истощения энергетических ресурсов.

Различают следующие виды доминанты: физиологическую и патологическую. Физиологическая доминанта обусловлена биологическими и социальными потребностями (мотивами). Патологическая – проявляется в виде вредных привычек (табакокурение, алкоголизм, наркомания) или при психических расстройствах.

И. П. Павлов указывал также на то, что принцип доминанты лежит в основе формирования временной функциональной связи (условного рефлекса). Таким образом, явление доминанты является одним из важнейших принципов работы ЦНС.

Тема 3. Частная физиология центральной нервной системы.

Вопросы для самоподготовки.

2. Функции спинного мозга.

2.1. Проводниковая функция (проводящие пути спинного мозга).

2.2. Рефлекторная функция. Рефлексы спинного мозга.

2.3. Спинальный шок.

II. Продолговатый мозг.

1. Строение продолговатого мозга (границы, пирамиды, оливы, особенности расположения белого и серого вещества, ядра продолговатого мозга).

2. Функции продолговатого мозга.

2.1. Проводниковая функция продолговатого мозга.

2.2. Рефлекторная деятельность продолговатого мозга:

- центры жизненноважных рефлексов (дыхательный, сердечно-сосудистый);

- защитные рефлексы (мигание, чихание, кашель, рвотный акт и др.);

- рефлексы, связанные с пищеварительной деятельностью (глотание, отделение пищеварительных соков и др.);

- рефлексы, связанные с функциями ядер черепно-мозговых нервов, расположенных в продолговатом мозге (в том числе и вегетативные);

3. Участие продолговатого мозга в регуляции мышечного тонуса и рефлексов позы.

III. Средний мозг.

1. Строение среднего мозга (границы, ядра).

2. Функции среднего мозга.

2.1. Проводниковая функция.

2.2. Рефлекторная деятельность среднего мозга:

- роль красных ядер и черной субстанции в распределении мышечного тонуса (синдром Паркинсона и децеребрационная ригидность).

3. Роль среднего мозга в сохранении нормального положения тела в пространстве (выпрямительные и статокинетические рефлексы).

IV. Ретикулярная формация ствола мозга.

- строение РФ (расположение, ядра РФ, афферентные и эфферентные связи, виды нейрональных контактов);

- функции РФ (контроль сна и бодрствования, участие в регуляции вегетативных функций, фазный и тонический мышечный контроль, участие в механизмах формирования целостных условно -рефлекторных реакций организма).

1. Строение мозжечка (червь, полушария, кора и белое вещество, ножки, ядра; связи мозжечка с другими структурами ЦНС).

2. Функции мозжечка:

- участие в координации движений;

- регуляция мышечного тонуса;

- сохранение позы и равновесия тела;

- участие в регуляции вегетативных функций (функций внутренних органов);

- влияние мозжечка на образование условных рефлексов.

3. Симптомы нарушения функций мозжечка (астазия, атаксия, астения, атония, дистония и др.).

VI. Промежуточный мозг.

1. Составные части промежуточного мозга (эпиталамус, метаталамус, таламус и гипоталамус).

2.1. Нейронная организация.

2.1. Функции таламуса:

- роль специфических (переключательных и ассоциативных) ядер, моторных и неспецифических ядер;

- регуляция важных физиологических состояний (смена сна и бодрствования, сохранение сознания, развитие процессов внутреннего торможения и др.).

3.1. Нейронная организация.

3.2. Афферентные и эфферентные связи гипоталамуса.

3.3. Функции гипоталамуса:

- роль гипоталамуса в регуляции вегетативных функций;

- участие в регуляции поведенческих реакций;

3.4. Функциональные расстройства у людей с повреждениями гипоталамуса.

VII. Базальные ядра.

1. Структуры, входящие в состав базальных ядер и их связи.

2. Функции базальных ядер:

- обеспечение миостатических реакций (плавности движений);

- обеспечение автоматизма движений – бессознательного их выполнения;

- обеспечение движения мимических мышц и участие в формировании эмоциональных реакций;

- формирование защитных ориентировочных рефлексов.

