Механическая травма нервных волокон сопровождается нарушением функции

Нервные волокна не могут существовать вне связи с телом нервной клетки: перерезка нерва ведет к гибели тех волокон, которые оказались отделенными от тела клеток. У теплокровных живот­ных уже через 2—3 сут после перерезки нерва периферический его отросток утрачивает способность к проведению нервных импульсов. Вслед за этим начинается дегенерация нервных волокон, причем миёлиновая оболочка претерпевает жировое перерождение, Это выражается в том, что мякотная оболочка теряет миелин, который скапливается в виде капель; распавшиеся волокна и их миелин рассасываются и на месте нервных волокон остаются тяжи, образованные леммоцитом (шванновской клеткой). Все эти изменения впервые были описаны английским врачом Валлером и названы по его имени валлеровским перерождением.

Регенерация нерва происходит очень медленно. Леммоциты, оставшиеся на месте дегенери­ровавших нервных волокон, начинают разрастаться вблизи места перерезки по направлению к центральному отрезку нерва. Одновременно перерезанные концы аксонов центрального отрезка образуют так называемые колбы роста — утолщения, которые растут в направлении перифериче­ского отрезка. Часть этих веточек попадает в старое ложе перерезанного нерва и продолжает расти в этом ложе со скоростью 0,5—4,5 мм в сутки до тех пор, пока не дойдет до соответствующей

периферической ткани или органа, где волокна образуют нервные окончания. С этого времени восстанавливается нормальная иннервация органа или ткани.

В различных органах восстановление функции после перерезки нерва наступает в разные сроки. В мышцах первые признаки восстановления функций могут появиться через 5—6 нед; окончательное восстановление происходит много позднее, иногда через год.

ЗАКОНЫ ПРОВЕДЕНИЯ ВОЗБУЖДЕНИЯ В НЕРВАХ

При "изучении проведения возбуждения по нерву было установлено несколько необходимых условий и правил (законов) протекания этого процесса.

Анатомическая и физиологическая непрерывность волокна. Проведение импульсов возможно лишь при условии анатомической целостности волокна, поэтому как перерезка нервных волокон, так и любая травма поверхностной мембраны нарушают проводи­мость. Непроводимость наблюдается также при нарушении физиологической целост­ности волокна (блокада натриевых каналов возбудимой мембраны тетродотоксином или местными анестетиками, резкое охлаждение и т. п.). Проведение нарушается и при стойкой деполяризации мембраны нервного волокна ионами К, накапливающимися при ишемии в межклеточных щелях. Механическая травма, сдавливание нерва при воспали­тельном отеке тканей могут сопровождаться частичным или полным нарушением функ­ции проведения.

Двустороннее проведение. При раздражении нервного волокна возбуждение рас­пространяется по нему и в центробежном, и в центростремительном направлениях. Это доказывается следующим опытом.

К нервному волокну, двигательному или чувствительному, прикладывают две пары электродов, связанных с двумя электроизмерительными приборами А и Б (рис. 45). Раздражение наносят между этими электродами. В результате двустороннего проведе­ния возбуждения приборы зарегистрируют прохождение импульса как под электродом А, так и под электродом Б.

Двустороннее проведение не является только лабораторным феноменом. В естест­венных условиях потенциал действия нервной клетки возникает в той ее части, где тело переходит в ее отросток — аксон (так называемый начальный сегмент). Из начального сегмента потенциал действия распространяется двусторонне: в аксоне по направлению к нервным окончаниям и в тело клетки по направлению к ее дендритам.

Изолированное проведение. В периферическом нерве импульсы распространяются по каждому волокну изолированно, т. е. не переходя с одного волокна на другое и оказы­вая действие только на те клетки, с которыми контактируют окончания данного нервного волокна. Это имеет очень важное значение в связи с тем, что всякий периферический нервный ствол содержит большое число нервных волокон — двигательных, чувствитель­ных и вегетативных, которые иннервируют разные, иногда далеко отстоящие друг от друга и разнородные по структуре и функциям клетки и ткани. Например, блуждающий нерв иннервирует все органы грудной полости и значительную часть органов брюшной полости, седалищный нерв — всю мускулатуру, костный аппарат, сосуды и кожу нижней конечности. Если бы возбуждение переходило внутри нервного ствола с одного волокна на другое, то в этом случае нормальное функционирование периферических органов и тканей было бы невозможно.

Изолированное проведение в отдельных волокнах смешанного нерва может быть доказано простым опытом на скелетной мышце, иннервированной смешанным нервом, в образовании кото­рого участвует несколько спинномозговых корешков. Если раздражать один из этих корешков, сокращается не вся мышца, как это было бы в случае перехода возбуждения с одних нервных волокон на другие, а только те группы мышечных волокон, которые иннервированы раздражаемым корешком. Еще более строгое доказательство изолированного проведения возбуждения может быть получено при отведении потенциалов действия от различных нервных волокон нервного ствола.

Изолированное проведение нервного импульса обусловлено тем, что сопротивление жидкости, заполняющей межклеточные щели, значительно ниже сопротивления мем-

Рис. 45. Схематическое изображений опыта для доказательства двустороннего проведения импульса и нерве. Объяснение и тексте.

