Научные исследования нервной системы

В настоящее время проблема исследования свойств нервной системы и определение на их основе индивидуально-психологических особенностей личности - темперамента, является важной и актуальной задачей для множества прикладных областей, связанных с подбором персонала, оценкой профессиональной пригодности, профориентации, подготовкой высококвалифицированных кадров. Среди совокупности свойств нервной системы в качестве основных принято выделять силу, подвижность и лабильность нервной системы. Наибольший интерес в аспекте профпригодности представляет исследование индивидуальной подвижности и лабильности нервной системы операторов технических систем, механизмов и транспортных средств, пилотов военной и гражданской авиации и других групп специалистов, в профессиональной деятельности которых временной фактор имеет определяющее значение.

Подвижность нервной системы является одним из основных свойств нервной системы и проявляется в быстроте перехода одного нервного процесса в другой. Анализ литературных источников показывает, что подвижность нервных процессов в настоящее время определяют с использованием психологических тестов-опросников Стреляу [1], психофизиологических методов определения скорости сенсомоторной реакции [2], оценки реакции на движущийся объект [3], оценки критической частоты световых мельканий (КЧСМ) и критической частоты слияния звуковых щелчков (КЧЗ) [3, 4], с использованием словесных сигналов [5], на основе дифференцирования по трем категориям коротких слов [6], определения концентрации внимания по невербальному тесту "перепутанных линий" и переключения внимания с использованием двухцветной цифровой таблицы Шульте-Платонова с учетом количества сделанных ошибок [7] и др.

Другое основное нервной системы характеризуется скоростью возникновения и прекращения нервного процесса и называется лабильностью нервной системы. Лабильность нервной системы принято определять с использованием электрофизиологических методов: методом фосфена [8], с использованием электроэнцефалограммы [9], и с помощью психофизиологических методов: КЧСМ [10], КЧЗ [11] и метода парных световых импульсов [12] и т.д.

Анализ экспериментальных данных, полученных различными тестами по исследованию подвижности и лабильности, показывает, что эти данные не всегда коррелируют между собой, что свидетельствует о том, что они отражают различные стороны проявления подвижности и лабильности. Установлено, что психофизиологические методы обладают в сравнении с электрофизиологическими методами рядом преимуществ, что обуславливает удобство использования именно психофизиологических методов.

Ряд методов определения подвижности нервной системы основанных на дифференцировании словесных сигналов и команд обладают низкой точностью и достоверностью, так как основаны на применении словесной информации, требующей использования мнестических функций, в частности обращения к долговременной логико-смысловой памяти. При этом наблюдается зависимость полученных результатов от культурных, языковых, образовательных и профессиональных приобретенных навыков испытуемых.

Кроме того, в частности, установлено, что такие различные свойства нервной системы как подвижность и лабильность определяют одними и тем же методами КЧСМ и КЧЗ. В то же время следует отметить, что, так как КЧСМ и КЧЗ наблюдается в условиях воздействия раздражителей с постоянным ритмом, то данные методы в большей степени оценивают лабильность нервной системы, а не подвижность. С другой стороны недостатком метода КЧСМ является низкая точность определения лабильности, обусловленная отсутствием четкого перехода от различения световых мельканий к их слиянию [13].

Таким образом, очевидно, что, несмотря на большой интерес к данной теме и многочисленные исследования, значительный методический и инструментальный аппарат, многие вопросы, касающиеся свойств нервной системы, остаются на сегодняшний день изученными не в полной мере. Нет теоретически обоснованного психофизиологического метода исследования данных свойств нервной системы, отличающегося достаточной точностью и достоверностью. Отсутствуют простые и удобные, комфортные для испытуемого методы оценки подвижности и лабильности нервной системы, а также технические средства для их практической реализации. Все это определяет актуальность разработки современных психофизиологических методов исследования свойств нервной системы, в частности подвижности и лабильности нервной системы человека.