3. Патофизиология базальных ганглиев:

- гипофункция медиаторных систем (болезнь Паркинсона);

- гиперфункциональные симптомы (ригидность, баллизм, атетоз, хорея, тремор).

VIII. Кора больших полушарий.

1. Организация коры больших полушарий (клеточные слои, доли, области, поля).

2. Древняя и старая кора.

2.1. Структуры, входящие в состав (обонятельный мозг и лимбическая область).

2.2. Функции древней и старой коры:

- обеспечение реакций настораживания и внимания;

- регуляция вегетативных функций;

- осуществление видоспецифического (инстинктивного) поведения;

- осуществление социального поведения;

- участие в процессах сохранения памяти.

3. Функции новой коры.

3.1. Чувствительные зоны коры большого полушария.

3.2. Моторные зоны коры большого полушария.

3.3. Электрические явления в коре больших полушарий (электроэнцефалография – ЭЭГ).

Координационная деятельность ЦНС - это согласование деятельности различных отделов ЦНС с помощью упорядочения распространения возбуждения между ними. Основой координаци­онной деятельности является взаимодействие процессов возбуж­дения и торможения. Если выключить один из этих процессов, дея­тельность организма нарушается. Например, при блокаде в эксперименте процессов возбуждения в ЦНС у лягушки с помощью эфира лягушка становится обездвиженной, ее мышцы теряют то­нус. Активность лягушки полностью нарушается. Если выключить процесс торможения в ЦНС, например, введением стрихнина (бло-катора постсинаптического торможения), деятельность животно­го также становится нарушенной, но уже по другой причине - в результате беспрепятственной иррадиации по ЦНС процессов воз­буждения. В этом случае нарушается двигательная активность из-за расстройства элементарных координации на уровне спинного мозга, ответственных за поочередное возбуждение и торможение спинальных мотонейронов, контролирующих работу мышц. Основ­ными факторами, обеспечивающими координационную деятель­ность ЦНС, являются следующие.

1. Фактор структурно-функциональной связи это на­личие между отделами ЦНС, между ЦНС и различными органами функциональной связи, обеспечивающей преимущественное рас­пространение возбуждения между ними. Имеется три варианта подобной связи.

Прямая связь — управление другим центром (ядром) или рабо­чим органом с помощью посылки к ним эфферентных импульсов (команд). Например, нейроны дыхательного центра продолговато­го мозга посылают импульсы к а-мотонейронам спинного мозга, от которых нервные импульсы поступают к дыхательным мышцам. Мозжечок посылает импульсы к ядрам ствола мозга.

Обратная связь (обратная афферентация) - управление не­рвным центром или рабочим органом с помощью афферентных им­пульсов, поступающих от них. В данном случае центр имеет, есте­ственно, и прямую связь с образованиями, функцию которых контролирует, но обратная афферентация делает прямую связь бо­лее совершенной в функциональном отношении (принцип обрат­ной связи в регуляции функций организма). Если нарушить пря­мую связь центра с регулируемым центром или органом, то управление становится вообще невозможным. Если же нарушить только обратную связь, управление сильно страдает. Деафферен-тация, например, конечности ведет к нарушению управления ею.

Реципрокная (сочетанная) связь - вид функциональной свя­зи на уровне структур ЦНС, обеспечивающий торможение центра-антагониста (рис. 5.13) при возбуждении центра-агониста. Напри­мер, при вызове сгибательного рефлекса конечности импульсы от рефлексогенной зоны (кожи) поступают через вставочные возбуж­дающие нейроны к мотонейронам центра мышц-сгибателей, а также одновременно к центру-антагонисту (мышц-разгибателей), но с включением на пути тормозного нейрона, который образует тор­мозной синапс на нейронах центра-разгибателя. Мышцы-разгиба­тели поэтому не сокращаются и не препятствуют сгибанию конеч­ности. Реципрокные ^взаимоотношения между центрами встречаются довольно широко. Так, при возбуждении центра гло­тания тормозится центр жевания, рефлекс глотания тормозит вдох, возбуждение центра вдоха тормозит центр выдоха.

