Лабораторная диагностика нервной ткани

Комплексное исследование для определения в крови антител к различным ядерным и цитоплазматическим антигенам, которое используется для скрининга системных заболеваний соединительной ткани.

  • Антинуклеарный фактор на HEp-2 клетках
  • Скрининговый тест на СЗСТ: U1RNP (RNP70, A, C), Ro (60 кДа, 52 кДа), La, центромера В, Scl-70, Jo-1 и нативные очищенные Sm белки

  • Анализы при подозрении на системное заболевание соединительной ткани
  • Антитела при коллагенозах, скрининг

  • Screening Tests, Connective Tissue Diseases
  • Autoantibodies, Autoimmune Connective Tissue Disorders

Непрямая реакция иммунофлюоресценции.

Какой биоматериал можно использовать для исследования?

Как правильно подготовиться к исследованию?

  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Системные заболевания соединительной ткани (СЗСТ) – это обширная группа заболеваний, имеющих схожие патогенез, клиническую картину, лабораторную диагностику и лечение. Известно около 200 СЗСТ, наиболее часто из которых встречаются следующие:

  • ревматоидный артрит;
  • полимиозит и дерматомиозит;
  • системная красная волчанка (СКВ);
  • системная склеродермия;
  • синдром Шегрена;
  • системные васкулиты;
  • смешанное заболевание соединительной ткани и другие.

Диагностика СЗСТ достаточно трудна и носит комплексный характер, при этом лабораторный методы диагностики занимают центральное место. Диагностический алгоритм при подозрении на СЗСТ можно разделить на два этапа:

1 этап: скрининговые исследования. Скрининговые тесты характеризуются высокой чувствительностью к СЗСТ. Тесты с высокой чувствительностью выявляют большинство больных, у которых в действительности имеется СЗСТ, а также случайно относят в эту категорию некоторых здоровых пациентов (ложноположительный результат). У пациентов с положительным результатом скрининговых тестов целесообразно проводить дальнейшее обследования на СЗСТ. Отрицательный же результат скрининговых тестов говорит о том, что вероятность СЗСТ у данного пациента очень низкая и этот диагноз маловероятен. У пациентов с отрицательным результатом скрининговых тестов проводить дальнейшее обследования на СЗСТ нецелесообразно. В таком случае требуется обследовать пациента на предмет других болезней.

В настоящее время при подозрении на СЗСТ наиболее часто используют следующие скрининговые тесты:

  • Антинуклеарный фактор (АНФ, другое название: антинуклеарные антитела, АНА) – это гетерогенная группа аутоантител, направленных против компонентов собственных ядер. АНФ обнаруживается у пациентов с СЗСТ, но также может выявляться в крови пациентов с другими аутоиммунными заболеваниями (аутоиммунный панкреатит, первичный билиарный цирроз) и некоторыми опухолями. Существует несколько способов определения АНА в крови. Метод непрямой реакции флюоресценции (РНИФ) с использованием человеческих эпителиальных клеток HEp-2 позволяет определить не только титр, но и тип свечения. Для разных СЗСТ характерны разные типы свечения. Так, например, для СКВ наиболее характерны гомогенный, периферический и гранулярный типы свечения, для дерматомиозита/полимиозита – ядрышковый, для CREST-синдрома – центромерный. Следует все же отметить, что тип свечения не позволяет окончательно дифференцировать СЗСТ между собой.
  • Скрининговый тест на антитела к СЗСТ: U1RNP (RNP70, A, C), Ro (60 кДа, 52 кДа), La, центромера В, Scl-70, Jo-1 и нативные очищенные Sm белки – это гетерогенная группа аутоантител, взаимодействующих с различными белками, относящимися к рибонуклеопротеинам. Первоначально у пациентов с СЗСТ были обнаружены только антитела к ядерным рибонуклеопротеинам, что впоследствии дало название всей группе антител. Затем удалось выявить антитела и к цитоплазматическим рибонуклеопротеинам, но название, однако, осталось прежнее. На сегодняшний день известно более 100 цитоплазматических и ядерных антигенов. Наибольшее значение имеют Sm, RNP, SS-A, SS-B, Scl-70 и Jo-1 антигены.

2 этап: подтверждающие и дифференцирующие тесты. Подтверждающие и дифференцирующие тесты характеризуются высокой специфичностью к СЗСТ. Тесты с высокой специфичностью выявляют больных, у которых в действительности имеется СЗСТ, исключают здоровых пациентов с ложноположительным результатом скрининговых тестов и позволяют дифференцировать СЗСТ между собой. Классическим примером подтверждающего теста является исследование антител к двуцепочечной ДНК (маркер СКВ).

