Механизм синаптической передачи в цнс понятие о тпсп и впсп

Физиология синаптической передачи

Классификация синапсов

Синапс – это морфофункциональное образование ЦНС, которое обеспечивает передачу сигнала с нейрона на другой нейрон или с нейрона на эффекторную клетку (мышечное волокно, секреторную клетку). Все синапсы ЦНС можно классифицировать следующим образом.

1. По локализации: центральные (головной и спинной мозг) и периферические (нервно-мышечный, нейросекреторный синапс вегетативной нервной системы). Центральные синапсы можно в свою очередь разделить на аксо-аксональные, аксо-дендритические (дендритные), аксо-соматические, дендро-дендритические, дендро-соматические и т.п. Согласно Г. Шенсрду, различают реципрокные синапсы, последовательные синапсы и синаптические гломерулы (различным способом соединенные через синапсы клетки).

2. По развитию в онтогенезе: стабильные (например, синапсы дуг безусловного рефлекса) и динамичные, появляющиеся в процессе индивидуального развития.

3. По конечному эффекту: тормозные и возбуждающие.

4. По механизму передачи сигнала: электрические, химические, смешанные.

5. Химические синапсы можно классифицировать:

а) по форме контакта – терминальные (колбообразное соединение) и преходящие (варикозное расширение аксона);

б) по природе медиатора – холинергические (медиатор – ацетилхолин, АХ), адренергическис (медиатор – норадреналин, НА), дофаминергические (дофамин), ГАМК-ергические (медиатор – гаммааминомасляная кислота), глицинергические, глутаматергические, аспартатсргические, пептидергические (медиатор – пептиды, например, вещество Р), пуринергические (медиатор – АТФ).

Электрические синапсы. В настоящее время признают, что в ЦНС имеются электрические синапсы. С точки зрения морфологии электрический синапс представляет собой щелевидное образование (размеры щели до 2 нм) с ионными мостиками-каналами между двумя контактирующими клетками. Петли тока, в частности при наличии потенциала действия (ПД), почти беспрепятственно перескакивают через такой щелевидный контакт и возбуждают, т.е. индуцируют генерацию ПД второй клетки. В целом, такие синапсы (они называются эфапсами) обеспечивают очень быструю передачу возбуждения. Но в то же время с помощью этих синапсов нельзя обеспечить одностороннее проведение, т. к. большая часть таких синапсов обладает двусторонней проводимостью. Кроме того, с их помощью нельзя заставить эффекторную клетку (клетку, которая управляется через данный синапс) тормозить свою активность. Аналогом электрического синапса в гладких мышцах и в сердечной мышце являются щелевые контакты типа нексуса.

Химические синапсы. По строению химические синапсы представляют собой окончания аксона (терминальные синапсы) или его варикозную часть (проходящие синапсы), которая заполнена химическим веществом – медиатором. В синапсе различают пресинаптический элемент, который ограничен пресинаптической мембраной, постсинаптический элемент, который ограничен постсипаптической мембраной, а также внесинаптическую область и синаптическую щель, величина которой составляет в среднем 50 нм. В литературе существует большое разнообразие в названиях синапсов. Например, синаптическая бляшка – это синапс между нейронами, концевая пластинка – это постсинаптическая мембрана мионеврального синапса, моторная бляшка – это пресинаптичсское окончание аксона на мышечном волокне.