2. Фактор субординации подчинение нижележащих отде­лов ЦНС вышележащим. Например, пирамидные клетки коры боль­шого мозга, нейроны красного ядра управляют активностью а- и у-мотонейронов спинного мозга. В процессе эволюции наблюдается тенденция к увеличению роли вышележащих отделов головного моз­га в обеспечении координированной деятельности нижележащих центров (цефализация), причем с преобладанием тормозных влия-


ний. Восходящие влияния оказываются преимущественно возбуж­дающими.

3. Фактор силы. Известно, что к одному и тому же центру мо­гут подходить пути от различных рефлексогенных зон <принцип общего конечного пути). В случае их одномоментной активации центр реагирует на более сильное возбуждение.

4. Одностороннее проведение возбуждения в химических синапсах ЦНС способствует упорядочению распространения воз­буждения, ограничивая иррадиацию возбуждения в ЦНС.

5. Синаптическое облегчение участвует в процессах обеспе­чения координационной деятельности ЦНС при выработке навы­ков. Недостаточно координированные движения в начале выработки навыка постепенно становятся более точными - координирован­ными. Дополнительные, ненужные движения постепенно устраня­ются. Возбуждение распространяется в ЦНС быстрее по проторен­ным путям, возбудимость которых повышена (см. раздел 7.9).

6. Доминанта играет важную роль в координационной деятель­ности ЦНС. Как было отмечено выше (см. раздел 7.9), доминанта -это стойкий, господствующий очаг возбуждения, подчиняющий себе активность других нервных центров. Доминантное состояние дви-

гательных центров обеспечивает автоматизированное выполнение двигательных актов, например, в процессе трудовой деятельности человека, при выполнении гимнастических элементов.

Координационная деятельность (КД) ЦНС представляет собой согласованную работу нейронов ЦНС, основанную на взаимодействии нейронов между собой.

Функции КД:

1) обеспечивает четкое выполнение определенных функций, рефлексов;

2) обеспечивает последовательное включение в работу различных нервных центров для обеспечения сложных форм деятельности;

3) обеспечивает согласованную работу различных нервных центров (при акте глотания в момент глотания задерживается дыхание, при возбуждении центра глотания тормозится центр дыхания).

Основные принципы КД ЦНС и их нейронные механизмы.

1. Принцип иррадиации (распространения). При возбуждении небольших групп нейронов возбуждение распространяется на значительное количество нейронов. Иррадиация объясняется:

1) наличием ветвистых окончаний аксонов и дендритов, за счет разветвлений импульсы распространяются на большое количество нейронов;

2) наличием вставочных нейронов в ЦНС, которые обеспечивают передачу импульсов от клетки к клетке. Иррадиация имеет границы, которая обеспечивается тормозным нейроном.

2. Принцип конвергенции. При возбуждении большого количества нейронов возбуждение может сходиться к одной группе нервных клеток.

3. Принцип реципрокности – согласованная работа нервных центров, особенно у противоположных рефлексов (сгибание, разгибание и т. д.).

4. Принцип доминанты. Доминанта– господствующий очаг возбуждения в ЦНС в данный момент. Это очаг стойкого, неколеблющегося, нераспространяющегося возбуждения. Он имеет определенные свойства: подавляет активность других нервных центров, имеет повышенную возбудимость, притягивает нервные импульсы из других очагов, суммирует нервные импульсы. Очаги доминанты бывают двух видов: экзогенного происхождения (вызванные факторами внешней среды) и эндогенными (вызванные факторами внутренней среды). Доминанта лежит в основе формирования условного рефлекса.

