Квантово-волновые свойства нервных клеток

Надежды ученых на то, что сердечно-сосудистые заболевания, рак, психические расстройства и вирусные болезни будут поставлены под контроль уже в ближайшем будущем, пока не оправдались. Несмотря на современный научно-технический прогресс и разработанные десятками тысяч лекарственные препараты, продолжительность жизни и здоровья человека за последние десятилетия в развитых странах существенно не увеличивается, а в России - даже снижается. Появились и проблемы, связанные с применением медикаментов - использование в медицине всех этих лекарственных средств породило новые патологические состояния как лекарственная болезнь, иммунодефицит, аллергия и др.

Неслучайно поэтому, в последнее время явно повышается интерес к натуропатическим (природным) средствам повышения адаптационного потенциала (резерв здоровья), профилактики и лечения заболеваний человека. К таким средствам можно отнести предложенные нами ранее биоинформационные технологии дистанционного управления физиологическими функциями организма [12, 14] и предлагаемый в настоящей статье дистанционный способ управления здоровьем человека с помощью квантово- волновых физиологических технологий, скопированных у живой природы - нервных клеток коры головного мозга экспериментальных животных.

Интегральной причиной большинства опасных заболеваний (болезни ССС, рак и др.) является гипоксия - недостаточное снабжение кислородом клеток различных органов и нарушение из-за этого аэробной (кислородзависимой) энергопродукции. Так, при гипоксии, когда напряжение кислорода (Ро2) на мембране нейрона падает ниже 50% от исходного (нормального) его уровня, импульсная электрическая активность (ИЭА) прекращается и нервные клетки теряют свою главную функцию - управлять и обеспечивать нормальное течение физиологических процессов [10] в организме.

При этом гликолиз интенсифицируется, и клетки начинают неуправляемо расти, питательные вещества (сахара) быстро поглощаются, и соседние клетки начинают голодать. Этот процесс есть не что иное, как образование рака - в полном соответствии с биоэнергетической теорией происхождения злокачественных опухолей великого немецкого физиолога О. Варбурга [16].

Происхождение опасных заболеваний ССС (гипертония, инфаркт, инсульт) также связано с гипоксией - вследствие дефицита кислорода в нервных клетках головного мозга происходит повышение артериального давления [7].

Гипоксия вызывается ухудшением кровоснабжения тканей организма: уменьшение кровотока по артериям и артериолам из-за сужения их просвета, замедление процесса передачи кислорода эритроцитами клеткам тканей. Эти изменения кровеносных сосудов и эритроцитов в спонтанных условиях возникают из-за недостаточности концентрации углекислого газа в крови. Важно то, что физиологическим показателем состояния кровоснабжения тканей организма может быть процентное содержание углекислого газа в артериальной крови [1]. Следовательно, управление уровнем СО2 в артериальной крови человека - это ключ к управлению напряжением кислорода в клетках организма и, следовательно, его адаптационным потенциалом.

Оптимальная концентрация СО2 в артериальной крови, при которой снабжение жизненно важных органов кислородом осуществляется на 100% находится в пределах от 6 до 6,5% [7]. Концентрация СО2 от 4,5 до 4% считается зоной риска, а от 4 до 3,6% - зоной болезней. Дальнейшее ее снижение от 3,6 до 3% говорит о неизбежности возникновения опасных для жизни болезней, т.к. в этих условиях деструктивная роль АФК возрастает, а способность СО2 акцептировать радикалы (Н и ОН) и продукты гликирования снижается. Из этого следует, что концентрация СО2 в артериальной крови может быть важнейшим информационно-диагностическим показателем, а разработка эффективных способов ее нормализации может дать в руки врача надежный метод лечения тяжелых заболеваний человека, перед которыми современная медицина бессильна. Известно, что другого более яркого и конкретного показателя отличия между здоровыми и больными не существует [7].