браны нервных волокон. Поэтому основная часть тока, возникающего между возбужден­ным (деполяризованным) и покоящимися участками возбудимой мембраны, проходит по межклеточным щелям, не заходя в соседние волокна.

Классификация нервных волокон по Эрлангеру-Гассеру

В 1939 г. американские[Мф54] физиологи Джозеф Эрлангер [Б55] и Герберт С.Гассер [Б56] [Б57] зарегистрировали токи действия от целого нервного ствола седалищного нерва лягушки на разных расстояниях от стимулирующего электрода (рис. 210041905).[Б58]


Было установлено, что регистрируемый суммарный потенциал имеет ряд пиков, которые были обозначены буквами латинского алфавита A, B, C (рис. , I). Пик A имел дополнительные пики, помеченные греческими буквами α, β, γ, δ (рис. , II). [Б59] В 1944 г. работа Дж.Эрлангера и Г.С.Гассера была оценена присуждением Нобелевской премии[Б60] .


Нервы у позвоночных состоят из трех основных групп волокон (А, В и С), различающихся по степени миелизации, диаметру волокна, длительности пика ПД (скорости развития ПД), электровозбудимости, его компенсации и скорости проведения (все эти показатели в ряду А — В — С падают).

Группа А включает наиболее толстые хорошо миелинизированные моторные и чувст­вительные волокна; группа В — слабомиелинизированные, преганглионарные волокна автономной нервной системы; группа С - немиелинизированные, постганглионарные (симпатические) волокна.

В группе А в ряду a, b, g, d названные показатели тоже падают. Соотношения свойств этих групп волокон демонстрируются в табл. .

Необходимо заметить, что указанные соотношения порогов электрического раздражения групп волокон не отражают точного соотношения электровозбудимости их мембран. Относительно высокие пороги тонких волокон при их раздражении в нервном стволе определяются в основном тем обстоятельством, что тонкие волокна по сравнению с толстыми обладают более высоким входным сопротивлением. В них входит такая малая часть раздражающего тока, что при пороговой силе для Аa-волокон она совершенно недостаточна для создания на мембране более тонких волокон сколько-нибудь существенной деполяризации. По этой же причине (высокое RI) отводимые от ствола (внеклеточно) ПД тонких волокон предстают значительно меньшими, чем ПД толстых волокон.


Рис. . Составные части потенциала действия смешанного нерва.

I – при относительно медленной скорости записи.

II – при относительно высокой скорости записи.

Объяснение в тексте. По оси абсцисс – время, по оси ординат амплитуда составного потенциала в мВ.

Суммарная электрическая активность нерва создается его волок­нами, каждое из которых генерирует свой стандартный по амплитуде и временным параметрам ПД, распространяющийся в обе стороны от точки, к которой приложено раздражение. Суммарный электрический сигнал нерва зависит от числа активных волокон, синхронности их активности, способа отведения и других обстоятельств.

При дальнейшем увеличении силы стимула этот ПД несколько удлиняется во времени. Все изменения амплитуды и длительности пика ПД нерва при усилении стимула определяются ростом числа активных волокон, подключением к низкопороговым и быстрым А(альфа)-волокнам более высокопороговых медленных бета-, гамма-, дельта-волокон группы А, затем В- и, наконец, С-группы.

Группы воло­кон (по Эрлангеру и Гассеру) Диаметр, мкм Скорость проведения, м/с
Aa 13 - 22 70 - 120
Ab 8 -13 40 - 70
Ag 4 - 8 15 – 40
Ad 1 – 4 5 – 15
B 1 - 3 3 – 14
C 0,5 – 1,0 0,5 - 2


Таблица . Классификация нервных волокон по Дж.Эрлангеру и Х.Гассеру

Группы воло­кон (по Эрлангеру и Гассеру) Диаметр, мкм Пороги электрического раздраженния (от­носительно Aa) Длительность пика ПД 1 Отрицательный следовой потенциал (ОСП) Положительный следовой потенциал [Б61] Скорость проведения, м/с
Длительность, мс Амплитуда СП, % к амплитуде ПД Длительность, мс Амплитуда СП, % к амплитуде ПД
Aa 13 - 22 1,0 0,4 15 – 20 40 - 60 0,2 70 - 120
Ab 8 -13 40 - 70
Ag 4 - 8 15 – 40
Ad 1 – 4 5 – 15
B 1 - 3 11,7 1,2 ОСП нет 100 – 300 3 – 14
C 0,5 – 1,0 100,0 2,0 50 – 60 300 - 1000 0,5 - 2

1 Приблизительно ту же величину имеют и абсолютные рефрактерные фазы

Основные свойства автоволн, касающиеся их распространения, распространяются и на потенциалы действия нервных волокон:

1. распространяется без затухания как по длине волокна, так и при его разветвлении (рис. 709170042).

2. не интерферируют (рис. 709170043).

3. не отражаются от препят­ствий (рис. 709170044).