5. Принцип обратной связи. Обратная связь – поток импульсов в нервную систему, который информирует ЦНС о том, как осуществляется ответная реакция, достаточна она или нет. Различают два вида обратной связи:

1) положительная обратная связь, вызывающая усиление ответной реакции со стороны нервной системы. Лежит в основе порочного круга, который приводит к развитию заболеваний;

2) отрицательная обратная связь, снижающая активность нейронов ЦНС и ответную реакцию. Лежит в основе саморегуляции.

6. Принцип субординации. В ЦНС существует определенная подчиненность отделов друг другу, высшим отделом является кора головного мозга.

7. Принцип взаимодействия процессов возбуждения и торможения. ЦНС координирует процессы возбуждения и торможения:

оба процесса способны к конвергенции, процесс возбуждения и в меньшей степени торможения способны к иррадиации. Торможение и возбуждение связаны индукционными взаимоотношениями. Процесс возбуждения индуцирует торможение, и наоборот. Различаются два вида индукции:

1) последовательная. Процесс возбуждения и торможения сменяют друг друга по времени;

2) взаимная. Одновременно существует два процесса – возбуждения и торможения. Взаимная индукция осуществляется путем положительной и отрицательной взаимной индукции: если в группе нейронов возникает торможение, то вокруг него возникают очаги возбуждения (положительная взаимная индукция), и наоборот.

По определению И. П. Павлова, возбуждение и торможение – это две стороны одного и того же процесса. Координационная деятельность ЦНС обеспечивает четкое взаимодействие между отдельными нервными клетками и отдельными группами нервных клеток. Выделяют три уровня интеграции.

Первый уровень обеспечивается за счет того, что на теле одного нейрона могут сходиться импульсы от разных нейронов, в результате происходит или суммирование, или снижение возбуждения.

Второй уровень обеспечивает взаимодействиями между отдельными группами клеток.

Третий уровень обеспечивается клетками коры головного мозга, которые способствуют более совершенному уровню приспособления деятельности ЦНС к потребностям организма.

Виды торможения, взаимодействие процессов возбуждения и торможения в ЦНС. Опыт И. М. Сеченова

Торможение– активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет.

Торможение может развиваться только в форме локального ответа.

Выделяют два типа торможения:

1) первичное. Для его возникновения необходимо наличие специальных тормозных нейронов. Торможение возникает первично без предшествующего возбуждения под воздействием тормозного медиатора. Различают два вида первичного торможения:

а) пресинаптическое в аксо-аксональном синапсе;

б) постсинаптическое в аксодендрическом синапсе.

2) вторичное. Не требует специальных тормозных структур, возникает в результате изменения функциональной активности обычных возбудимых структур, всегда связано с процессом возбуждения. Виды вторичного торможения:

а) запредельное, возникающее при большом потоке информации, поступающей в клетку. Поток информации лежит за пределами работоспособности нейрона;

б) пессимальное, возникающее при высокой частоте раздражения;

в) парабиотическое, возникающее при сильно и длительно действующем раздражении;

г) торможение вслед за возбуждением, возникающее вследствие снижения функционального состояния нейронов после возбуждения;

д) торможение по принципу отрицательной индукции;

е) торможение условных рефлексов.

Процессы возбуждения и торможения тесно связаны между собой, протекают одновременно и являются различными проявлениями единого процесса. Очаги возбуждения и торможения подвижны, охватывают большие или меньшие области нейронных популяций и могут быть более или менее выраженными. Возбуждение непременно сменяется торможением, и наоборот, т. е. между торможением и возбуждением существуют индукционные отношения.

Торможение лежит в основе координации движений, обеспечивает защиту центральных нейронов от перевозбуждения. Торможение в ЦНС может возникать при одновременном поступлении в спинной мозг нервных импульсов различной силы с нескольких раздражителей. Более сильное раздражение тормозит рефлексы, которые должны были наступать в ответ на более слабые.