Общие принципы работы химического синапса

Любой химический синапс, независимо от природы медиатора и хеморецептора, активируется под влиянием потенциала действия, прибегающего к пресинапсу от тела нейрона. В результате – происходит деполяризация пресинаптической мембраны, что повышает проницаемость кальциевых каналов пресинаптической мембраны и приводит к увеличению входа в пресинапс ионов кальция. В ответ на это происходит высвобождение квантов (выход из пресинапса) – 100–200 порций (квантов) медиатора. Выйдя в синаптическую щель, медиатор взаимодействует со специфическим рецептором постсинаптической мембраны, что вызывает изменение ионной проницаемости. В синапсах, в которых осуществляется возбуждение постсинантической структуры, обычно происходит повышение проницаемости для ионов натрия, что вызывает деполяризацию постсинаптической мембраны. Эта деполяризация получила определенное название: возбуждающий постсинаптический потенциал (ВПСП). Если его величина достаточно велика и достигает критического уровня деполяризации, то генерируется ПД. В тормозных синапсах в результате взаимодействия медиатора с рецепторами, наоборот, происходит гиперполяризация (за счет, например, увеличения проницаемости для ионов калия и хлора). Это называется тормозным постсинаптическим потенциалом (ТПСГ1). В гиперполяризоваином состоянии клетка снижает свою возбудимость и благодаря этому прекращает отвечать на внешние раздражители или (если она обладала свойством автоматии) уменьшает спонтанную активность.

После каждого цикла проведения импульса медиатор разрушается, например, ацетилхолин разрушается ацстилхолинэстеразой, норадреналин разрушается моноаминоксидазой (МАО) или катсхол-0-метилтрансферазой (КОМТ), либо идет обратный захват в преси-наптическую структуру. В одних случаях захватывается неразрушенный медиатор (например, норадреналип), в других – его осколки (например, холин из ацетилхолина).

Синтез медиатора совершается в пресинаптическом элементе, куда попадают исходные продукты для синтеза и ферменты, необходимые в синтезе. Ферменты образуются в соме нейрона и по аксону, примерно со скоростью 6 мм/сутки, попадают в пресинапс, где используются в процессе синтеза медиатора. Угнетение активности этих ферментов фармакологическим путем может привести к истощению запасов медиатора в синапсе и, следовательно, к снижению его функциональной способности.

Свойства химических синапсов

1. Односторонняя проводимость – одно из важнейших свойств химического синапса. Асимметрия – морфологическая и функциональная – является предпосылкой для существования односторонней проводимости.

2. Наличие синаптической задержки: для того, чтобы в ответ на генерацию ПД в области пресинапса выделился медиатор и произошло изменение постсинаптического потенциала (ВИСИ или ТПСП), требуется определенное время (синаптическая задержка). В среднем оно равно 0,2–0,5 мс.

3. Благодаря синаптическому процессу нервная клетка, управляющая данным постсинаптичсским элементом (эффектором), может оказывать возбуждающее воздействие или, наоборот, тормозное (это определяется конкретным синапсом).

4. В синапсах существует явление отрицательной обратной связи – антидромный эффект. Речь идет о том, что выделяемый в синаптическую щель медиатор может регулировать выделение следующей порции медиатора из этого же пресинаптического элемента путем воздействия на специфические рецепторы пресинаптичсской мембраны.

В мозге имеется ряд медиаторов, вызывающих возбуждение нейрона: норадреналин (его продуцируют адренергические нейроны), дофамин (дофаминергические нейроны), серото-нин, пептиды (пептидергические), глутаминовая кислота, аспарагиновая кислота и т.д. Во всех этих случаях выделяющийся медиатор взаимодействует со специфическим рецептором, в результате чего меняется проницаемость для ионов натрия, калия или хлора, и в итоге развивается деполяризация (ВПСП). Если она достигает критического уровня деполяризации, то возникает ПД (возбуждение нейрона).

Тормозные синапсы образованы специальными тормозными нейронами (точнее, их аксонами). Медиатором могут быть глицин, гамма-аминомасляная кислота (ГАМК) и ряд других веществ. Обычно глицин вырабатывается в синапсах, с помощью которых осуществляется постсинаптическое торможение. При взаимодействии глицина как медиатора с глициновыми рецепторами нейрона возникает гиперполяризация нейрона (ТПСП) и, как следствие, – снижение возбудимости нейрона вплоть до полной его рефрактсрности. В результате этого возбуждающие воздействия, оказываемые через другие аксоны, становятся малоэффективными или неэффективными. Нейрон выключается из работы полностью.