ЭАС нейронов с инициируемыми ими электромагнитными колебаниями создают квантово-волновой компонент управления в любой биосистеме от макромолекулы до организма и биоценоза. Известно, что все физиологические и биохимические процессы по своей сущности проявляются по законам квантовой теории [6]. Отсюда следует, что дальнейшее развитие физиологической науки непосредственно связано с успехами квантово-волновой физиологии. От этого зависит и будущее здравоохранения, т.к. физиология для медицины играет такую же роль, какую физика играет для техники.

У контрольной группы фоновое значение концентрации СО2 равнялось 4,8%, что является допустимым, т.к. при этом степень кровоснабжения не ниже 80%. Обращает на себя внимание и то, что никто из контрольной группы (практически здоровых людей), по уровню СО2 не достигал нормы - 6%. Вполне возможно, что это зависит от негативных факторов низко- и среднегорья, где проживает основное население КБР, в том числе и участники настоящего исследования.

За время опыта (10 дней) и последействия (14) в контрольной группе наблюдались небольшие колебательные изменения концентрации СО2 в пределах от 0,1 до 0,3%. Здесь, видимо, играли роль спонтанные взаимодействия между экзо- и эндоэкологическими факторами, определяющими в конечном итоге все колебания и флуктуации физиологических процессов в организме.

Итак, установлено что, с помощью нейроробота реально возможно дистанционное управление уровнем СО2 в артериальной крови человека. В пользу этого говорит и характер изменений уровня СО2 в артериальной крови у обеих групп обследуемых людей. Фазы снижения, возрастания и стабилизации СО2 имеют общую направленность несмотря на то, что контрольная группа была удалена от нейроробота до 100 метров, а опытная группа находилась в 3-5 метрах от него. Нейроинформационные ЭАС могут действовать практически на любые расстояния как в организме и между организмами через электронно-возбужденные состояния, которые присутствуют в тканях [2], так и через космическую среду за счет индуцированного излучения (мазерный эффект) или посредством резонансной акустооптической дифракции (дифракция Рамана - Ната), а также Мандельштама - Бриллюэна рассеяния.

Существенное возрастание концентрации СО2 и стабилизация ее ритмики за короткий период времени под влиянием апробированных в настоящей работе режимов нейроробота имеют большое практическое значение, в первую очередь для различных систем здравоохранения.

Физико-химические аспекты механизма действия ЭАС и взаимодействия клеток (морфогенез) с их помощью обсуждались в работе известного биофизика С.Э. Шноля [15]. Важность этой работы для нашего случая состоит в том, что она является подтверждением факта существования физических свойств ЭАС, которые могли бы использоваться клетками для дальнодействия. Конкретные механизмы действия ЭАС нервных клеток на концентрацию СО2 в крови нами изучаются. Полученные в настоящее время результаты опытов говорят, что ЭАС нейрона - это биофизическое оружие самообороны нервных клеток от агрессии активных форм кислорода (АФК). Так, в полярографии известно, что молекулярный кислород, растворенный в электролите и находящийся в равновесии с кислородом воздуха, легко восстанавливается на катоде [3]. При этом в электрохимической ячейке появляются продукты одноэлектронного восстановления кислорода О2 º¯ , НО2 ¯ , Н°, Н2О2, ● ОН, ОН¯ и другие, известные в биологической литературе как активные формы кислорода (АФК). Следовательно, полярографическая электрохимическая ячейка является удачной моделью для изучения процессов восстановления кислорода и образования АФК в биосистемах, в том числе в клетках и тканях.

Разработанная нами ранее [10] технология скоростной ультрамикроэлектродной (d рабочего электрода º¯ (Е1/2= -0,1в), Н2О21/2= -0,6в) и ● ОН/ ОН¯ (Е1/2= -0,9в). Действие испытуемых ЭАС на электрохимическую модель АФК до 5 минут приводило к снижению уровня О2 º¯ на 35%, Н2О2 - на 53%, а продуктов восстановления Н2О2 до следовых концентраций (рис. 3).