Как правило, для полноценной диагностики СЗСТ требуется оба диагностических этапа. В некоторых случаях скрининговый тест ENA-скрин может быть использован и в качестве подтверждающего теста. Результат исследования как скрининговых, так и подтверждающих тестов следует интерпретировать с учетом клинических, лабораторных и инструментальных данных.

Для чего используется исследование?

  • Для диагностики системных заболеваний соединительной ткани (системной красной волчанки, синдрома Шегрена, системной склеродермии, полимиозита/дерматомиозита, смешанного заболевания соединительной ткани).

Когда назначается исследование?

  • При наличии симптомов системных заболеваний соединительной ткани: персистирующей лихорадки, немотивированной слабости, артралгии, миалгии, кожных высыпаний, синдрома Рейно, судорог, психоза, анемии, протеинурии и других.

Что означают результаты?

1) Антинуклеарный фактор на HEp-2 клетках

Титр: Что может влиять на результат?

  • Максимальная чувствительность скрининговых тестов наблюдается при наличии системного заболевания соединительной ткани с ярко выраженными клиническими признаками;
  • при назначении иммуносупрессивной терапии результат анализа может стать отрицательным.


  • Результат исследования следует интерпретировать с учетом дополнительных клинических, лабораторных и инструментальных данных;
  • скрининговые тесты не позволяют окончательно дифференцировать системные заболевания соединительной ткани между собой.

24 С-реактивный белок, количественно (высокочувствительный метод)

13 Антитела к двухцепочечной ДНК (анти dsDNA), скрининг

39 Антиперинуклеарный фактор

19 Ревматоидный фактор

14 Антитела к циклическому цитруллин содержащему пептиду, IgG

Кто назначает исследование?

Ревматолог, терапевт, врач общей практики.

Литература

  • Gill JM, Quisel AM, Rocca PV, Walters DT. Diagnosis of systemic lupus erythematosus. Am Fam Physician. 2003 Dec 1;68(11):2179-86.
  • Lyons R, Narain S, Nichols C, Satoh M, Reeves WH. Effective use of autoantibody tests in the diagnosis of systemic autoimmune disease. Ann N Y Acad Sci. 2005 Jun;1050:217-28.

В настоящее время в арсенале неврологов и психиатров имеется большое количество инструментальных методов исследований, позволяющих оценивать функциональное состояние как центральной, так и периферической нервной системы. Для выбора верного диагностического направления, правильного лечения, оценки перспектив терапии, прогноза течения заболевания врач-клиницист должен ориентироваться в методах функциональной диагностики, иметь представление о результатах, которые можно получить с помощью того или иного метода.

Метод эхоэнцефалоскопии является методом ультразвуковой диагностики нарушений в головном мозге и позволяет судить о наличии и степени смещения срединных структур, что свидетельствует о присутствии дополнительного объема (внутримозговая гематома, отек полушария). В настоящее время значимость метода не столь велика, как раньше, в первую очередь он используется для скрининговой оценки показаний для экстренного проведения нейровизуализации (компьютерная томография (КТ) или магнитно-резонансная томография (МРТ). Следует отметить, что отсутствие смещения при эхоэнцефалоскопии не означает стопроцентного отсутствия патологического процесса, т.к., например, при локализации процессов в лобных отделах или в задней черепной ямке смещение структур мозга происходит только в случае больших размеров поражения. Также не очень информативен этот метод у пожилых пациентов, т.к. в результате атрофического процесса в мозге и расширения межполушарных пространств имеется достаточно внутричерепного пространства, чтобы дополнительный объем не приводил к смещению срединных структур. В настоящее время ограничено использование данного метода для диагностики внутричерепной гипертензии. Этот вопрос дискутируется.

Метод электроэнцефалографии (ЭЭГ) — метод исследования биоэлектрической активности мозга. Основным показанием для проведения данного метода является диагностика эпилепсии. Для разных форм этого заболевания характерны различные варианты изменений биоэлектрической активности мозга. Правильная интерпретация этих изменений позволяет своевременно и адекватно проводить терапию или, напротив, отказаться от проведения специфической противосудорожной терапии. Так, одним из наиболее сложных вопросов в трактовке энцефалограммы является понятие о судорожной готовности мозга. Ведущие нейрофизиологические лаборатории неоднозначно относятся к этому вопросу. Следует помнить: для того чтобы доказать готовность мозга к судорогам, необходимо проведение глубинной ЭЭГ с использованием провокационных методик. Судить же о готовности мозга к судорогам на основании только рутинной ЭЭГ в настоящее время является неверным.