4. направление распространения определяется зонами рефрактерности и покоя, обеспечивается двустороннее проведение возбуждения (рис. 709170045, 709170046).



Рис. 709170042. Распространение ПД при разветвлении нервных волокон. Показан правильный вариант и ошибочный вариант, который часто встречается при ответах студентов.



Рис. 709170043. Распространение ПД при схождении нервных волокон. Показан правильный вариант и ошибочный вариант, который часто встречается при ответах студентов.


Рис. 709170044. ПД не отражаются от препят­ствий Показан правильный вариант и ошибочный вариант, который часто встречается при ответах студентов.

ПД проходит равные расстояния (L) от места действия стимула за одно и то же время (t) и сохраняет амплитуду при прочих равных условиях.


Рис. 709170045. Двустороннее проведение по нервным волокнам. L – расстояние от места действия стимула, t – время проведения ПД от места действия стимула до места расположения регистрирующих электродов, A – амплитуда ПД.

Обычно подчёркивается условие сохранения анатомической и физиологической непрерывности волокна

Анатомическая и физиологическая непрерывность волокна

Проведение импульсов возможно лишь при условии анатомической целостности волокна, поэтому как перерезка нервных волокон, так и любая травма поверхностной мембраны нарушают проводимость. Непроводимость наблюдается также при нарушении физиологической целост­ности волокна блокада натриевых каналов возбудимой мембраны тетродотоксином или местными aнестетиками, резкое охлаждение и т.п.). Проведение нарушается и при стойкой деполяризации мембраны нервного волокна К + , накапливающимися при ишемии в межклеточных щелях. Механическая травма, сдавливание нерва при воспали­тельном отеке тканей могут сопровождаться частичным или полным нарушением функ­ции проведения.


Рубрика: Медицина

Дата публикации: 05.05.2016 2016-05-05

Статья просмотрена: 20087 раз

Одновременно с процессом денервации, возникшей при повреждении нерва, начинаются восстановительные процессы, которые могут идти по трем направлениям.

(3) В ряде случаев (обычно при травме нервного ствола типа ушиба) восстановление или улучшение функций связано с обратимостью некоторых патоморфологических процессов: с исчезновением реактивных воспалительных явлений, с рассасыванием мелких кровоизлияний и т. д. При нетяжелых травмах проводимость нерва, даже после полной ее потери, восстанавливается в течение первых дней или недель.

К основным факторам, определяющим при периферических невропатиях и плексопатиях скорость и степень спонтанного восстановления нарушенных функций (и, следовательно, объем и направленность лечебных вмешательств), относятся следующие:

‒ степень повреждения нервного проводника;

‒ характер повреждающего агента.

Реабилитологи чаще всего определяют степень повреждения нерва по 3 категориям согласно классификации H.Seddon. Иногда используют также классификацию S.Sunderland, выделяющего 5 степеней повреждения нервов; эта классификация основана на классификации H.Seddon, детализируя ее. Согласно классификации H.Seddon, все локальные повреждения нервных стволов делят, в зависимости от сохранности аксона и соединительнотканных структур, на три группы:

Аксонотмезис (axonotmesis, англ.) — повреждение нерва, приводящее к гибели аксона при сохранности эпиневрия, периневрия, эндоневрия и шванновских клеток. Нередко наблюдается при закрытых переломах либо вывихах костей конечностей, а также при сдавлениях нервных стволов. Нарушаются двигательные, чувствительные и судомоторные функции нерва. Восстановление функций происходит за счет регенерации аксона. Скорость и степень восстановления зависит от уровня поражения, возраста (у молодых регенерация происходит быстрее) и общего состояния больного. В случаях, когда прорастание аксона происходит медленно, может произойти рубцевание эндоневральной трубки, в которую прорастает аксон, и восстановление не наступает. По этой же причине неблагоприятный прогноз имеется в случаях, когда дефект нервного ствола имеет значительную длину. При благоприятных условиях происходит постепенная невротизация дистального отдела поврежденного нерва, которая продолжается в течение многих месяцев, иногда год и более. Наблюдается восстановление утраченных функций, но не всегда полное.

Нейротмезис (neurotmesis, англ.) — разрыв нерва с пересечением аксона и соединительнотканных оболочек нерва. Из-за того, что повреждаются эндоневральные трубки, невозможным становится прорастание в них аксонов, регенерация аксонов приводит к образованию травматической невромы. Прогноз восстановления неблагоприятный.

Данная классификация основана на микроскопических изменениях в нервном стволе. Макроскопически различить степень повреждения практически невозможно. Диагностика основана на динамическом клиническом и электрофизиологическом наблюдении. В связи с этим при закрытых травмах нервных стволов нередко применяют иную классификацию, основанную на выделении следующих 4 форм поражения нервного ствола:

Сотрясение не сопровождается морфологическими изменениями в нерве, нарушения функции нерва кратковременны (не более 1–2 недель) и полностью обратимы.

Ушиб нерва характеризуется возникновением мелких кровоизлияний, участков размозжения нервных волокон и пучков, что приводит к полному либо частичному нарушению проводимости, длительным и стойким выпадением функций.