  1. Стpеляу Я. Роль темперамента в психическом развитии. - М.: Пpогpесс, 1982. - 231 с.
  2. Щербатых Ю.В. Вегетативные проявления экзаменационного стресса: Автореф. дис. . доктор. СПб., 2001. - 32 с.
  3. Методы и портативная аппаратура для исследования индивидуально-психологических различий человека / Н.М.Пейсахов, А.П.Кашин, Г.Г.Баранов, Р.Г.Вагапов; Под ред. В.М.Шадрина. - Казань: Изд-во Казанск. ун-та, 1976. - 238с.
  4. МакароваГ.А. Практическое руководство для спортивных врачей. - Краснодар: Кубанпечать, 2000. - 678 с.
  5. ЛукьяненкоГ.Ф., ВитковаГ.П., КобаВ.П. Методика определения силы и подвижности мыслительно-речевых процессов у детей // Физиология человека. - 1979. - Т.5. - №2. - С.360-364.
  6. ХильченкоА.Е. Методика исследования подвижности основных нервных процессов у человека // Журн. высш. нервн. деятельности. - 1958. - Т. VIII. - Вып. 6. - С. 945-948.
  7. Правило В.С. Факторы риска развития гипертонической и язвенной болезни у молодых мужчин: Автореф. дис. . доктор. Челябинск. 2006. - 16 с.
  8. Кравков С.В. Глаз и его работа. Психофизиология зрения, гигиена освещения. - 4-е изд., перераб. и доп. - М. -Л.: Изд-во АН СССР, 1950. - 531 с.
  9. Пейсахов, Н.М. Саморегуляция и типологические свойства нервной системы / Н.М. Пейсахов. - Казань: Изд-во Казанск. ун-та, 1974. - 253 с.
  10. Макаренко Н.В. Критическая частота световых мельканий и переделка двигательных навыков // Физиология человека. - 1995. - Т. 21. - № 3. - С. 13-17.
  11. Голиков Н.В. Функциональная лабильность и ее изменения при основных нервных процессах. - Л.: Изд-во ЛГУ, 1950. - 240 с.
  12. Патент 2251959 РФ, МПК7 А 61 В 3/10. Способ определения лабильности зрительной системы человека / В.В. Роженцов, М.Т. Алиев, А.Г. Масленников, И.В. Петухов (РФ). - Опубл. 20.05.2005, Бюл. № 14.
  13. Роженцов В.В. Измерение дифференциальной чувствительности зрения к частоте световых мельканий // Проектирование и технология электронных средств. - 2005. - № 2. - С. 50-53.













  • Физиология
  • История физиологии
  • Методы физиологии

Методы исследования центральной нервной системы

Частная физиология центральной нервной системы — раздел физиологии, изучающий функции структур головного и спинного мозга, а также механизмы их осуществления.

К методам исследования функций центральной нервной системы относятся нижеперечисленные.


Электроэнцефалография — метод регистрации биопотенциалов, генерируемых нейронами головного мозга, при отведении их от поверхности кожи головы. Величина таких биопотенциалов составляет 1-300 мкВ. Они отводятся с помощью электродов, накладываемых на поверхность кожи головы в стандартных точках, над всеми долями мозга и некоторыми их областями. Биопотенциалы подаются на вход прибора электроэнцефалографа, который их усиливает и регистрирует в виде электроэнцефалограммы (ЭЭГ) — графической кривой непрерывных изменений (волн) биопотенциалов мозга. Частота и амплитуда электроэнцефалографических волн отражают уровень активности нервных центров. С учетом величин амплитуды и частоты волн выделяют четыре основных ритма ЭЭГ (рис. 1).

Альфа-ритм имеет частоту 8-13 Гц и амплитуду 30- 70 мкВ. Это относительно регулярный, синхронизированный ритм, регистрируемый у человека, находящегося в состоянии бодрствования и покоя. Он выявляется приблизительно у 90% людей, находящихся в спокойной обстановке, при максимальном расслаблении мышц, с закрытыми глазами или в темноте. Альфа-ритм наиболее выражен в затылочных и теменных долях мозга.

Бета-ритм характеризуется нерегулярными волнами с частотой 14-35 Гц и амплитудой 15-20 мкВ. Этот ритм регистрируется у бодрствующего человека в лобных и теменных областях коры, при открытии глаз, действии звука, света, обращении к испытуемому, выполнении им физических действий. Он свидетельствует о переходе нервных процессов к более активному, деятельному состоянию и повышению функциональной активности мозга. Смену альфа-ритма или других электроэнцефалографических ритмов мозга на бета-ритм называют реакцией десинхронизации, или активации.