В 1862 г. И. М. Сеченов открыл явление центрального торможения. Он доказал в своем опыте, что раздражение кристалликом хлорида натрия зрительных бугров лягушки (большие полушария головного мозга удалены) вызывает торможение рефлексов спинного мозга. После устранения раздражителя рефлекторная деятельность спинного мозга восстанавливалась. Результат этого опыта позволил И. М. Сеченому сделать заключение, что в ЦНС наряду с процессом возбуждения развивается процесс торможения, который способен угнетать рефлекторные акты организма. Н. Е. Введенский высказал предположение, что в основе явления торможения лежит принцип отрицательной индукции: более возбудимый участок в ЦНС тормозит активность менее возбудимых участков.

Современная трактовка опыта И. М. Сеченова (И. М. Сеченов раздражал ретикулярную формацию ствола мозга): возбуждение ретикулярной формации повышает активность тормозных нейронов спинного мозга – клеток Реншоу, что приводит к торможению α-мотонейронов спинного мозга и угнетает рефлекторную деятельность спинного мозга.

Методы изучения ЦНС

Существуют два большие группы методов изучения ЦНС:

1) экспериментальный метод, который проводится на животных;

2) клинический метод, который применим к человеку.

К числу экспериментальных методовклассической физиологии относятся методы, направленные на активацию или подавление изучаемого нервного образования. К ним относятся:

1) метод поперечной перерезки ЦНС на различных уровнях;

2) метод экстирпации (удаления различных отделов, денервации органа);

3) метод раздражения путем активирования (адекватное раздражение – раздражение электрическим импульсом, схожим с нервным; неадекватное раздражение – раздражение химическими соединениями, градуируемое раздражение электрическим током) или подавления (блокирования передачи возбуждения под действием холода, химических агентов, постоянного тока);

4) наблюдение (один из старейших, не утративших своего значения метод изучения функционирования ЦНС. Он может быть использован самостоятельно, чаще используется в сочетании с другими методами).

Экспериментальные методы при проведении опыта часто сочетаются друг с другом.

Клинический методнаправлен на изучение физиологического состояния ЦНС у человека. Он включает в себя следующие методы:

2) метод регистрации и анализа электрических потенциалов головного мозга (электро-, пневмо-, магнитоэнцефалография);

3) метод радиоизотопов (исследует нейрогуморальные регуляторные системы);

4) условно-рефлекторный метод (изучает функции коры головного мозга в механизме обучения, развития адаптационного поведения);

5) метод анкетирования (оценивает интегративные функции коры головного мозга);

6) метод моделирования (математического моделирования, физического и т. д.). Моделью является искусственно созданный механизм, который имеет определенное функциональное подобие с исследуемым механизмом организма человека;

7) кибернетический метод (изучает процессы управления и связи в нервной системе). Направлен на изучение организации (системных свойств нервной системы на различных уровнях), управления (отбора и реализации воздействий, необходимых для обеспечения работы органа или системы), информационной деятельности (способности воспринимать и перерабатывать информацию – импульс в целях приспособления организма к изменениям окружающей среды).

Последнее изменение этой страницы: 2016-04-23; Нарушение авторского права страницы

Координационная функция ЦНС

Под координационной деятельностью ЦНС подразумевается согласованная и соподчиненная деятельность нервных центров, направленная на достижение полезного результата. В основу координационной деятельности ЦНС положено несколько принципов:

принцип общего конечного пути;

принцип проторения пути;

принцип обратной связи;

Принцип общего конечного пути. Сущность этого принципа заключается в конвергенции, когда на каком-либо одном нейроне или нервном центре сходятся несколько терминалей из других отделов ЦНС. Так, например, к одному мотонейрону подходят коллатерали аксонов первичных афферентов, спинальных интернейронов, нисходящих путей из стволовой части мозга и коры. Все эти терминальные окончания образуют на мотонейроне возбуждающие и тормозные синапсы и формируют конвергентную воронку, суженная часть которой и представляет собой мотонейрон. Суть этого механизма была раскрыта английским физиологом Ч. Шеррингтоном, который сформулировал принцип общего конечного пути. Согласно его представлениям, количественное преобладание чувствительных и других приходящих волокон над двигательными создает неизбежное столкновение импульсов в общем конечном пути, которым является группа мотонейронов и иннервируемые ими мышцы. Благодаря такому столкновению достигается блокирование всех воздействий, кроме одного, которое и регулирует протекание рефлекторной реакции. Принцип общего конечного пути, как один из принципов координации, применяется не только для спинного мозга, но и для любого другого отдела ЦНС.