При сдавлении нерва степень нарушения проводимости зависит в первую очередь от длительности сдавления: при своевременном удалении сдавливающих нерв субстратов (гематома, инородное тело, отломок кости и т. д.) может наблюдаться быстрое и полное восстановление проводимости, тогда как при длительном сдавлении в нервном стволе развиваются дегенеративные изменения. Отсутствие восстановления функции в течение 2–3 месяцев является критерием полного анатомического перерыва нерва.

Тракция (например, тракдия ветвей плечевого сплетения при вправлении вывиха плеча) обычно сопровождается частичным нарушением функции, однако восстановление проводимости по нерву происходит достаточно длительно (в течение нескольких месяцев).

Чем проксимальнее поражение нервного ствола или сплетения (т. е. чем больше расстояние от места повреждения до периферических окончаний), тем хуже прогноз восстановления функции, поскольку тем больший срок требуется для прорастания нервного волокна и тем больше вероятность развития в эндоневральной трубке периферического отрезка нерва необратимых рубцовых изменений. Так, например, по данным С. И. Карчикяна, при ранениях седалищного нерва в верхней трети бедра первые движения стопы и пальцев появляются лишь спустя 15–20 месяцев и позже после наложения нервного шва, а при ранениях этого же нерва в нижней трети бедра — через 10–15 месяцев после оперативного вмешательства. Наихудший прогноз отмечается при повреждениях на корешковом уровне, поскольку корешки спинальных нервов не регенерируют и не могут быть восстановлены хирургическим путем. Поражение корешков (обычно — отрыв корешка на шейном уровне), в отличие от поражения сплетения, характеризуется следующими признаками:

‒ интенсивная жгучая боль, иррадиирущая вдоль соответствующего дерматома;

‒ парализация паравертебральных мышц, иннервируемых задними ветвями спинальных нервов;

‒ паралич мышц лопатки вследствие нарушения функции коротких нервов плечевого пояса (крыловидная лопатка);

‒ синдром Горнера (при поражении С8-ты корешков);

‒ трофические нарушения и быстро прогрессирующая мышечная атрофия с грубыми вторичными контрактурами.

Периферические невропатии и плексопатии могут иметь самую различную этиологию. В мирное время наиболее частой формой поражений периферических нервов являются туннельные невропатии, составляя около 30–40 % от всех заболеваний периферической нервной системы. Туннельная невропатия — это локальное поражение нервного ствола, обусловленное его компрессией и ишемией в анатомических каналах (туннелях) или вследствие внешнего механического воздействия. Предрасполагающие к развитию туннельных невропатий факторы включают генетически обусловленную узость естественных вместилищ нерва, приобретенную узость этих вместилищ вследствие отеков и гиперплазии соединительной ткани при различных заболеваниях (например, сахарном диабете, гипотиреозе, коллагенозах), длительное перенапряжение мышечно-связочного аппарата у лиц определенных профессий, последствия трав, мышечно-тонические и нейро-дистрофические нарушения при рефлекторных синдромах остеохондроза позвоночника, ятрогенные травмирующие воздействия (неправильное наложение гипсовой повязки, кровоостанавливающего жгута). Нарушение функции нерва происходит вследствие как демиелинизации, так и поражения аксона (ухудшение нейротрофического контроля в связи с недостаточностью аксонального транспорта). Туннельные поражения нервов проявляются в первую очередь болью, чувствительными и вегетативными расстройствами. Двигательные нарушения развиваются лишь у одной трети больных и заключаются, как правило, в снижении мышечной силы, гипотрофии мышц, развитии контрактур. Прогноз восстановления функций при рано начатом лечении обычно благоприятный, однако это восстановление может происходить достаточно длительно, до нескольких месяцев. Кроме того, прогноз зависит от основного заболевания, на фоне которого развилась невропатия, от того, сохраняются ли профессиональные перегрузки конечности. В 30–40 % случаев туннельные невропатии рецидивируют.

На втором месте по частоте находятся травматические невропатии. Среди причин травматических невропатий прогностически наиболее благоприятными являются резаные ранения, при которых своевременное оперативное вмешательство обеспечивает хороший исход.

Тракционные и огнестрельные травмы имеют худший прогноз, поскольку при них нередко измененными оказываются центральный отрезок нерва и нейрон спинномозговых центров, что существенно затрудняет регенерацию нерва. Разрушение нервного ствола на большом протяжении может наблюдаться также при электротравме, при химическом повреждении (случайное введение в нерв различных лекарственных веществ). Весьма неблагоприятно сопутствующее повреждению нерва нарушение кровообращения в конечности (кровотечение либо длительное наложение кровоостанавливающего жгута, тромбоз магистральной артерии), которое может приводить к развитию в мышцах, сухожилиях, суставных сумках, коже и подкожной клетчатке атрофирующего склерозирующего процесса с образованием контрактур. Препятствовать восстановлению движений могут также вторичные изменения в суставах и сухожилиях, которые развиваются вследствие растяжения связок и суставных сумок при пассивном свешивании конечностей в случае вялого паралича или пареза. При невро- и плексопатиях, развившихся на фоне соматических заболеваний, вследствие иммунных, неопластических, инфекционных, токсических поражений и воздействий прогноз зависит от характера течения основного заболевания либо процесса.