ВПСП – возбуждающим постсинаптическим потенциалом

ТПСП – тормозным постсинаптическим потенциалом

ГАМК – гамма-аминомасляной кислоты

Си́напс— место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза. Его выделение происходит небольшими порциями – квантами. Небольшое количество квантов выходит из окончания и в состоянии покоя. Когда нервный импульс, т.е. ПД, достигает пресинаптического окончания, происходит деполяризация его пресинаптической мембраны. Открываются ее кальциевые каналы и ионы кальция входят в синаптическую бляшку. Начинается выделение большого количества квантов нейромедиатора. Молекулы медиатора диффундируют через синаптическую щель к постсинаптической мембране и взаимодействуют с её хеморецепторами. В результате образования комплексов медиатор-рецептор, в субсинаптической мембране начинается синтез так называемых вторичных посредников (в частности, цАМФ). Эти посредники активируют ионные каналы постсинаптической мембраны. Поэтому такие каналы называют хемозависимыми или рецепторуправляемыми. Т.е. они открываются при действии ФАВ на хеморецепторы. В результате открывания каналов изменяется потенциал субсинаптической мембраны. Такое изменение называется постсинаптическим потенциалом.

В ЦНС возбуждающими являются холин-, адрен-, дофамин-, серотонинергические синапсы и некоторые другие. При взаимодействии их медиаторов с соответствующими рецепторами, открываются хемозависимые натриевые каналы. Ионы натрия входят в клетку через субсинаптическую мембрану. Происходит ее местная или распространяющаяся деполяризация. Эта деполяризация называется возбуждающим постсинаптическим потенциалом (ВПСП).

Тормозными являются глицин- и ГАМК-ергические синапсы. При связывании медиатора с хеморецепторами, активируются калиевые или хлорные хемозависимые каналы. В результате ионы калия выходят из клетки через мембрану.

Ионы хлора входят через нее. Возникает только местная гиперполяризация субсинаптической мембраны. Она называется тормозным постсинаптическим потенциалом (ТПСП).

Величина ВПСП и ТПСП определяется количеством квантов медиатора, выделившихся из терминали, а, следовательно, частотой нервных импульсов. Т.е. синаптическая передача не подчиняется закону "все или ничего". Если количество выделившегося возбуждающего медиатора достаточно велико, то в субсинаптической мембране может генерироваться распространяющийся ПД. ТПСП, независимо от количества медиатора не распространяется за пределы субсинаптической мембраны.

В24. Фундаментальные принципы работы мозга. Свойства нервных центров: одностороннее поведение возбуждения, суммация, трансформация ритма, последействие, утомляемость, окклюзия, облегчение.

Мозг – главнее, потому что:

-- он мощнее и разнообразнее, чем осознаваемая человеком часть мыслительного процесса,

-- он принимает решение самостоятельно без участия сознания, и мы не всегда понимаем, как он это делает,

Принципы работы мозга

Особенность работы мозга человека такова, что о норме в рамках этой темы следует говорить с большой осторожностью. Грань между гениальностью и патологией настолько тонка, что почти незаметна. Психические и нервные расстройства фиксируются уже настолько часто, что начали опережать по количеству сердечно-сосудистые заболевания и онкологию. Тем не менее, существуют нормативные показатели для работы мозговых волн, различные отклонения в регистрации которых дают возможность установить патологии развития.

Мозговые волны

Альфа-уровень работы мозга с частотой 8-13 Гц у 95% здоровых людей регистрируется в состоянии расслабленного бодрствования главным образом в областях затылка и темени.

Бета-ритм. Частота работы мозга 14-40 Гц. В норме имеет слабовыраженные колебания с амплитудой до 3-7 мкВ в областях передних и центральных извилин. Возникает при бодрствовании во время наблюдения или при концентрации на решении проблем.

Гамма-волна возникает при решении задач, требующих максимальной сосредоточенности. Колебания от 30-100 Гц в теменной, височной, фронтальной и прецентральной областях.

Дельта-ритм с колебаниями 1-4 Гц связан с медленными восстановительными процессами и низкой активностью.