_____ условия нормы, ----- через 5 минут воздействия ЭАС

Аналогичные изменения АФК под влиянием ЭАС в гипоксической мышечной ткани [13] приводили к нормализации напряжения кислорода и биоэлектрической активности. Следовательно, ЭАС могут нормализовать уровень АФК в ткани организма путем имитирования СОД и каталазы - ферментов антиоксидантной защиты, а также и защитить клетки от ● ОН - основного агрессора из всего комплекса АФК.

Таким образом, одним из главных механизмов действия квантово-волновых свойств нервных клеток в виде испытуемых нами ЭАС, может быть именно нормализация уровня АФК - возрастание благотворной роли активных форм кислорода [2]. За этим, как правило, следует нормализация продуктов кислородного метаболизма в клетках, в том числе и концентрации СО2 - основного физиологического регулятора просвета кровеносных сосудов, определяющего здоровья и долголетия человека.

Итак, нормализация кровотока через расширившиеся микрососуды приводит к снятию состояния гипоксии - кислородного голодания клеток. В результате этого клетки организма начинают в полной мере выполнять свои физиологические функции. Одно из главнейших следствий восстановления обеспечения кислородом всех клеток - повышение иммунного статуса организма. Иммунная система состоит из клеток, а первейшее условие их нормальной работы - нормальное обеспечение кислородом [7]. Именно путем нормализации кислородного режима головного мозга мы добились снижения смертности больных внутричерепными злокачественными опухолями на 46% [11]. Получается так, что правы ученые [5], которые предлагают стратегию поиска новых терапевтических подходов по лечению рака перенести из области изучения и воздействия на геном клетки на область изучения и воздействия на метаболический статус клетки, т.к. такой подход позволяет реализовать большее количество регуляторных связей, что повышает надежды на успех.

Действительно, геном дрозофилы содержит около 20 тысяч генов, а геном человека - около 60 тысяч [4], т.е. число генов различается всего в 3 раза, несмотря на очевидное различие в сложности организации между человеком и дрозофилой. Также известно [4], что ДНК человека содержит лишь немногим больше 800 мб информации (примерно на одну CD матрицу). Трудно представить себе, чтобы такое количество информации исчерпывающе описывало всю сложность человеческого организма, особенно учитывая, что 90% ДНК человека - сателлитная ДНК [4]. Поэтому в реализации физиологических функций крайне сложного организма человека (в среднем 200 млрд. клеток, в одной клетке > 40 млрд. элементов, [8]) ведущую роль играют функции нейронных ансамблей, которые осуществляются не только с помощью рефлекторной и гуморальной регуляции, а только при конвергенции волнового и импульсно-квантового процесса. Детальная разработка квантово-волновой теории организации и управления функциями организма дает предпосылки для перехода на новый уровень познания физиологических процессов и развития нового направления в физиологии человека и животных - квантово-волновой физиологии. Успехи в этом направлении, о чем говорят результаты настоящей работы, будут иметь большое значение для систем здравоохранения и создания новых технологий биомедицинского, промышленно-товарного и оборонного назначения.

Работа выполнена при поддержке гранта РФФИ №09-04-96512

1>. Возбудимость – фундаментальное природное свойство нерв­ных и мышечных клеток и тканей, проявляется в виде изменения электрической активности, генерации электромагнитного поля вокруг нейронов, целого мозга и мышц, изменения скорости проведения волны возбуждения по нервным и мышечным волокнам под воз­дей­ствием стимулов различной энерге­тиче­ской природы: механической, химической, термодинамиче­ской, лу­чистой, электрической, магнети­ческой и психической.

Возбудимость в нейронах проявляется в не­скольких формах возбуждения или ритмов электрической активности:

1/ Потенциалов относительного покоя (пп) при отрица­тельном заряде мембраны нейрона,

2/ возбуждающих и тормозных потенциалов постсинаптических мембран (ВПСП и ТПСП)

3/ Распространяющихся потенциалов действия (пд), суммирующих энергию потоков афферентных импульсов, поступающих через мно­жество дендритных синапсов и приводящих мембрану к положительному заряду.