Следующей областью применения ЭЭГ является диагностика смерти мозга. Для установления смерти мозга необходимо проведение 30-минутной записи, на которой отсутствует электрическая активность во всех отведениях на максимальном усилении — эти критерии определены законодательством. В диагностике всех остальных неврологических и психиатрических заболеваний метод ЭЭГ является вспомогательным. Следует помнить, что ЭЭГ не является методом топической диагностики, поэтому сомнительными являются заключения о заинтересованности срединных и стволовых структур с четким их разграничением на диэнцефальные и мезэнцефальные, каудальные или оральные стволовые и пр. О заинтересованности этих структур можно судить косвенно и относиться к подобным заключениям с настороженностью. В настоящее время во многих лабораториях возможно проведение Холтеровского мониторинга ЭЭГ — многочасовой записи биоэлектрической активности мозга. Преимуществом данной методики является несвязанность пациента с прибором и возможность вести обычный образ жизни в течение всей регистрации. Многочасовая регистрация энцефалограммы дает возможность выявить редко проявляющиеся патологические изменения биоэлектрической активности. Данная разновидность ЭЭГ показана для уточнения истинной частоты абсансов, диагностически неясных приступов, при подозрении на псевдоэпилептические приступы, а также для оценки эффективности противосудорожных средств.

Полисомнография (ПСГ) — метод длительной регистрации различных функций организма в течение всего сна. Метод включает в себя мониторинг биопотенциалов головного мозга (ЭЭГ), электроокулограммы, электромиограммы, электрокардиограммы, частоты сердечных сокращений, воздушного потока на уровне носа и рта, дыхательные усилия грудной и брюшной стенок, колебания кислорода в крови, двигательную активность во сне. Метод позволяет изучать все патологические процессы, возникающие во время сна: синдром апноэ, нарушения ритма сердца, изменения артериального давления, эпилепсию. В первую очередь метод необходим для диагностики инсомний и подбора адекватных методов терапии данного заболевания, а также при синдромах апноэ во сне и храпа. Большое значение метод имеет для выявления эпилепсии сна и различных двигательных расстройств во сне. Для адекватной диагностики этих нарушений используется ночной видеомониторинг.

Вызванные потенциалы (ВП) — это метод, позволяющий получить объективную информацию о состоянии различных сенсорных систем как ЦНС, так и периферических отделов. Он связан с регистрацией электрической активности в ответ на различные стимулы — звуковые, зрительные, сенсорные. ВП, получаемые в ответ на эти стимулы, выделяются легко и надежно, поэтому используются наиболее часто. Сущностью метода является получение ответа, обусловленного приходом афферентного стимула в различные ядра и кору головного мозга, в зону первичной проекции соответствующего анализатора, а также ответов, связанных с обработкой информации. Таким образом, получаемые начальные компоненты отражают физические свойства стимула, а более поздние — условия его обработки. Используются такие характеристики сигнала ВП, как время задержки ответа, латентный период основных пиков, амплитуда основных пиков, межпиковые латентности.

Учитывая, что 70% информации доставляет нам зрительный анализатор, 15% — слуховой, а 10% — тактильный, то раннее определение степени дисфункции этих наиболее важных сенсорных систем является необходимым для диагностики, а также выбора метода терапии и оценки прогноза заболевания нервной системы. Показаниями для назначения метода ВП являются: исследование функций слуха и зрения, оценка состояния сенсомоторной коры, когнитивных функций мозга уточнение нарушений ствола мозга, выявление нарушений периферических нервов и нарушения проведения путей спинного мозга, оценка комы и смерти мозга.