Тета-ритм. Его частота – 4-8 Гц с регистрацией в гиппокампе и фронтальных зонах. Возникает при переходе расслабленного бодрствования в сонливость.

Принцип рефлекторной работы

Рефлекс – это реакция организма на раздражение рецепторов (чувствительных образований), выполнение которой происходит с участием нервной системы.

Рене Декартом в 17 веке был открыт рефлекторный принцип нервной деятельности в целом. А предположение о рефлекторной деятельности высших отделов мозга, то есть, принцип рефлекторной работы мозга был открыт И. Сеченовым уже в 19 веке. И. Павлов разработал пути экспериментального объективного исследования функций коры и методику выработки условных рефлексов на безусловные. Развивая эти представления, П. Анохин создал концепцию функциональной системы, в рамках которой утверждается, что в каждый момент времени складывается сложная система – временное объединение чувствительных рецепторов, нервных элементов структур головного мозга с исполнительными органами.

Свойство нервных центров: одностороннее проведение возбуждения, суммация, трансформация ритма, последействие, утомляемость, окклюзия, облегчение.

Дата добавления: 2018-11-24 ; просмотров: 1698 ;

Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза Его выделение происходит небольшими порциями – квантами. Небольшое количество квантов выходит из окончания и в состоянии покоя. Когда нервный импульс, т.е. ПД, достигает пресинаптического окончания, происходит деполяризация его пресинаптической мембраны. Открываются ее кальциевые каналы и ионы кальция входят в синаптическую бляшку. Начинается выделение большого количества квантов нейромедиатора. Молекулы медиатора диффундируют через синаптическую щель к постсинаптической мембране и взаимодействуют с её хеморецепторами. В результате образования комплексов медиатор-рецептор, в субсинаптической мембране начинается синтез так называемых вторичных посредников (в частности, цАМФ). Эти посредники активируют ионные каналы постсинаптической мембраны. Поэтому такие каналы называют хемозависимыми или рецепторуправляемыми. Т.е. они открываются при действии ФАВ на хеморецепторы. В результате открывания каналов изменяется потенциал субсинаптической мембраны. Такое изменение называется постсинаптическим потенциалом.

В ЦНС возбуждающими являются холин-, адрен-, дофамин-, серотонинергические синапсы и некоторые другие. При взаимодействии их медиаторов с соответствующими рецепторами, открываются хемозависимые натриевые каналы. Ионы натрия входят в клетку через субсинаптическую мембрану. Происходит ее местная или распространяющаяся деполяризация. Эта деполяризация называется возбуждающим постсинаптическим потенциалом (ВПСП).

Тормозными являются глицин- и ГАМК-ергические синапсы. При связывании медиатора с хеморецепторами, активируются калиевые или хлорные хемозависимые каналы. В результате ионы калия выходят из клетки через мембрану.

Величина ВПСП и ТПСП определяется количеством квантов медиатора, выделившихся из терминали, а, следовательно, частотой нервных импульсов. Т.е. синаптическая передача не подчиняется закону "все или ничего". Если количество выделившегося возбуждающего медиатора достаточно велико, то в субсинаптической мембране может генерироваться распространяющийся ПД. ТПСП, независимо от количества медиатора не распространяется за пределы субсинаптической мембраны.

ВОПРОС 26. Понятие о нервном центре, его функциях и свойствах

Н. центр – совокупность структур ЦНС, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. Функциональный нервный центр может быть локализован в разных анатомических структурах. Например дыхат центр представлен нервными клетками, расположенными в спинном, продолговатом, промежуточном мозге, коре головного мозга.

В зависимости от выполняемой функции различают:

чувствительные нервные центры;

нервные центры вегетативных функций;

двигательные нервные центры и др.

Свойства:

1)Одностороннее проведение возбуждения. В рефлекторной дуге, включающей н центры, процесс возбуждения распространяется в одном направлении (от входа по афферентным путям к центру, затем по эфферентным путям к эффектору).

2)Иррадиация возбуждения. В н центрах изменяется направление распространения возбуждения в зависимости от силы раздражителя и функционального состояния центральных нейронов. Увеличение силы раздражителя приводит к расширению области вовлекаемых в возбуждение центральных нейронов – т. е. иррадиации возбуждения.