Посредники передачи возбуждающих или тормозных сигналов в химических синапсах – медиаторы, спе­цифические активаторы и регуляторы трансмембранных ионных то­ков.

Они синтезируются в телах или окончаниях нейронов, обладают дифференцированными биохимическими эффектами во взаимодейст­вии с мембранными рецепторами и отличаются по своим информаци­онным влияниям на нервные процессы различных отделов мозга.

Возбудимость различна в структурах мозга, отличающихся своими функциями, своей реактивностью, ролью в регуляции жизне­деятельности организма. Ее пределы оцениваются порогами интен­сивности и длительности внешней стимуляции.

Порог – это мини­мальная сила и время сти­му­лирующего энергетического воздействия, вызывающего ощутимую ответную ре­ак­цию ткани– развитие элек­трического процесса возбуждения.

Для сравнения укажем соотноше­ние порогов и качества возбудимости нервной и мышечной тканей:

Ткани

Порог

Возбудимость

более высокая

> низкая (требует > сильной стимуляции)

Заряд мембраны зависит от скопления на ней отрицательно или положительно заряженных ионов. Процесс возбуждения и вхождение в клетку положительно заряженных ионов Na изменяет заряд мембраны с отрицательного на положительный в виде её деполяризации. Предельное энергетическое насыщение нейрона и достижение порога его функционально значимой возбудимости приводит к инверсии и реполяризации, которая восстанавливает прежнее электровозбудимое состояние клетки после волны следовых процессов.

2>. Проводимость – способность избирательно и однонаправ­ленно распространять волны возбуждения, энергию и информацию с токами ионной плазмы вследствие генерации импульсов активиро­ванными нейронами. Характер распространения возбуждения в структурах мозга определяется: 1/ наличием различных типов хими­ческих синапсов с односторонним проведением потока ионов;

2/ строением нейронных сетей с многократными ветвлениями аксо­нов;

3/ связями аксонных терминалей с различными функциональ­ными комплексами мозга.

2/ медлен­нопроводящие, тонкие аксоны без миэлиновой оболочки, отходящие от небольших по размеру нейронов.

3>. Способность кодировать, накапливать, перерабатывать информацию посредством заданного импульсно-частотного кода. Память нейронов содержит коды, которые определяют порядок и принципы преобразования (расшифровки, интерпретации) информации о пространственно-временных характеристиках внешних или внутри­центральных стимулов – их амплитуде, форме и длительности и позволяет формировать информационные паттерны – смысловые матрицы для функциональ­ных ответов нейронных сетей и нервных центров.

Кодирование и переработка информа­ции, поступающей в мозг, осуществляется разными, соподчиненными системами нейронных сетей и использует квантово-волновые меха­низмы электронного уровня организации функций.

В этой энерго-информационной среде мозг действует как ис­полнительный инструмент индивидуального сознания и разума, намерений индивидуума, его мыслей, мотивации конкретной деятельности.

ПСИХОЛОГИЧЕСКИЙ КОММЕНТАРИЙ

1/ Электрическую активность нейронов следует рассматривать не только как выражение физиологической реакции на приток заряжен­ных ионов через синапсы, но как форму целесообразного, закодиро­ванного поведения функциональных единиц ЦНС, которое подчинено интересам деятельности целого мозга, закономерному порядку, установленному для жизнедеятельности всего организма. Вместе с тем, параметры электрической активности, биоритмы мозга, выражают сознательное отношение каждого нейрона или ансамблей нейронов к нюансам конкретной ситуации управления жизнедеятельностью.

2/ Нейрон обладает дифференцированным сознанием, как любая дру­гая индивидуализированная материальная форма – частица абсолют­ной первичной, сознательной Реальности. Его сознательное поведение определено изначально приданными нейрону структурными, метаболическими, функцио­нальными и информационными свойствами.

3/ Электрическое взаимодействие между нейронами создаёт электро­магнитные поля, вовлекает в активное соучастие плотную мозговую ткань и тонкие, электронные уровни ментальных процессов – пред­сознания, подсознания, сознания и сверхсознания индивидуума.