Транскраниальная магнитная стимуляция (ТМС) — метод, в основе которого лежит возбуждение нервной системы с помощью магнитного стимулятора. Преимущество метода перед электрической стимуляцией заключается в том, что магнитное поле способно без изменений проходить через любые анатомические структуры (т.е. сигнал не ослабевает при прохождении через различные среды) и возбуждать нервные ткани, кроме того, магнитное воздействие является безболезненным. Метод позволяет возбуждать как клетки моторной коры, так и моторные корешки и периферические нервы. Таким образом, метод ТМС позволяет выявить нарушения в проведении нервного импульса на протяжении от коры до мышцы и используется для объективной оценки повреждения двигательных путей. Показаниями для проведения данного обследования являются поражения моторного тракта на любом уровне. Сюда относятся двигательные расстройства при различных неврологических заболеваниях, обусловленных страданием пирамидного тракта (инсульты), причем с помощью ТМС можно локализовать очаг поражения до появления визуализации при КТ или МРТ; процессы демиелинизации различного генеза, травматические поражения и опухолевые процессы. ТМС можно использовать для тестирования высших психических функций, в частности функциональной локализации речи. Кроме диагностического использования метод ТМС может применяться в терапевтических целях для лечения болезни Паркинсона, эпилепсии, дистонических расстройств, поражений периферических нервов, мигрени, а в психиатрической практике — при депрессивных расстройствах, синдромах навязчивых идей, шизофрении.

Электронейромиография (ЭНМГ) — метод диагностики, изучающий функциональное состояние возбудимых тканей (нервов и мышц). Пожалуй, данный метод является наименее известным практическим врачам-неврологам, поскольку до последнего времени использовался только в специализированных центрах.

При проведении ЭНМГ оценивается состояние мышцы, нейромышечного синапса, периферического нерва, сплетения, корешка, переднего рога спинного мозга. При этом данную методику можно разделить на две: первая — в основном посвящена регистрации спонтанной и вызванной мышечной активности (ЭМГ), вторая — регистрации потенциалов действия (ПД) периферических сенсорных волокон. Получаемая с помощью этих двух методов информация способствует выявлению типа нарушений, помогает определению степени его тяжести, а также позволяет оценить достигнутое улучшение в ходе лечения.

ЭМГ. Для исследования спонтанной и произвольной мышечной активности используют игольчатую стимуляцию — регистрацию ПД двигательной единицы (совокупности мышечных волокон, иннервируемых одним аксоном). Обращают внимание на такие параметры, как спонтанная активность, амплитуда ПД двигательной единицы (повышение или снижение). Так, в случае патологии мышечного волокна мышца перестает иннервироваться аксоном и начинает работать в собственном режиме, в результате регистрируется спонтанная активность в покое. Первично-мышечные заболевания приводят к гибели мышечных волокон, в результате чего снижается их количество в двигательной единице, как следствие, уменьшается амплитуда ПД двигательной единицы и длительность ПД. Данная методика информативна в случае подозрения на первичное мышечное поражение, для диагностики поражения мотонейрона и аксонального поражения.

Стимуляционная электромиограмма используется для тестирования синапса (периферическое звено нервно-мышечной системы). При этом регистрируют активность мышцы в ответ на электрическое раздражение периферического нерва. Измеряют скорость проведения возбуждения, латентные периоды моторного ответа мышцы. Данная методика является информативной для демиелинизирующих заболеваний, в случае плексопатий, полинейропатий (в т.ч. острой полинейропатии Гийена — Барре), демиелинизирующих заболеваний.

Электронейрография позволяет регистрировать ответы периферических нервов на их стимуляцию. С помощью данного метода тестируются чувствительные волокна, возможна дифференциальная диагностика аксоно- и миелинопатии.

Ультразвуковая допплерография — метод исследования состояния кровотока с помощью допплера. Метод незаменим для диагностики нарушений кровообращения. В неврологии наиболее используемой является допплерография интра- и экстракраниальных сосудов. Состояние кровотока оценивается путем измерения скорости кровотока. Так, при стенозе скорость кровотока возрастает пропорционально степени стеноза. В случае окклюзии сосуда может происходить как изменение направления кровотока, так и явление “ампутации” сосуда на картах кровотока. Следует отметить, что диагностические возможности данного метода при исследовании позвоночных артерий ограничены вследствие большой индивидуальной вариабельности позвоночных артерий и особенностей прохождения этих сосудов в костных каналах и тканях шеи.

Методы дуплексного и триплексного сканирования являются наиболее современными методами исследования кровотока, а также состояния сосуда. В условиях двух- и трехмерного изображения возможно увидеть артерию, ее форму и ход, оценить состояние ее просвета, увидеть бляшки, тромбы, а также зону стеноза. Методы незаменимы при подозрении на наличие атеросклеротических поражений.