Рис. 1. Схема основных ритмов биопотенциалов головного мозга (ЭЭГ) человека: а — ритмы, регистрируемые с поверхности кожи головы в покос; 6 — действие света вызывает реакцию десинхронизации (смену α-ритма на β-ритм)

Тета-ритм имеет частоту 4-7 Гц и амплитуду до 150 мкВ. Он проявляется при поздних стадиях засыпания человека и развитии наркоза.

Дельта-ритм характеризуется частотой 0,5-3,5 Гц и большой (до 300 мкВ) амплитудой воли. Он регистрируется над всей поверхностью мозга во время глубокого сна или наркоза.

Основную роль в происхождении ЭЭГ отводят постсинаптическим потенциалам нейронов коры мозга. Считается, что на характер ЭЭГ-ритмов оказывает наибольшее влияние ритмическая активность пейсмекерных нейронов таламуса и ретикулярной формации ствола мозга. При этом таламус индуцирует в коре высокочастотные, а ретикулярная формация ствола мозга — низкочастотные ритмы (тета и дельта).

Метод ЭЭГ широко используется для регистрации нейронной активности в состояниях сна и бодрствования; для выявления очагов повышенной активности в мозге, например при эпилепсии; для исследования влияния лекарственных и наркотических веществ и решения других задач.

Метод вызванных потенциалов позволяет регистрировать изменение электрических потенциалов коры и других структур мозга, вызываемых стимуляцией различных рецепторных полей или проводящих путей, связанных с этими структурами мозга. Возникающие в ответ на одномоментное раздражение биопотенциалы коры носят волнообразный характер, длятся до 300 мс. Для выделения вызванных потенциалов из спонтанных электроэнцефалогических волн применяют сложную компьютерную обработку ЭЭГ. Эта методика используется в эксперименте и в клинике для определения функционального состояния рецепторной, проводниковой и центральной частей сенсорных систем.

Микроэлектродный метод позволяет с помощью тончайших электродов, вводимых в клетку или подводимых к нейронам, расположенным в определенной области мозга, регистрировать клеточную или внеклеточную электрическую активность нейронов, нервных центров, а также оказывать на них воздействие электрическими токами.

Стереотаксический метод позволяет вводить в заданные структуры мозга зонды, электроды с лечебной и диагностической целью. Их введение осуществляется с учетом трехмерных пространственных координат расположения интересующей структуры мозга, которые описаны в стереотаксических атласах. В атласах указывается под каким углом и на какую глубину относительно характерных анатомических точек черепа должны вводиться электрод или зонд для достижения интересующей структуры мозга. При этом голова больного фиксируется в специальном держателе.

Метод раздражения. Раздражение различных структур мозга чаще всего проводится с помощью слабого электрического тока. Такое раздражение легко дозируется, не вызывает повреждений нервных клеток и может наноситься многократно. В качестве раздражителей используются также различные биологически активные вещества.

Методы перерезок, экстирпации (удаления) и функциональной блокады нервных структур. Удаление структур мозга и их перерезки широко использовались в эксперименте в начальный период накопления знаний о мозге. В настоящее время сведения о физиологической роли различных структур ЦНС пополняются клиническими наблюдениями за изменением состояния функций мозга или других органов у больных, подвергшихся удалению или разрушению отдельных структур нервной системы (при опухолях, кровоизлияниях, травмах).

При функциональной блокаде производят временное выключение функций нервных структур путем введения веществ тормозного действия, воздействий специальных электрических токов, охлаждения.

Реоэнцефалография. Представляет собой методику исследования пульсовых изменений кровенаполнения мозговых сосудов. Она основана на измерении сопротивления нервной ткани электрическому току, которое зависит от степени их кровенаполнения.

Эхоэнцефалография. Позволяет определять локализацию и размеры уплотнений и полостей в мозге и костях черепной коробки. Эта методика основывается на регистрации ультразвуковых волн, отраженных от тканей головы.

Методы компьютерной томографии (визуализации). Основаны на регистрации сигналов от проникших в ткани мозга короткоживущих изотопов с помощью магниторезонансной, позитронно-эмиссионной томографии и регистрации поглощения проходящих через ткани рентгеновских лучей. Обеспечивают получение четкого послойного и трехмерного изображения структур мозга.