Повреждения нервов верхних и нижних конечностей - одни из частых и тяжелых видов травм

Повреждения нервов верхних и нижних конечностей, к сожалению, являются одним из частых и тяжелых видов травм, которые могут кардинально изменить качество и образ жизни человека, как в повседневной бытовой, так и в профессиональной среде. Значительное число ошибок диагностического, тактического и технического порядка в повседневной медицинской клинической практике, к сожалению, приводят к полной или частичной нетрудоспособности пациента, нередко вынуждают больных менять профессию, становятся причиной инвалидности.

Повреждения периферических нервов разделяют на закрытые и открытые.

  • Закрытые повреждения: в результате сдавления мягких тканей руки или ноги, например, вследствие неправильного наложения жгута при кровотечении, в результате сильного ушиба или удара, длительного вынужденного положения конечности с давлением извне, как последствие переломов костей. Как правило, полного перерыва нерва в таких случаях не наблюдается, поэтому исход обычно благоприятный. В некоторых случаях, например, при вывихах костей кисти, вывихе стопы или крупного сустава, закрытых переломах костей конечностей со смещением отломков может возникнуть полный перерыв ствола нерва или даже нескольких нервов.
  • Открытые повреждения являются следствием ранений осколками стекла, ножом, листовым железом, механическими инструментами и т. п. В этом случае повреждение целостности структуры нерва происходит всегда.

К сожалению, нередко повреждения нервов являются последствием оперативных вмешательств.

Наступающие изменения проявляются в зависимости от уровня повреждения нерва, характера травмы или длительности воздействия травмирующего агента различными синдромами расстройств функции.

Открытые повреждения периферических нервов. Волокна всех периферических нервов смешанного типа - двигательные, чувствительные и вегетативные волокна, количественные соотношения между этими видами волокон неодинаковы в разных нервах, поэтому в одних случаях более выражены двигательные нарушения, в других отмечается снижение или полное отсутствие чувствительности, в третьих - вегетативные расстройства.

Двигательные расстройства характеризуются параличами групп или отдельных мышц, сопровождающимися исчезновением рефлексов, а также со временем (через 1-2 недели после травмы) атрофией парализованных мышц.

Происходят нарушения чувствительности - снижение, исчезновение болевой,температурной, тактильной чувствительности. Боли, усиливающиеся в отсроченном порядке.

Вегетативная симптоматика - в первый период после травмы кожа горячая и красная, спустя несколько недель становится синюшной и холодной (сосудодвигательные нарушения), появление отека, нарушения потоотделения, трофические расстройства кожи – сухость, шелушение, иногда даже изъязвления, деформация ногтей.

При ранении подкрыльцового нерва невозможно отведение плеча, имеется атрофия дельтовидной мышцы, нарушение чувствительности в наружно-задней поверхности плеча. Поражение мышечно-кожного нерва исключает возможность одновременного разгибания предплечья и супинации кисти.

При поражении общего ствола седалищного нерва в верхней половине бедра утрачиваются сгибание и разгибание стопы и пальцев. Стопа свисает, нельзя стоять на носках и пятках. Чувствительные расстройства имеются на стопе и задней поверхности голени. Типичны вегетативные расстройства, трофические язвы стопы. Повреждение большеберцового нерва приводит к исчезновению сгибания стопы и пальцев. Стопа разогнута, пальцы находятся в когтеобразном положении. Чувствительность расстроена на задней и ненаружной поверхности голени, подошве и наружном крае стопы. Выражены вегетативные нарушения - болевой синдром. Отсутствие чувствительности имеется на передненижней поверхности голени.

Вот краткое описание нарушений, возникающих при травмах периферических нервов верхней конечности. Полноценная клиническая диагностика повреждений нервов, конечно, более сложная, и выполняется врачом с использованием дополнительных методов исследования.

При закрытых травмах, как правило, проводиться консервативное лечение длительностью около 1-2 месяцев, состоящее из физиотерапевтических воздействий (массаж, лечебная физкультура, электрогимнастика, тепловые процедуры, озокерит, парафин, диатермия, ионто-форез и т.д.), применения медикаментозных средств ( дибазол, прозевин), способствующих регенерации нерва и, как следствие, восстановлению утраченных функций и чувствительности. Необходимо использование также препаратов, снимающие боль - анальгетиков. Очень важно придать конечности правильное положение и обеспечить покой с помощью шин и других фиксирующих аппаратов.

При недостаточной эффективности консервативной терапии через 4-6 месяцев со дня травмы прибегают к оперативному лечению.

Опыт лечения больных с травмами нервов свидетельствует: чем раньше выполняется восстановительная операция, тем перспективнее возможность возобновления утраченных функций. Операция на нерве показана во всех случаях нарушения проводимости по нервному стволу (по данным исследований электромиографии).