Следует помнить, что зачастую клиницист ждет от врача функциональной диагностии конкретного диагноза, а тот в свою очередь не имеет права постановки диагноза. Из этого следует, что любой клиницист должен сам обладать определенным уровнем знаний, необходимых для интерпретации полученных результатов. Также нельзя забывать, что методы функциональной диагностики являются вспомогательными и должны оцениваться врачом-клиницистом применительно к конкретному пациенту. При этом врач-невролог должен опираться на имеющуюся клиническую картину, анамнез и течение заболевания.

А.И. МАЧУЛИНА, врач-невролог отделения неврологии ГКБ № 33 (Москва)

Значение нервной ткани в организме определяется основными свойствами нервных клеток (нейронов, нейроцитов) воспринимать раздражение, приходить в состояние возбуждения, вырабатывать импульс и передавать его.

Нервная ткань состоит из нейронов (neuronum), выполняющих специфическую функцию, и нейроглии (neuroglia), обеспечивающей существование нервных клеток и осуществляющей опорную, трофическую, разграничительную, секреторную и защитную функции.

Признание нейрона основным элементом нервной ткани – главное достижение нейроанатомов начала XX в. Физиологи определили, какими электрическими и химическими способами нейрон передает свои сигналы. Эти два достижения не раскрывают, каким образом работает мозг, но они служат необходимым фундаментом для этого.

Прогресс в детальном изучении строения мозга связан с успехами ранних исследований по микроструктуре, проводившихся, например, английским анатомом Аугустом фон Валлером. Онразработал химический метод, позволивший выделять пучки отмирающих нервных волокон (так называемая валлеровская дегенерация). Окрашивание по этому методу помогло установить, что длинные волокна, образующие периферические нервы, – это отростки клеток, находящихся внутри головного и спинного мозга. Некоторые крупные из них можно было даже увидеть с помощью примитивных микроскопов. Хотя микроскопы были и раньше, очень сложные и компактные клеточные структуры мозга с трудом поддавались исследованию. Понадобились новые красители, чтобы отдельные клетки стали хорошо видимыми.

Итальянский анатом К. Гольджи примерно в 1875 г. изобрел метод, при котором одновремен-но окрашивается, по-видимому в случайном порядке, лишь очень малая доля всех клеток данного участка, но зато они окрашиваются целиком. При хорошо выполненном окрашивании по Гольджи на препарате видны лишь несколько нейронов, но каждый из них полностью, со всеми своими ветвями. Просмотрев много срезов мозга, окрашенных по Гольджи, анатом может дать перечень разных клеток в этой ткани. До сих пор неизвестно, как и почему срабатывает метод Гольджи, окрашивая полностью одну из 100 клеток и совершенно не затрагивая все остальные.

На препаратах Кахала, окрашенных по Гольджи, выявляется множество обособленных, полностью окрашенных клеток, и никогда не было видно ничего похожего на сеть. Таким образом, его первым большим достижением явилось представление о нервной системе как о совокупности отдельных, обособленных клеток, которые сообщаются друг с другом с помощью синапсов.

Кахал внес второй вклад в науку, пожалуй, еще более значительный: собрал множество данных о том, что сложные связи между нейронами не случайны, а высоко структурированы и специфичны. Он дал исчерпывающее описание архитектоники десятков различных структур мозга и в каждом случае идентифицировал и классифицировал разные клетки, а иногда показывал, насколько позволяли его методы, как эти клетки связаны между собой. Стало ясно, что если нейробиолог хочет понять мозг, он должен не только изучить, как построены разные его части, но и раскрыть их назначение и детально исследовать их работу как отдельных структур и в совокупности. Но сначала нужно узнать, как отдельный нейрон генерирует сигналы и передает их следующей клетке.

Долгое время нейроанатомам приходилось довольствоваться подробными описаниями, основанными на световой микроскопии с окрашиванием по Гольджи и по Нисслю (Nissl) (последнее выделяет тела отдельных клеток без дендритов и аксонов). Первым действенным орудием прослеживания связей между разными мозговыми структурами, например между разными областями коры большого мозга или между корой и стволом мозга и мозжечком, явился метод окрашивания, который предложил в начале 50-х годов XX в. в Голландии У. Наута (W. Nauta). Он основан на том, что при разрушении нейрона (механическим, электрическим или тепловым воздействием) отходящее от него нервное волокно дегенерирует и, пока оно еще не совсем исчезло, окрашивается иначе, чем соседние нормальные волокна. Если разрушить определенную часть мозга и через несколько дней окрасить мозг методом Науты, а затем исследовать под микроскопом, то наличие избирательно окрашенных волокон в какой-либо другой и, возможно, даже отдаленной его части будет означать, что эта часть получает волокна от разрушенного участка. Такой метод привел к необычайному расширению и детализации карты мозга.