Благодаря квантово-волновой природе энергетического и информа­ционного обмена, постоянной интерференции (наложения) волновых пакетов, нейроны мозга служат микропроцессорами ментальных по­рождений замыслов сознания, его позитивных или негативных воз­действий на материальные объекты, в том числе на молекулярные аг­регаты ДНК, клеточную память, функции телесных тканей и органов самого обладателя мозга.

Функциональные взаимодействия ней­ронов опосредованы всепроницающими и всеобъединяющими по­лями сознания.

Геносистематика в основном изучает нуклеотидные последовательности фрагментов ДНК (например, генов) и на этой основе судят о родстве организмов. Методы геносистематики . - это часть методов молекулярной биологии нуклеиновых кислот, и поэтому ее задачи могли и могут решаться во многих лабораториях. Показано, что сотнями ученых осуществлено свыше тысячи геносистематических исследований. Однако удалось выявить очень мало исследовательских групп, постоянно решавших такие задачи и формировавшихся в следствие предпочтения тех или иных методов иди интереса к той иди иной группе организмов. Задачи геносистематики.- реконструкции отношений сходства организмов на базе сравнений их генетических текстов. Именно этот круг задач отличает ее от методически и логически сходных с нею разделов молекулярной биологии - изучения -функциональной организации и внутригеномной систематики генетических текстов. Определение места геносистематики в общей системе биологических знаний - неоходимый этап исследования ее истории. История геносистематики может служить моделью развития области знаний, формировавшейся в процессе сложных междисциплинарных взаимодействий.

Факторы надежности клеточного организма. Квантово-волновые свойства нервных клеток.

Факторы надежности физиологических систем – процессы, способствующие поддержанию жизнедеятельности системы в сложных условиях окружающей среды. К факторам надежности физиологических систем относят

· Дублирование в физиологических системах;

· Резерв структурных элементов в органе и их функциональная мобильность;

· Регенерация поврежденной части органа или ткани и синтез новых структурных элементов;

· Совершенствование структуры органов в фило- и онтогенезе;

· Пластичность центральной нервной системы;

· Обеспечение организма кислородом.

Изучение КВС нервных клеток привели к созданию нейроинформационных технологий дистанционного управления физиологическими резервами здоровья человека

Управление системой осуществляется главным образом на основе информации. Обмен информацией в виде электромагнитных и электроакустических волн играет важную роль в жизни живых организмов.

Импульсная электрическая активность (ИЭА) всегда сопровождается акустическими импульсами, повторяющими все параметры (частоту, амплитуду, интервалы и др.) электрических разрядов нейрона. Известно, что ЭАС возникают в результате изменения ионных градиентов и конформаций макромолекул, несущих заряженные группы (Шноль), а также напряжения кислорода и его активных форм в электрон-возбужденной среде, в которой находится нервная клетка (Шаов, Пшикова).

ЭАС нейронов с инициируемыми ими электромагнитными колебаниями создают квантово-волновой компонент управления в любой биосистеме от макромолекулы до организма и биоценоза. Известно, что все физиологические и биохимические процессы по своей сущности проявляются по законам квантовой теории (Ф.А. Мещеряков; М.Т. Шаов, О.В. Пшикова). Каждой адаптационной реакции свойственны определенные частотные характеристики на разных иерархических уровнях организма (Гаркави, Квакина, Кузьменко).

Одним из главных механизмов действия КВС нервных клеток в виде ЭАС, может быть именно нормализация уровня АФК (возрастание благотворной роли АФК). За этим, как правило, следует нормализация продуктов кислородного метаболизма в клетках, в том числе и концентрации СО2 - основного физиологического регулятора просвета кровеносных сосудов, определяющего здоровья и долголетия человека.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.



Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.


Перед тем, как говорить о том, каково строение и свойства нейронов, необходимо уточнить, что это такое. Нейрон (рецепторный, эффекторный, вставочный) – функциональная и структурная часть нервной системы, представляющая собой электрически возбудимую клетку. Она отвечает за обработку, хранение, передачу информации химическими и электрическими импульсами.