Методы исследования условных рефлексов и поведенческих реакций. Позволяют изучать интегративные функции высших отделов мозга. Эти методы подробнее рассмотрены в разделе интегративные функции мозга.

Электроэнцефалография (ЭЭГ) — регистрация электромагнитных волн, возникающих в коре головного мозга при быстром изменении потенциалов корковых полей.

Магнитоэнцефалография (МЭГ) — регистрация магнитных полей в коре головного мозга; преимущество МЭГ над ЭЭГ связано с тем, что МЭГ не испытывает искажений от тканей, покрывающих мозг, не требует индифферентного электрода и отражает только источники активности, параллельные черепу.

Позитивно-эмиссионная томография (ПЭТ) — метод, позволяющий с помощью соответствующих изотопов, введенных в кровь, оценить структуры мозга, а по скорости их перемещения — функциональную активность нервной ткани.

Магнитно-резонансная томография (МРТ) — основана на том, что различные вещества, обладающие парамагнитными свойствами, способны в магнитном ноле поляризоваться и резонировать с ним.

Термоэнцефалоскопия — измеряет локальный метаболизм и кровоток мозга по его теплопродукции (недостатком его является то, что он требует открытой поверхности мозга, применяется в нейрохирургии).

Лекция 1

МЕТОДЫ ИССЛЕДОВАНИЯ РЕГУЛЯТОРНЫХ СИСТЕМ

План:

1. Современные методы исследования нервной системы.. 1

2. Современные методы исследования эндокринной системы.. 7

Современные методы исследования нервной системы

В последнее время очень распространенными стали заболевания, связанные с нервной системой. Причин тому масса, и часто больные, приходящие с жалобами к специалистам, долго не смогут получить ответ на вопрос, что с ними. К сожалению, человеческий мозг до сих пор до конца не исследован, и возможность возникновения тех или иных отклонений в работе нервной системы и ее последствия часто находятся на стадии изучения.

Обычно постановка диагноза и назначение лечения при заболеваниях нервной системы процесс довольно длительный. Именно поэтому было изобретено множество методов, которые направлены на исследование нервной системы. Цель создания таких методов – это в первую очередь помощь специалисту в быстрой и четкой установке диагноза. Ведь множество заболеваний поддаются лечению только на ранних стадиях. Так давайте рассмотрим, в чем состоят современные методы исследования нервной системы.

Современная инструментальная диагностика всех видов заболеваний занимает очень важное место в процессе профилактики и лечения различных заболеваний, в том числе и нервной системы. Как известно болезнь легче предупредить, чем лечить, именно поэтому, разрабатываются приборы, которые способны выявить малейшие отклонения и дать возможность не допустить прогрессирование и развитие болезни.

Что касается методов исследования нервной системы, то принято подразделять их на следующие разделы: – нейровизуализационные методы; – нейрофизиологические методы; – методы исследования деятельности головного мозга; – исследование сосудистой системы человека; – другие методы. К нейровизуальным методам принято относить: МРТ головного мозга, компьютерную томографию, эхоэнцефалоскопию. Такие, методы предназначены для исследования структуры головного мозга, диагностике при образовании гематом, объемных образованиях головного мозга или внутричерепной гипертензии. Нейрофизиологические методы исследований – направлены на определения работы и полноценного выполнения функций нервных клеток (нейронов), нервов, нервных центров, спинного и головного мозга. К ним относятся: – ЭНМГ (электронейромиография) – определяет уровень поражения нервно-мышечного аппарата; – термография – определяет болезни Коновалова – Вильсона, а так же Паркинсона; – ЭЭГ; – Магнитная стимуляция (МС) – направлена, на исследования потенциалов головного мозгла, выявить отклонения, и оценить эффективность применения лечения при некоторых заболеваниях. Методы лечения с помощью электродов.

К таким методам можно отнести методы исследования головного мозга, которые основываются на наружном применении электродов, для регистрации электрической активности. Такие процедуры являются безболезненными и не длительными, а так же безвредными для пациента. В процессе исследования больной обычно находится в расслабленном состоянии, и выполняет определенные задания, данные врачом, соответственно тому какие исследования проводятся.