Применение всех существующих методик для выявления в первом приближении, без деталей, связей в одной только структуре (скажем, в части коры больших полушарий или в мозжечке) может занять у одного-двух анатомов пять или десять лет. А поскольку мозг состоит из сотен разных структур, становится ясно, что одного только понимания связей в головном мозгу придется ждать еще много лет.

Нейрон в норме не делится, однако способен к восстановлению, причем восстановление обеспечивается нейроглией.

Если повреждается отросток нейрона, то разворачивается следующая цепь событий: начинается хроматолиз - разрушение и растворение вещества Ниссля, содержащегося внутри нейрона. Одновременно теряется вода, нейрон уменьшается в размерах, а дистальная часть перерезанного отростка распадается, т.е. Шванновские клетки отходят, а миелин растворяется – эта реакция в целом носит название первичной реакции Ниссляи представляет собой первичную дегенерацию.

После этого начинается регенерация. На центральных концах отрезанных аксонов образуются утолщения – колбы роста. В этих колбах происходит наращивание аксона вдоль по Бюнгеровому тяжу вплоть до старой точки иннервации.

МЕТОДЫ ИССЛЕДОВАНИЯ НЕРВНОЙ ТКАНИ

Прежде чем подвергать нервную ткань гистологическому анализу, необходимо подготовить препарат, т.е. правильно взять материал и зафиксировать. Как правило, исследуется нервная ткань умерших организмов. И самый распространенный способ изучения – это способ с предварительной окраской. Окраска обуславливается свойством некоторых металлов образовывать на телах или отростках нейронов соединения, которые при действии восстановителя дают черный либо другой цвет.

Вещество Ниссля выявляется окраской метиленовым синим. Используют люминесцентную микроскопию с предварительным введением раствора трипафлавина, который создает красное свечение безмякотных волокон и зеленоватую флюоресценцию мякотных.

Для фиксации нервной ткани перед окраской используют 10-20% раствор формалина, большие куски (головной мозг) помещают на 24 часа в 5% формалина на физиологическом растворе(NaCl), после чего переносят в 10% раствор формалина. После этого вырезаются необходимые кусочки и выдерживаются либо в свежем формалиновом растворе, либо в др. фиксаторах (спирт, суржа, др.).

Некоторые методы предполагают первоначальную фиксацию в смеси формалина с бромистым аммоминием, либо в смеси спирта и аммиака. Используется также хлороформ, двухромовокислый калий, азотная кислота.

В дальнейшем кусочки мозга заливают в парафиновые блоки с помощью которых изготавливают микросрезы толщиной до 120 мкм. Готовые срезы наклеивают на предметное стекло и приступают к окраске. Осаждение солей металлов на клеточных мембранах делает их видимыми. Применяют также метод замороженных срезов, высушивания. Препараты можно окрашивать гематоксилином, эозином, пикрофуксином, хромовой кислотой, тионином, толуидиновым синим, крезиловым фиолетовым, галлоцианином, серебром, свинцом, золотом, молибденом, осмиевой кислотой.

Домашнее задание 2-й лекции.

1. Дайте схематическое изображение морфологических типов нейронов, подпишите составляющие элементы, и укажите структурную принадлежность данных типов.

2. Зарисуйте схему центральной части фронтального среза головы и обозначьте защитные структуры головного мозга.

ЛЕКЦИЯ О РАЗВИТИИ НЕРВНОЙ СИСТЕМЫ

ФИЛОГЕНЕЗ НЕРВНОЙ СИСТЕМЫ

Филогенез– это постепенное развитие форм органического мира в процессе эволюции.

Простейшие одноклеточные не имеют нервных систем, поэтому все их реакции являются результатом деятельности одной клетки. У многоклеточных появляются отдельные нервные клетки, задача которых быстро распознать угрожающий внешний фактор и передать сигнал тем клеткам, которые могут защитить организм (мышечные, стрекательные, прочие). Такой тип нервной системы называется диффузным или сетевидным. Она способна воспринимать раздражение любых участков тела и посылать импульсы другим клеткам. Появление в эволюции диффузной нервной системы давало животным преимущество в борьбе за выживание, так как такие животные быстрее спасались от хищников и быстрее охотились сами.