3)Суммация возбуждения. Процесс пространственной суммации афферентных потоков возбуждения от разл участков рецептивного поля облегчается благодаря наличию на мембране н клетки сотен и тысяч синаптичаских контактов. Процесс временной суммации в ответ на многократное возбуждение одних и тех же рецепторов обусловлены суммацией ВПСП на постсинаптической мембране.

ПОЯСНЯЮ: По́стсинапти́ческий потенциа́л (ПСП) — это вре́менное изменение потенциала постсинаптической мембраны в ответ на сигнал, поступивший с пресинаптического нейрона. Различают:

возбуждающий постсинаптический потенциал (ВПСП), обеспечивающий деполяризацию постсинаптической мембраны, и

тормозный постсинаптический потенциал (ТПСП), обеспечивающий гиперполяризацию постсинаптической мембраны.

Отдельные ПСП обычно невелики по амплитуде и не вызывают потенциалов действия в постсинаптической клетке, однако в отличие от потенциалов действия они градуальны и могут суммироваться. Выделяют два варианта суммации[1]:

временная — объединение пришедших по одному каналу сигналов (при поступлении нового импульса до затухания предшествующего)

пространственная — наложение ВПСП соседних синапсов

4) Наличие задержки.

5)Высокая утомляемость . Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до исчезновения. Это связано с деятельностью синапсов: истощение запаса медиатора, уменьшаются энергетических ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

6)Тонус. В покое определенное количество нервных клеток находится в состоянии постоянного возбуждения и генерирует фоновые импульсные токи.

7)Пластичность. Функциональная подвижность нервного центра может модифицировать картину осуществляемых рефлекторных реакций.

8)Конвергенция. Нервные центры высших отделов мозга - мощные коллекторы афферентной информации. В них содержится много нервных клеток, реагирующих на разные стимулы ( свет, звук и др. )

9) Интеграция в нервных центрах. Для осуществления сложных координированных приспособительных реакций организма происходит образование функциональных объединений нервных центров.

10) Свойство доминанты. Доминантный очаг – временно господствующий очаг повышенной возбудимости в н центре. В нем устанавливается определенный уровень стационарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данных условий ритм работы. Домин. Очаг угнетает соседние очаги возбуждения.

11) Цефализация н. системы. Тенденция к перемещению функций регуляции и координации в головные отделы ЦНС.

ВОПРОС 27. Явление суммации возбуждения в нервных центрах, ее виды, значение, механизм. Свойства ВПСП и их роль в формировании суммации. ( Примечане автора: Ребят, я извеняюсь за эту хрень, но это все что я могла найти.

Суммация возбуждения. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой является постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.

В нервном волокне каждое одиночное раздражение (если оно не подпороговой и не свехпороговой силы) вызывает один импульс возбуждения. В нервных же центрах, как показал впервые И.М.Сеченов, одиночный импульс в афферентных волокнах обычно не вызывает возбуждения, т.е. не передается на эфферентные нейроны. Чтобы вызвать рефлекс необходимо быстрое нанесение допороговых раздражений одно за другим. Это явление получило название временной или последовательной суммации. Ее сущность состоит в следующем. Квант медиатора, выбрасываемого окончанием аксона при нанесении одного допорогового раздражения, слишком мал для того, чтобы вызвать возбуждающий постсинаптический потенциал, достаточный для критической деполяризации мембраны. Если же к одному и тому же синапсу идут быстро следующие один за другим допороговые импульсы, происходит суммирование квантов медиатора, и наконец его количество становится достаточным для возникновения возбуждающего постсинаптического потенциала, а затем и потенциала действия. Кроме суммации во времени, в нервных центрах возможна пространственнаясуммация. Она характеризуется тем, что если раздражать одно афферентное волокно раздражителем допороговой силы, то ответной реакции не будет, а если раздражать несколько афферентных волокон раздражителем той же допороговой силы, то возникает рефлекс, так как импульсы, приходящие с нескольких афферентных волокон суммируются в нервном центре.