Весь функционал ЦНС и нервной системы человека зависит от того, насколько хорошо нейроны взаимодействуют друг с другом. Только при совместной работе начинают образовываться сигналы, которые передаются железами, мышцами, клетками организма. Запуск и распространение сигналов происходит посредством ионов, генерирующих электрический заряд, проходимый через нейрон.

Общее число таких клеток в головном мозге человека – около 10 11 , в каждой из которых содержится примерно 10 тыс. синапсов. Если представить, что каждый синапс – это место для хранения информации, то теоретически мозг человека может хранить все данные и знания, которые накоплены человечеством за всю историю его существования.

Физиологические свойства и функции нейронов будут варьироваться в зависимости от того, в какой мозговой структуре они находятся. Объединения нейронов отвечают за регулирование какой-то конкретной функции. Это могут быть самые простые реакции и рефлексы человеческого организма (например, моргание или испуг), а также особо сложный функционал мозговой деятельности.

Особенности строения

Структура включает в себя три основных составляющих:

  1. Тело. Тело включает в себя нейроплазму, ядро, которое разграничено мембранным веществом. Хромосомы ядра содержат гены, отвечающие за кодировку синтеза белков. Здесь также осуществляется синтез пептидов, которые требуются для обеспечения нормальной работы отростков. Если тело будет повреждено, то в скором времени произойдет и разрушение отростков. При повреждении одного из отростков (при условии сохранения целостности тела) он будет постепенно регенерироваться.
  2. Дендриты. Образуют дендритное дерево, имеют безграничное число синапсов, сформированных аксонами и дендритами соседних клеток.
  3. Аксон. Отросток, который, кроме нейронов, не встречается больше ни в одних клетках. Сложно переоценить их значение (например, аксоны ганглиозных клеток ответственны за формирование зрительного нерва).

Классификация нейронов в соответствии с функциональными и морфологическими признаками выглядит следующим образом:

  • по числу отростков.
  • по типу взаимодействия с другими клетками.

Все нейроны получают грандиозное число электрических импульсов из-за наличия множества синапсов, которые расположены по всей поверхности нейронной структуры. Импульсы также получаются через молекулярные рецепторы ядра. Электрические импульсы передаются разными нейромедиаторами и модуляторами. Поэтому важным функционалом также можно считать способность интеграции полученных сигналов.


Чаще всего сигналы интегрируются и обрабатываются в синапсах, после чего в остальных частях нейронной структуры суммируются постсинаптические потенциалы.

Мозг человека содержит примерно сто миллиардов нейронов. Число будет варьироваться в зависимости от возраста, наличия хронических заболеваний, травм мозговых структур, физической и умственной активности человека.

Развитие и рост нейронов

Современные ученые до сих пор дискутируют на тему деления нервных клеток, т.к. единого мнения по этому вопросу в сфере анатомии на данный момент нет. Многие специалисты в этой области уделяют больше внимания свойствам, а не строению нейронов, что является более важным и актуальным вопросом для современной науки.

Наиболее распространенная версия – развитие нейрона происходит из клетки, деление которой прекращается еще до момента выпуска отростков. Сначала развивается аксон, после чего дендриты.

Зависимо от основного функционала, места расположения и степени активности, нервные клетки развиваются по-разному. Их размеры существенно варьируются в зависимости от места расположения и выполняемых функций.

Основные свойства

Нервные клетки выполняют огромное количество функций. Основные свойства нейрона выглядят следующим образом: возбудимость, проводимость, раздражимость, лабильность, торможение, утомляемость, инертность, регенерация.

Раздражимость считается общей функцией всех нейронов, а также остальных клеток организма. Это их способность давать адекватный ответ на всевозможные раздражения с помощью изменений на биохимическом уровне. Подобные трансформации обычно сопровождаются изменениями ионного равновесия, ослаблением поляризации электрических зарядов в зоне воздействия раздражителя.