С течением времени наблюдалась концентрация- рассеянные нервные клетки стали располагаться ближе друг к другу, возникали узлы и общие тракты, в результате этого сформировался узловой тип нервной системы. Узловая нервная система– это такая система нервных клеток, которая характеризуется их концентрацией в центры (узлы) с отходящими нервными стволами. Посегментно расположенные ганглии служат центрами иннервации соответствующих сегментов тела у животных. В головном конце тела располагаются надглоточные крупные узлы – прообраз головного мозга позвоночных животных.

Следующий этап состоит в том, что нейроны сгруппированы не только в отдельные нервные узлы, но даже в продолговатый непрерывный нервный тяж – внутри которого имеется полость – это трубчатая нервная система.

Нервная трубка характерна для хордовых – у нее выделяют два отдела: головной и спинной. Из туловищного отдела выходят многочисленные корешки (у человека это корешки спинномозговых нервов).

В соответствии с метамерностью тела хордовых животных единая трубчатая нервная система состоит из ряда однотипных повторяющихся структур, или сегментов.

В головном конце нервной трубки в связи с развивающимися в передних отделах туловища органов чувств сегментарное строение нервной трубки хотя и сохраняется, но претерпевает изменения. Эти отделы нервной трубки являются зачатком, из которого развивается головной мозг.

Развитие головного мозга происходит параллельно с усовершенствованием спинного мозга, причем появление новых центров в головном мозге ставит как бы в подчиненное положение уже существующие центры спинного мозга. В головном отделе нервной трубки (головном мозге) возникали новые вспомогательные нейроны и передний отдел трубки разрастался (цефализация). Более старые н6ервные центры, сформировавшиеся на ранних этапах эволюции, не исчезают, а сохраняются, занимая подчиненное положение по отношению к более новым.

Далее в прогрессивном развитии организма шло количественное изменение: общий рост нервной трубки. Однако, было приобретено и новое качество - полушария переднего мозга и развитие коры, где возникают новые регуляторные центры, подчиняющие себе нервные центры низшего порядка, координируют их деятельность, объединяя нервную систему в структурное и функциональное целое. Такой процесс был назван кортиколизациейфункций.

Параллельно с развитием конечного мозга шло развитие (усложнение и дифференцировка) всех других отделов мозга, перестройка восходящих и нисходящих нервных трактов. В спинном мозге формировались два небольших утолщения (шейное и поясничное). Эти два утолщения содержат нейроны, функции которых управление конечностями, причем шейное утолщение более мощное.

Эволюция головного мозга проявилась в развитии и совершенствовании рецепторного аппарата, усовершенствовании механизмов приспособления организма к окружающей среде путем изменения обмена веществ, кортиколизации функций.

ОНТОГЕНЕЗ НЕРВНОЙ СИСТЕМЫ

Онтогенез– это постепенное развитие организма или его части от момента зарождения до смерти.

Нервная система человека развивается из эктодермы в дорсальном отделе туловища зародыша, где эктодермальные клетки образуют нервную (медуллярную) пластинку. Медуллярная пластинкасначала однослойная, позже в ней появляются спонгиобласты (предшественники нейроглии) и нейробласты (предшественники нейронов). Эти клетки делятся, нервная пластинка разрастается. В боковых ее частях деление происходит более интенсивно, поэтому она прогибается, на ней появляются валики, в результате чего нервная пластинка становится нервным желобком, в дальнейшем валики смыкаются и появляется нервная трубка, после сращения валиков нервная трубка отшнуровывается от эктодермы и погружается в мезодерму.

Медуллярная (нервная) трубка в период замыкания состоит из трех слоев. Из внутреннего слоя нервной трубки развивается эпендимная выстилка центрального канала, из среднего слоя развивается серое вещество, из наружного - белое.

Нервная трубка растет в длину, в ширину, кроме этого некоторые клетки выселяются (клетки зачатков глаз).

Нервная трубка у четырехнедельного эмбриона, характеризуется не только наличием пузырей, но и изгибами в сагиттальной плоскости – эти изгибы служат границами отделов мозга: часть изгибов обращены вентрально, а часть - дорсально. Пятипузырный головной мозг характеризуется разрастанием отделов латерально (например: из промежуточного головного мозга латерально выпячиваются глазничные пузырьки).

Рассмотренный путь развития влияет на рисунок центрального мозгового канала: в ЦНС центральный спинномозговой канал соединяется системой желудочков головного мозга.