Возбуждающий постсинаптический потенциал. В синапсах, в которых осуществляется возбуждение постсинаптической структуры, обычно происходит повышение проницаемости для ионов натрия. По градиенту концентрации Na+ входят в клетку, что вызывает деполяризацию постсинаптической мембраны. Эта деполяризация получила название: возбуждающий постсинаптический потенциал – ВПСП. ВПСП относится к локальным ответам и, следовательно, обладает способностью к суммации. Выделяют временную и пространственную суммацию.

Роль в суммации;

Принцип временной суммации - заключается в том, что импульсы поступают к пресинаптическому окончанию с периодом меньшим, чем период ВПСП.

Сущность пространственной суммации заключается в одновременной стимуляции постсинаптической мембраны синапсами, расположенными близко друг от друга. В этом случае ВПСП каждого синапса суммируются.

Если величина ВПСП достаточно велика и достигает критического уровня деполяризации (КУД), то генерируется ПД. Однако не все участки мембраны обладают одинаковой способностью к генерации ВПСП.

ВОПРОС 28.Явление трансформации ритма возбуждений в нервных центрах и его механизмы. Роль ВПСП и кольцевых связей в ЦНС. (Прим; Такая же херня что и с предыдущим вопросом -I’m sorryL)

Лат. transformatio - преобразование, превращение - одно из свойств проведения возбуждения в центре, заключающееся в способности нейрона изменять ритм приходящих импульсов. Особенно четко проявляется трансформация ритма возбуждения при раздражении афферентного волокна одиночными импульсами. На такой импульс нейрон отвечает серией импульсов. Это обусловлено возникновением длительного возбуждающего постсинаптического потенциала (роль ВПСП), на фоне которого развивается несколько ликов (спайков- пиковых потенциалов). Другой причиной возникновения множественного разряда импульсов являются следовые колебания мембранного потенциала. Когда его величина достаточно велика, следовые колебания могут привести к достижению критического уровня деполяризации мембраны и обусловливают появление вторичных спайков. В нервных центрах может происходить и трансформация силы импульсов: слабые импульсы усиливаются, а сильные ослабевают.

ВОПРОС 29. Посттетаническая потенциация в нервных центрах.(Тут мало – но это все что было в учебнике)

Это интегративный феномен. При раздражении афферентного нерва стимулами с низкой частотой можно получить рефлекс определенной интенсивности. Если затем этот нерв подвергать высокочастотному ритмическому раздражению, то повторное редкое ритмическое раздражение приведет к резкому усилению реакции.

ВОПРОС 30. Одностороннее проведение возбуждения в нервных центрах. Роль синаптических структур.

Одностороннее проведение возбуждения. В рефлекторной дуге, включающей н центры, процесс возбуждения распространяется в одном направлении (от входа по афферентным путям к центру, затем по эфферентным путям к эффектору).

Роль синаптических структур.

В отличие от нервных и мышечных волокон, для которых характерен закон двухстороннего проведения, в синапсе возбуждение распространяется только в одном направлении – от пресинаптической клетки к постсинаптической.

31.Высокая утомляемость нервных центров:

Утомление-ослабление рефлекторной реакции вплоть до ее полного исчезновения, происходящее под действием длительного повторного раздражения рецептивного поля рефлекса. Высокая утомляемость связана с деятельностью синапсов, в которых запасы медиатора истощаются ,уменьшаются энергетические ресурсы. а также высокая утомляемость нервных центров происходит из-за адаптации постсинаптических рецепторов к медиаторам.

32.тонус нервных центров и его механизмы:

Тонус-наличие определённой фоновой активности нервного центра. То есть ,в покое, в отсутствие внешних раздражителей определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки . например, во сне в высших отделах мозга остаётся некоторое количество фоновоактивных нервных клеток, определяющих тонус соответствующего нервного центра.