Неполный перерыв, сдавление нервного ствола после ушибленно-рваных ран или тяжелых сочетанных травм конечностей способствует развитию диффузного рубцового процесса, ведущего к образованию рубцовой стриктуры, сдавливающей нервный ствол и приводящей к нарушению проводимости по нерву. В данной ситуации выполняется невролиз - бережное иссечение рубцовоизмененных тканей и рубцов эпиневрия, что устраняет компрессию аксонов и способствует улучшению кровоснабжения нерва и восстановлению проводимости на данном участке. Все оперативные вмешательства на периферических нервах выполняются с применением микрохирургической техники.

Микрохирургическая техника, используемая при операциях по восстановлению периферических нервов, позволяет создать оптимальные анатомические условия (точное сопоставление концов нерва с последующим сшиванием его) для полноценного восстановления функции нервов.

· опорная и изолирующая;

· образование спинномозговой жидкости (эпендима);

· трофическая (являются посредниками между сосудами и нейронами);

· миелинизация нервных волокон (олигодендроглия);

· формирование гистогематического барьера, не пропускающего токсические вещества к нейронам, и поддержание межклеточного гомеостаза (астроглия).

Синапсом называется структурное образование, обеспечивающее переход возбуждения с нервного волокна на иннервируемую им клетку (нервную, мышечную или железистую).

1. По локализации:

· центральные, расположенные в ЦНС: аксодендритические, аксосоматические, аксоаксональные, дендродендритичес-кие, дендросоматические;

· периферические: нервно-мышечные, нервно-железистые и синапсы вегетативных ганглиев.

2. По механизму передачи возбуждения:

· химические, передающие возбуждение с помощью медиатора;

4. По типу медиатора:

· глицинэргические и др.

5. По форме контакта химические синапсы делятся на:

· терминальные (колбообразное расширение аксона)

· преходящие (варикозные расширения аксона

Строение химического синапса:

– пресинаптическая мембрана, расположена на синаптической бляшке терминального отдела аксона;

– синаптическая щель – пространство между пре- и постсинаптической областями шириной 10-50 нм и заполнена гликокалексом и межтканевой жидкостью;

– постсинаптическая мембрана, расположена на иннервируемой клетке. На ней имеются хеморецепторы, чувствительные к определенному виду медиатора. Постинаптическая мембрана также имеет ферменты, разрушающие медиатор после его взаимодействия с хеморецептором.

Рис.11. Строение химического синапса: 1 — микротрубочки; 2 — митохондрии;
3 — синаптические пузырьки с медиатором; 4 — пресинаптическая мембрана;
5 — постсинаптическая мембрана; 6 — рецепторы; 7 — синаптическая щель

Медиатор (посредник) – это биологически активное вещество, выделяемое нервным окончанием и осуществляющее передачу возбуждения в химических синапсах. Медиатор синтезируется в теле нейрона и, благодаря механизмам аксонального транспорта, поступает в синаптическую бляшку. В синаптической бляшке медиатор находится в везикулах в строго определенном количестве.

Повреждения нервов верхних и нижних конечностей — одни из частых и тяжелых видов травм

Повреждения нервов верхних и нижних конечностей, к сожалению, являются одним из частых и тяжелых видов травм, которые могут кардинально изменить качество и образ жизни человека, как в повседневной бытовой, так и в профессиональной среде. Значительное число ошибок диагностического, тактического и технического порядка в повседневной медицинской клинической практике, к сожалению, приводят к полной или частичной нетрудоспособности пациента, нередко вынуждают больных менять профессию, становятся причиной инвалидности.

Повреждения периферических нервов разделяют на закрытые и открытые.

  • Закрытые повреждения: в результате сдавления мягких тканей руки или ноги, например, вследствие неправильного наложения жгута при кровотечении, в результате сильного ушиба или удара, длительного вынужденного положения конечности с давлением извне, как последствие переломов костей. Как правило, полного перерыва нерва в таких случаях не наблюдается, поэтому исход обычно благоприятный. В некоторых случаях, например, при вывихах костей кисти, вывихе стопы или крупного сустава, закрытых переломах костей конечностей со смещением отломков может возникнуть полный перерыв ствола нерва или даже нескольких нервов.
  • Открытые повреждения являются следствием ранений осколками стекла, ножом, листовым железом, механическими инструментами и т. п. В этом случае повреждение целостности структуры нерва происходит всегда.

К сожалению, нередко повреждения нервов являются последствием оперативных вмешательств.

Наступающие изменения проявляются в зависимости от уровня повреждения нерва, характера травмы или длительности воздействия травмирующего агента различными синдромами расстройств функции.

Открытые повреждения периферических нервов. Волокна всех периферических нервов смешанного типа — двигательные, чувствительные и вегетативные волокна, количественные соотношения между этими видами волокон неодинаковы в разных нервах, поэтому в одних случаях более выражены двигательные нарушения, в других отмечается снижение или полное отсутствие чувствительности, в третьих — вегетативные расстройства.

Двигательные расстройства характеризуются параличами групп или отдельных мышц, сопровождающимися исчезновением рефлексов, а также со временем (через 1-2 недели после травмы) атрофией парализованных мышц.