К моменту рождения в ЦНС имеется головной мозг с отделами: продолговатый мозг, Варолиев мост, мозжечок, средний мозг, промежуточный мозг и передний мозг.

Передний мозг содержит первый и второй мозговые желудочки. Между буграми таламуса в промежуточном мозге располагается третий желудочек, который через Сильвиев водопровод соединяется с четвертым желудочком, расположенным между мостом, продолговатым мозгом и мозжечком.

Домашнее задание 3-й лекции

1. Дайте схематическое изображение основных типов нервной системы в эволюции и приведите примеры животных, имеющих соответствующую организацию.

2. Зарисуйте схематические изображения ЦНС человека на последовательных этапах эмбриогенеза, указав сроки и размеры эмбриона, и обозначьте формирующиеся структуры.

ЛЕКЦИЯ О СПИННОМ МОЗГЕ

Спинной мозгвзрослого человека – это цилиндрический тяж, длиной 40-45 см, массой около 34-38 г и диаметром 1.5 см, расположенный в спинномозговом канале позвоночника на протяжении от большого затылочного отверстия черепа до второго поясничного позвонка, далее продолжается в виде конского хвоста, заканчивается терминальной (концевой) нитью.

Конский хвостсостоит из спинномозговых нервов, лежащих ниже первого поясничного сегмента спинного мозга. Концевая (терминальная) нить образована только оболочками спинного мозга.

У спинного мозга имеются два утолщения:

1. шейное (от II шейного до II грудного позвонка),

2. поясничное (от X грудного до I поясничного позвонка), переходящее в мозговой конус.

В этих зонах число нервных клеток увеличено в связи с тем, что здесь берут начало нервы, иннервирующие конечности.

В вентральной части спинного мозга располагается передняя срединная щель, сзади - задняя срединная борозда, а по бокам - передние и задние боковые борозды. Борозды делят каждую половинку спинного мозга на три кнатика.

Из боковых борозд выходит двойной ряд пучков нервных волокон – корешков спинномозговых нервов (СМН). Передний корешокобразуется аксонами двигательных нейронов передних рогов серого вещества спинного мозга. Задний корешокобразован аксонами чувствительных нейронов спинномозговых ганглиев.

В спинном мозге выделяют 31 сегмент:

§ 1 копчиковый (сегменты Со1).

Количество сегментов не совпадают с количеством позвонков.

От спинного мозга отходят 31 пара СМН, то есть 124 корешка. Счет идет следующим образом: в спинном мозге 31 сегмент (62 спинномозговых нерва), каждый нерв состоит из двух корешков (124).

Таким образом, сегмент спинного мозга– это его часть с отходящими от него двумя СМН (или четырьмя корешками).

Начиная с четырех месяцев внутриутробного развития человека позвоночник обгоняет в росте спинной мозг. Этот процесс заканчивается вместе с ростом человека и в результате спинной мозг заканчивается на уровне второго поясничного позвонка, соответственно первый грудной сегмент лежит на уровне седьмого шейного позвонка, первый поясничный сегмент - на уровне десятого грудного позвонка, первый крестцовый сегмент – на уровне первого поясничного позвонка, первый шейный сегмент находится между первым шейным позвонком и черепом.

На поперечном разрезе спинного мозга видно и серое и белое вещество. В центре спинного мозга проходит центральный канал, остаток просвета нервной трубки.

СТРОЕНИЕ СЕРОГО ВЕЩЕСТВА

Боковые рогаимеются только с первого грудного по третий поясничный сегмент, в них лежат тела преганглионарных симпатических нейронов. В шейных сегментах и верхних грудных сегментах между передними рогами имеются тонкие перекладины серого вещества – сетчатое образованиеспинного мозга.

Передние рогасодержат тела двигательных нейронов – аксоны, которые выходя из передней латеральной борозды образуют передние корешки.

Задние рогасодержат тела вставочных нейронов. На верхушках задних рогов различают студенистое вещество, которое состоит из тел вставочных нейронов, соединяющих своими отростками различные сегменты спинного мозга.

СТРОЕНИЕ БЕЛОГО ВЕЩЕСТВА

Белое вещество– образовано миелинизированными отростками нейронов – афферентными (восходящими) и эфферентными (нисходящими). Эти волокна образуют проводящий аппарат спинного мозга. С каждой стороны белое вещество делится на три канатика (задний, боковой, передний).

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.