Си́напс— место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

По механизму передачи нервного импульса

-химический — это место близкого прилегания двух нервных клеток, для передачи нервного импульса через которое клетка-источник выпускает в межклеточное пространство особое вещество, нейромедиатор, присутствие которого в синаптической щели возбуждает или затормаживает клетку-приёмник.

-электрический (эфапс) — место более близкого прилегания пары клеток, где их мембраны соединяются с помощью особых белковых образований — коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе — 3,5 нм (обычное межклеточное — 20 нм). Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы через синапс проходят не задерживаясь. Электрические синапсы обычно бывают возбуждающими.

-смешанные синапсы — Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану типичного химического синапса, где пре- и постсинаптические мембраны не плотно прилегают друг к другу. Таким образом, в этих синапсах химическая передача служит необходимым усиливающим механизмом.

-Наиболее распространены химические синапсы. Для нервной системы млекопитающих электрические синапсы менее характерны, чем химические.

18. Механизм синаптической передачи. Понятие о впсп и тпсп. Роль медиаторов в процессе синаптической передачи.

Механизм синаптической передачи.Под влиянием нервного импульса наступает деполяризация окончаний аксона, что повышает в нем концентрацию Ca, и содержание синаптических пузырьков выбрасывается в синаптическую щель. Медиатор (ацетилхолин) диффундирует в синаптическую щель и связывается с рецепторами постсинаптической мембраны. Действие молекул медиатора ведет к открытию ионных каналов для Naи К, что вызывает возникновение возбуждающего постсинаптического потенциала (ВПСП). В тормозных синапсах, тормозный медиатор (гамма-аминомасляная кислота) открывает в постсинаптической мембране селективные хлорные каналы. При этом возникает тормозный постсинаптический потенциал (ТПСП) .

Медиаторы и модуляторы синаптической передачи

По химической структуре медиаторы подразделяют на:

- моноамины (адреналин, норадреналин, ацетилхолин и др.);

- аминокислоты (гамма-аминомасляная кислота (ГАМК), глутамат, глицин, таурин);

- пептиды (эндорфин, нейротензин, бомбезин, энкефалин и др.);

- прочие медиаторы (NO , АТФ).

В синаптическом окончании наряду с медиатором могут синтезироваться и высвобождаться одно или несколько химических веществ. Эти соединения, действуя на постсинаптичекую мембрану, могут повышать или снижать ее возбудимость. Поскольку сами по себе они не могут вызвать возбуждение постсинаптической мембраны, их называют модуляторами синаптической передачи (нейромодуляторами). Большинство нейромодуляторов представляют собой пептиды.

19. Свойство нервных центров: одностороннее проведение возбуждения, суммация, трансформация ритма, последействие, утомляемость ,окклюзия, облегчение. Свойства нервных центров

Наличие входов и выходов для возбуждения. В нервном центре можно различить приносящие (афферентные) входы и выносящие (эфферентные) выходы.

Одностороннее проведение возбуждения. Это свойство отдельного синапса и нервной цепи. В нервном центре может быть множество путей между входами и выходами. За счёт обратных связей возможно возвратное движение возбуждения. Но это происходит внутри нервного центра. А если рассматривать нервный центр целиком, то возбуждение приходит внего по приходящим путям, а выходит по эфферентным выходящим. Таким образом, можно говорить об одностороннем проведении возбуждения нервным центром.

Задержка (замедление) проведения возбуждения. В нервных центрах возникает задержка в проведении возбуждения, так называемый латентный (скрытый) период. Задержка обусловлена синаптической передачей возбуждения. Чем больше синапсов участвует в проведении возбуждения, тем более длительной получается задержка.

Суммация возбуждения. Если одновременно подавать возбуждение на несколько входов нервного центра, то на выходе можно получить более сильное возбуждение. Свойством суммации обладает и отдельный нейрон за счёт суммации локальных потенциалов.

Трансформация (преобразование) входящего возбуждения в иное - выходящее. Нервный центр осуществляет изменение, перекодирование поступающих в него потоков импульсов. Трансформация возбуждения - это, пожалуй, самое главное свойство нервного центра. Наиболее известное свойство из этого ряда – трансформация ритма. Нервный центр получает на входе один ритм импульсации, а на выходе дает другой (более медленный или более частый).