Несмотря на то, что раздражимость является общей способностью всех клеток человеческого организма, наиболее выражено она проявляется именно у нейронов, которые связаны с восприятием запаха, вкуса, света и иных подобных раздражителей. Именно процессы раздражимости, протекающие в нервных клетках, запускают другую способность нейронов – возбудимость.

Важнейшее физиологическое свойство нервных клеток, которое заключается в генерировании потенциала действия на раздражитель. Под ним подразумеваются различные изменения, происходящие внутри и снаружи организма человека, которые воспринимаются нервной системой, что и приводит к вызову ответной детекторной реакции. Принято различать два вида раздражителей:

  • Физические (получение электрических импульсов, механическое воздействие на разные участки тела, изменение окружающей температуры и температуры тела, световое воздействие, наличие или отсутствие света).
  • Химические (изменения на биохимическом уровне, которые считываются нервной системой).

При этом наблюдается разная чувствительность нейронов к раздражителю. Она может быть адекватной и не адекватной. Если в организме человека есть структуры и ткани, которые могут воспринимать конкретного раздражителя, то к нему нервные клетки имеют повышенную чувствительность. Подобные раздражители считаются адекватными (электроимпульсы, медиаторы).


Свойство возбудимости актуально только для нервной и мышечной ткани. Также принято считать, что возбудимостью обладает и ткань желез. Если железа активно работает, то могут отмечаться различные биоэлектрические проявления с ее стороны, потому что она включает в себя клетки разных тканей организма.

Соединительная и эпителиальная ткани не обладают свойством возбудимости. Во время их работы не генерируются потенциалы действия даже в том случае, если происходит непосредственное воздействие раздражителя.

Левое полушарие мозга всегда содержит большее количество нейронов, нежели правое. При этом разница совсем незначительная – от нескольких сотен миллионов до нескольких миллиардов.

Разговаривая о том, каковы свойства нейронов, после возбудимости практически всегда отмечают проводимость. Функция проводника у нервной ткани заключается в особенности проведения возникшего в результате воздействия раздражителя возбуждения. В отличие от возбуждения, функцией проводимости наделены все клетки человеческого тела – это общая способность ткани менять тип своей активной деятельности в условиях воздействия раздражителя.


Повышенная проводимость в нейронных структурах наблюдается при развитии доминантного очага возбуждения. В одном нейроне может происходить конвергенция (объединение сигналов множественных входов, которые исходят от одного источника). Подобное актуально для ретикулярной формации и ряда других систем человеческого организма.

При этом клетки, вне зависимости от структур, в которых они располагаются, могут по-разному реагировать на воздействие раздражителя:

  • Изменяется выраженность и выполнение процессов по обмену веществ.
  • Изменяется уровень проницаемости мембраны клеток.
  • Изменяются биоэлектрические проявления нейронов, двигательная активность ионов.
  • Ускоряются процессы развития и деления клеток, повышается выраженность структурных и функциональных реакций.

Выраженность этих изменений также может серьезно варьироваться в зависимости от типа раздражителя, ткани и структуры, в которых находятся нейроны.

Часто можно слышать выражение – нужно предотвращать гибель нервных клеток. Но их гибель запрограммировала природа – за один год человек теряет примерно 1% всех своих нейронов, и никак предупредить подобные процессы нельзя.

Под лабильностью нервных клеток подразумевается скорость течения простейших реакций, которые лежат в основе раздражителя. В обычных условиях, при нормальном развитии всех мозговых структур, у человека отмечается максимально возможная скорость течения. Нейроны, которые различаются электрофизиологическими свойствами и размерами, имеют разные значения лабильности за единицу времени.

В одной нервной клетке лабильность различных структур (аксонной и дендритной частей, тела) будет заметно отличаться. Показатели лабильности нервной клетки определяют с помощью степени ее мембранного потенциала.