Принцип реципрокности. Данный принцип отражает характер взаимоотношений между центрами, ответственными за осуществление противоположных функций. Классическим примером является активация проприорецепторов мышцы-сгибателя, которая одновременно возбуждает мотонейроны мышцы-сгибателя и тормозит через вставочные тормозные нейроны мотонейроны мышцы-разгибателя. Следовательно, в основу реципрокных отношений положено реципрокное торможение, которое играет важную роль в автоматической координации двигательных актов.

Интегративная функция ЦНС

Интегративная функция ЦНС заключается в соподчинении и объединении всех функциональных элементов организма в целостную систему, обладающую определенной направленностью действий. В осуществлении интегративной функции принимают участие различные уровни организации ЦНС. Для осуществления интегративной деятельности необходима координированная работа различных нейронов и нервных центров. Следовательно, координация и интеграция являются двумя одновременно протекающими и тесно взаимосвязанными процессами. В интеграционных процессах выделяют:

уровень микросистем нейронов;

уровень нервных центров;

уровень больших интегративных систем.

Интегративная функция на уровне нейрона. Функциональной единицей ЦНС является нейрон, клеточная мембрана которого представляет область интеграции синоптических влияний. Этот уровень будет являться первым и осуществляется он в результате взаимодействия ВПСП и ТПСП, которые генерируются при активации синоптических входов нейрона. Если входы на нейрон активируются одновременно, то происходит суммация постсинаптических потенциалов, что и является основой интеграции. Конвергенция возбуждающих и тормозных входов на мембране нейрона определяет частоту генерируемых им ПД и, следовательно, выступает в качестве универсального фактора интегративной деятельности нервной клетки. С современной точки зрения, нейрон представляет собой математическую модель простого процессора, имеющего несколько входов-дендритов и один выход-аксон. Входные сигналы, поступающие через дендриты, преобразуются нейроном в выходной сигнал, который распространяется по аксону с использованием трех функциональных блоков: 1) локальной памяти; 2) суммирования; 3) нелинейного преобразования.

Блок локальной памяти содержит информацию о весовых множителях, являющихся аналогом чувствительности пластических синаптических контактов. Выбором весов достигается та или иная интегральная функция нейрона.

Блок суммирования обеспечивает интеграцию синаптических влияний.

Блок нелинейного преобразования генерирует потенциал действия, то есть функцию с определенными параметрами, в том случае если параметры синаптических входов содержат необходимые данные.

Интегративная функция на уровне нервных центров. Нервный центр представляет собой совокупность образований различных уровней ЦНС, интегрированная деятельность которых обеспечивает осуществление той или иной функции органов систем или целостного организма. В составе нервного центра имеет место относительно небольшое количество жестких, генетически детерминированных связей и очень большое количество гибких связей, которые формируются в процессе той или иной деятельности целостного организма. Генетические связи в большей степени характерны для ядра нервного центра, а гибкие - для периферии, хотя и в ядре и на периферии встречаются связи обоих типов. Поскольку активность организма проявляется несколькими функциями, сочетание которых постоянно меняется, то это требует выключения одних центров и включения других. Вследствие этого в ЦНС в каждый момент времени формируется определенный ансамбль нервных центров.

Интегративная функция на уровне объединения нервных центров. При морфологическом анализе выявлены определенные группы нервных центров, которые объединяются в системы мозг. причем каждая из этих систем выполняет определенные функции, отвечая за те или иные проявления жизнедеятельности целостного организма. Интеграция деятельности ЦНС осуществляется по нескольким морфофункциональным структурам:

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.