Последействие (облегчение). Это означает, что после возбуждения нервного центра он некоторое время ещё сохраняет повышенную возбудимость. Поэтому последующее возбуждение даёт более сильный эффект и получение эффекта от работы нервного центра облегчено.

Утомляемость и низкая лабильность. Лабильность - это предельная частота импульсации, доступная данной нервной структуре. Нервные центры могут пропускать через себя потоки возбуждения с ограниченной частотой импульсации вследствие задержки передачи возбуждения, которая происходит в многочисленных синапсах. Повышенная утомляемость нервных центров объясняется высокой утомляемостью синапсов и ухудшением метаболизма (обменнных процессов) в нейронах после нагрузки.

Тонус. Это означает, что даже без внешнего воздействия нервный центр сохраняет определённый уровень возбудимости и самостоятельно поддерживает у себя определённый уровень возбуждения.

Чувствительность к кислороду и к действию биологически активных веществ (нейротропных). Это создаёт предпосылки к хеморегуляции - химическому управлению деятельностью нервного центра. Например, усиление или ослабление кровоснабжения изменяет работу нервных центров.

Возбудимость (возбуждение). Это способность нервных центров переходить в более возбуждённое состояние, например, при внешнем воздействии на них (стимуляции) или под влиянием других нервных центров.

Торможение ("тормозимость"). Это способность нервных центров переходить в менее возбуждённое состояние, например, при внешнем воздействии на них или под влиянием других нервных центров.

Иррадиация возбуждения. Это "растекание возбуждения" по нервному центру, распространение возбуждения на новые участки от места его первоначального появления.

Конвергенция (схождение). Это объединение двух или нескольких входящих потоков возбуждения в один выходящий поток. Т.е. в нервный центр входит больше потоков возбуждения, че выходит из него.

Дивергенция (расхождение). Это разделение входящего потока возбуждения на несколько выходящих потоков. За счёт дивергенции получается, что в нервный центр входит меньше потоков возбуждения, чем выходит из него.

Окклюзия (запирание). Это блокирование одним из входящих потоков возбуждения другого входящего потока. В результате выходящий поток возбуждения получается слабее, чем сумма этих входящих потоков.

Индукция (отдача). Это наведение противоволожного (возбуждённого или тормозного) состояния на другие нервные центры или на себя самого. Для понятия индукции очень важно, что данной структурой наводится именно противоположное состояние, а не то, в котором находится она сама. Так, возбуждённая структура индуцирует торможение, а заторможенная - возбуждение.

Автоматия (спонтанная активность, автономность) нервных центров. Это означает, что даже без внешнего воздействия нервный центр может самостоятельно порождать возбуждение на выходе или поддерживать свой тонус (как бы развлекать сам себя). Объясняется это свойство нервного центра существованием в нём специальных нейронов-пейсмекеров (водителей ритма). В них самопроизвольно возникает возбуждение, независимо от работы их афферентных входов. Таким образом, в нервных центрах может происходить периодическая или постоянная генерация (порождение) нервных импульсов, которые возникают даже при отсутствии входящего возбуждения. Самопроизвольная импульсация пейсмекеров обусловлена колебаниями процессов метаболизма в нейронах и действием на них гуморальных факторов.

Реципрокные (взаимоисключающие) отношения. Это означает, что возбуждение одного нейрона (или центра) подавляет работу другого, связанного с ним, нейрона (или центра).

Пластичность. Это способность перестраивать свою структуру и\или деятельность под влиянием предыдущей деятельности. Пластичность - это одно из важнейших свойств биологических систем, которое отличает их от технических систем.

Адаптация. Нервный центр способен приспосабливаться к новой нагрузке и новым условиям работы.

Компенсаторные возможности. При частичном повреждении нервный центр продолжает свою деятельность за счёт сохранившихся нейронов. Для этого он использует свои способности к пластичности и адаптации.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.