Показатели мембранного потенциала должны находиться на определенном уровне, чтобы в нейроне могла получиться наиболее подходящая степень возбудимости и лабильности (зачастую вкупе с ритмической активностью). Только в этом случае нервная клетка сможет в полной мере передать полученную информацию в виде электрических импульсов. Подобные процессы и обуславливают работу нервной системы в целом, а также гарантируют нормальное протекание и формирование всех необходимых реакций.

В спинном мозге предельный уровень ритмической активности нервных клеток может достигать значения в 100 импульсов в секунду, что соответствует наиболее оптимальным значениям мембранного потенциала. В обычных условиях данные значения редко превышают уровень в 40-70 импульсов в секунду.


Существенное превышение показателей наблюдается при характерных выраженных реакциях, поступающих со стороны главных отделов ЦНС, мозговых структуры, коры. Частота разрядов при определенных условиях может достигать значений в 250-300 импульсов в секунду, но подобные процессы развиваются крайне редко. Также они являются кратковременными – их быстро сменяют замедленные ритмы активности.

Наиболее высокие показатели частоты разрядов обычно наблюдаются в нервных клетках спинного мозга. В возникающих в результате выраженного воздействия раздражителя очагах начальных реакций частота разрядов может составлять 700-1000 импульсов в секунду. Протекание подобных процессов в нейронных структурах является необходимостью, чтобы клетки спинного мозга могли резко и быстро воздействовать на мотонейроны. Спустя небольшой промежуток времени частота разрядов существенно снижается.

Нейроны существенно различаются по размеру (в зависимости от места расположения и других факторов). Размеры могут варьироваться от 5 до 100 мкм.

С точки зрения физиологии человека торможение, как ни странно, является одним из наиболее активных процессов, протекающих в нейронных структурах. Особенности строения и свойств нейронов подразумевают, что торможение вызывается возбуждением. Процессы торможения проявляются в снижении активности или предупреждении вторичной волны возбуждения.

Способность нервных клеток к торможению совместно с функцией возбуждения позволяет обеспечить нормальную работу отдельных органов, систем, тканей организма, а также всего человеческого тела в целом. Одна из наиболее важных характеристик процессов торможения в нейронах – обеспечение защитной (охранной) функции, что актуально для клеток, располагающихся в коре головного мозга. За счет процессов торможения также обеспечивается защита ЦНС от чрезмерного перевозбуждения. Если они нарушены, у человека проявляются негативные психоэмоциональные черты и отклонения.


Важной функцией торможения также является прямое взаимодействие с возбуждением, что позволяет анализировать и синтезировать в центральной нервной системе полученные электрические импульсы. Это помогает правильно согласовывать деятельность и функции всех систем, тканей и органов человеческого тела, а также адекватно контактировать с окружающей средой. Данную функцию также принято называть координационной.

Несмотря на то, что нейроны имеют удивительно малые размеры, современные технологии позволяют ученым провести измерение активности каждого найденного нейрона. Подобные процедуры зачастую проводятся для диагностики различных заболеваний (например, эпилепсии).

К общим признакам всех нейронов относится их способность к физиологической и репаративной регенерации. В нервных клетках она подразумевает протекание следующих процессов:

  • Частичное увеличение количества хромосом в ядре.
  • Восстановление синапсов (если они были повреждены).
  • Развитие и возвращение в обычное состояние отростков (при их повреждении).
  • Обновление метаболических и химических компонентов нервных клеток в процессе протекания внутриклеточного обмена веществ.

Если нервная ткань будет повреждена, то в зоне поражения сразу начнет развиваться нейроглия. Это невыраженная дифференцированная ткань, которая делится митозом.

В случае получения повреждений, которые нарушили целостность нервных волокон, происходит распадение периферических частей на отдельные части миелиновых оболочек и осевых цилиндров. Если отсутствуют воспалительные процессы, рубцы соединительной ткани, то есть высокая вероятность восстановления иннервации нервных тканей. Отростки нейронов регенерируются довольно быстро – 2-3 мм за 24 часа.

Вопреки распространенному мнению, нейроны вполне могут восстанавливаться – их генерирование происходит сразу в трех частях организма человека.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.