Происходят нарушения чувствительности — снижение, исчезновение болевой,температурной, тактильной чувствительности. Боли, усиливающиеся в отсроченном порядке.

Вегетативная симптоматика — в первый период после травмы кожа горячая и красная, спустя несколько недель становится синюшной и холодной (сосудодвигательные нарушения), появление отека, нарушения потоотделения, трофические расстройства кожи – сухость, шелушение, иногда даже изъязвления, деформация ногтей.

При ранении подкрыльцового нерва невозможно отведение плеча, имеется атрофия дельтовидной мышцы, нарушение чувствительности в наружно-задней поверхности плеча. Поражение мышечно-кожного нерва исключает возможность одновременного разгибания предплечья и супинации кисти.

При поражении общего ствола седалищного нерва в верхней половине бедра утрачиваются сгибание и разгибание стопы и пальцев. Стопа свисает, нельзя стоять на носках и пятках. Чувствительные расстройства имеются на стопе и задней поверхности голени. Типичны вегетативные расстройства, трофические язвы стопы. Повреждение большеберцового нерва приводит к исчезновению сгибания стопы и пальцев. Стопа разогнута, пальцы находятся в когтеобразном положении. Чувствительность расстроена на задней и ненаружной поверхности голени, подошве и наружном крае стопы. Выражены вегетативные нарушения — болевой синдром. Отсутствие чувствительности имеется на передненижней поверхности голени.

Вот краткое описание нарушений, возникающих при травмах периферических нервов верхней конечности. Полноценная клиническая диагностика повреждений нервов, конечно, более сложная, и выполняется врачом с использованием дополнительных методов исследования.

При закрытых травмах, как правило, проводиться консервативное лечение длительностью около 1-2 месяцев, состоящее из физиотерапевтических воздействий (массаж, лечебная физкультура, электрогимнастика, тепловые процедуры, озокерит, парафин, диатермия, ионто-форез и т.д.), применения медикаментозных средств ( дибазол, прозевин), способствующих регенерации нерва и, как следствие, восстановлению утраченных функций и чувствительности. Необходимо использование также препаратов, снимающие боль — анальгетиков. Очень важно придать конечности правильное положение и обеспечить покой с помощью шин и других фиксирующих аппаратов.

При недостаточной эффективности консервативной терапии через 4-6 месяцев со дня травмы прибегают к оперативному лечению.

Опыт лечения больных с травмами нервов свидетельствует: чем раньше выполняется восстановительная операция, тем перспективнее возможность возобновления утраченных функций. Операция на нерве показана во всех случаях нарушения проводимости по нервному стволу (по данным исследований электромиографии).

Неполный перерыв, сдавление нервного ствола после ушибленно-рваных ран или тяжелых сочетанных травм конечностей способствует развитию диффузного рубцового процесса, ведущего к образованию рубцовой стриктуры, сдавливающей нервный ствол и приводящей к нарушению проводимости по нерву. В данной ситуации выполняется невролиз — бережное иссечение рубцовоизмененных тканей и рубцов эпиневрия, что устраняет компрессию аксонов и способствует улучшению кровоснабжения нерва и восстановлению проводимости на данном участке. Все оперативные вмешательства на периферических нервах выполняются с применением микрохирургической техники.

Микрохирургическая техника, используемая при операциях по восстановлению периферических нервов, позволяет создать оптимальные анатомические условия (точное сопоставление концов нерва с последующим сшиванием его) для полноценного восстановления функции нервов.

Классификация нервных волокон по Эрлангеру-Гассеру

В 1939 г. американские[Мф54] физиологи Джозеф Эрлангер [Б55] и Герберт С.Гассер [Б56] [Б57] зарегистрировали токи действия от целого нервного ствола седалищного нерва лягушки на разных расстояниях от стимулирующего электрода (рис. 210041905).[Б58]

Было установлено, что регистрируемый суммарный потенциал имеет ряд пиков, которые были обозначены буквами латинского алфавита A, B, C (рис. , I). Пик A имел дополнительные пики, помеченные греческими буквами α, β, γ, δ (рис. , II). [Б59] В 1944 г. работа Дж.Эрлангера и Г.С.Гассера была оценена присуждением Нобелевской премии[Б60] .

Нервы у позвоночных состоят из трех основных групп волокон (А, В и С), различающихся по степени миелизации, диаметру волокна, длительности пика ПД (скорости развития ПД), электровозбудимости, его компенсации и скорости проведения (все эти показатели в ряду А — В — С падают).

Группа А включает наиболее толстые хорошо миелинизированные моторные и чувст­вительные волокна; группа В — слабомиелинизированные, преганглионарные волокна автономной нервной системы; группа С — немиелинизированные, постганглионарные (симпатические) волокна.

В группе А в ряду a, b, g, d названные показатели тоже падают. Соотношения свойств этих групп волокон демонстрируются в табл. .

Необходимо заметить, что указанные соотношения порогов электрического раздражения групп волокон не отражают точного соотношения электровозбудимости их мембран. Относительно высокие пороги тонких волокон при их раздражении в нервном стволе определяются в основном тем обстоятельством, что тонкие волокна по сравнению с толстыми обладают более высоким входным сопротивлением. В них входит такая малая часть раздражающего тока, что при пороговой силе для Аa-волокон она совершенно недостаточна для создания на мембране более тонких волокон сколько-нибудь существенной деполяризации. По этой же причине (высокое RI) отводимые от ствола (внеклеточно) ПД тонких волокон предстают значительно меньшими, чем ПД толстых волокон.

Рис. . Составные части потенциала действия смешанного нерва.

I – при относительно медленной скорости записи.

II – при относительно высокой скорости записи.

Объяснение в тексте. По оси абсцисс – время, по оси ординат амплитуда составного потенциала в мВ.

Суммарная электрическая активность нерва создается его волок­нами, каждое из которых генерирует свой стандартный по амплитуде и временным параметрам ПД, распространяющийся в обе стороны от точки, к которой приложено раздражение. Суммарный электрический сигнал нерва зависит от числа активных волокон, синхронности их активности, способа отведения и других обстоятельств.

При дальнейшем увеличении силы стимула этот ПД несколько удлиняется во времени. Все изменения амплитуды и длительности пика ПД нерва при усилении стимула определяются ростом числа активных волокон, подключением к низкопороговым и быстрым А(альфа)-волокнам более высокопороговых медленных бета-, гамма-, дельта-волокон группы А, затем В- и, наконец, С-группы.

Группы воло­кон (по Эрлангеру и Гассеру) Диаметр, мкм Скорость проведения, м/с
Aa 13 — 22 70 — 120
Ab 8 -13 40 — 70
Ag 4 — 8 15 – 40
Ad 1 – 4 5 – 15
B 1 — 3 3 – 14
C 0,5 – 1,0 0,5 — 2

Таблица . Классификация нервных волокон по Дж.Эрлангеру и Х.Гассеру

Группы воло­кон (по Эрлангеру и Гассеру) Диаметр, мкм Пороги электрического раздраженния (от­носительно Aa) Длительность пика ПД 1 Отрицательный следовой потенциал (ОСП) Положительный следовой потенциал [Б61] Скорость проведения, м/с
Длительность, мс Амплитуда СП, % к амплитуде ПД Длительность, мс Амплитуда СП, % к амплитуде ПД
Aa 13 — 22 1,0 0,4 15 – 20 40 — 60 0,2 70 — 120
Ab 8 -13 40 — 70
Ag 4 — 8 15 – 40
Ad 1 – 4 5 – 15
B 1 — 3 11,7 1,2 ОСП нет 100 – 300 3 – 14
C 0,5 – 1,0 100,0 2,0 50 – 60 300 — 1000 0,5 — 2

1 Приблизительно ту же величину имеют и абсолютные рефрактерные фазы

Основные свойства автоволн, касающиеся их распространения, распространяются и на потенциалы действия нервных волокон:

1. распространяется без затухания как по длине волокна, так и при его разветвлении (рис. 709170042).

2. не интерферируют (рис. 709170043).

3. не отражаются от препят­ствий (рис. 709170044).

4. направление распространения определяется зонами рефрактерности и покоя, обеспечивается двустороннее проведение возбуждения (рис. 709170045, 709170046).

Рис. 709170042. Распространение ПД при разветвлении нервных волокон. Показан правильный вариант и ошибочный вариант, который часто встречается при ответах студентов.

Рис. 709170043. Распространение ПД при схождении нервных волокон. Показан правильный вариант и ошибочный вариант, который часто встречается при ответах студентов.

Рис. 709170044. ПД не отражаются от препят­ствий Показан правильный вариант и ошибочный вариант, который часто встречается при ответах студентов.

ПД проходит равные расстояния (L) от места действия стимула за одно и то же время (t) и сохраняет амплитуду при прочих равных условиях.

Рис. 709170045. Двустороннее проведение по нервным волокнам. L – расстояние от места действия стимула, t – время проведения ПД от места действия стимула до места расположения регистрирующих электродов, A – амплитуда ПД.

Обычно подчёркивается условие сохранения анатомической и физиологической непрерывности волокна

Анатомическая и физиологическая непрерывность волокна

Проведение импульсов возможно лишь при условии анатомической целостности волокна, поэтому как перерезка нервных волокон, так и любая травма поверхностной мембраны нарушают проводимость. Непроводимость наблюдается также при нарушении физиологической целост­ности волокна блокада натриевых каналов возбудимой мембраны тетродотоксином или местными aнестетиками, резкое охлаждение и т.п.). Проведение нарушается и при стойкой деполяризации мембраны нервного волокна К + , накапливающимися при ишемии в межклеточных щелях. Механическая травма, сдавливание нерва при воспали­тельном отеке тканей могут сопровождаться частичным или полным нарушением функ­ции проведения.

Не нашли то, что искали? Воспользуйтесь поиском:

Отключите adBlock!
и обновите страницу (F5)
очень нужно

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.