Это могут быть простые реакции на световые сигналы, глубокое дыхание или его задержка, пребывание пациента с открытыми или закрытыми глазами и другие дополнительные пробы. Обычно причиной для направления пациента на подобные исследования стают частые судороги, потери сознания, обмороки, вариации кризисов. Это единственный метод точного определения причины заболеваний. Соответственно результатам исследований дальше подбирается правильное лечение, выписывается курс медикаментов, выявляются противопоказания к определенным методам лечения. Также данный способ исследования помогает определить сохранность функций структур головного мозга у больных находящихся в реанимации в коматозном состоянии.

При подозрении на эпилепсию и тики обычно для исследования очага патологии применяется видео ЭЭГ. Это метод, основанный на синхронной записи видеоизображения пациента и проведении ЭЭГ. Таким образом, можно выявить методом сопоставления двигательную активность пациента и электродную активность мозга, что помогает поставить точный диагноз.

Множественная запись сна. Множественная запись сна или как ее еще называют полисомнография – это метод, основанный на наблюдении за состоянием и деятельностью головного мозга в период сна. Обычно сон занимает больше третьей части нашей жизни, и очень часто патологии сна вызывают проблемы со здоровьем. Обычно такими становятся бессонница, головная боль, храп, раздражительность, дневная сонливость и другие.

Результаты данных исследований в комплексе всех факторов определяют первопричину патологии, и соответственно дают возможность правильно установить лечение.

Для определений патологий функций нервной системы также применяется метод, который называется вызывание потенциалов головного мозга. Метод основывается на записи мозговой активности, которая вызвана различными раздражителями. Таким способом обычно исследуются зрительная система, и слух, а также вестибулярная система. Это дает возможность исследовать рассеянный склероз, ретробульбарный неврит, травматическое поражение зрительных нервов, а также нарушения утреннего уха, слуховой нерв, нарушения в стволе головного мозга. Обычно таким методом также определяется причина тугоухости, степень поражения ствола головного мозга при травмах, а также деформации шейного отдела позвоночника. Данное исследование применяется к пациентам, у которых выявлены такие симптомы как частое головокружение, посторонние звуки в ушах, такие как шум или звон, а также диагностирование отита.

Рентгенография позвоночника (спондилография) используется для диагностики переломов, смещений опухолей, пороков развития позвонков, остеохондроза, поражения спинного мозга и корешков. Спондилография производится в прямой и боковой проекциях.

Миелография – метод, заключающийся во введении в спинно-мозговой канал рентгеноконтрастного вещества с последующим производством спондилограмм. На фоне введенного вещества хорошо контурируются опухоли спинного мозга, спайки оболочек спинного мозга (арахноидит), грыжи межпозвонковых дисков.

Рентгенография черепа (краниография) производится в двух проекциях – в фас и профиль. Обращают внимание на размеры и контуры черепа, черепные швы, состояние родничков. С помощью краниограммы выявляют врожденные дефекты костей, пороки развития мозга, гидроцефалию, переломы, опухоли, признаки повышения внутричерепного давления. По показаниям производят прицельные снимки фрагментов черепа, например, турецкого седла при опухолях гипофизарной области.

Пневмоэнцефалография – метод рентгенологического исследования головного мозга, основанный на введении в спинно-мозговой канал воздуха. Воздух поднимется к головному мозгу, заполняет субарахноидальное пространство и желудочки мозга; в результате они становятся видимыми на рентгенограммах. Метод используется для диагностики последствий воспалительных заболеваний оболочек головного мозга, гидроцефалии, эпилепсии.

Ангиография – рентгенологический метод визуализации сосудистого русла головного мозга. В сонную артерию вводят рентгеноконтрастное вещество и через короткие интервалы времени производят серийные краниограммы. Получается четкое изображение распространения крови по сосудам головного мозга. Метод используют для диагностики гематомы, аневризмы (патологическое расширение сосуда с резким истончением его стенки), опухоли, абсцесса, кисты.

Реоэнцефалография – метод изучения показателей мозговой гемодинамики, основанный на измерении электрического сопротивления мозга переменному току высокой частоты. Дает информацию об эластичности и степени кровенаполнения мозговых сосудов. Используется для диагностики мигрени, дистонии, атеросклероза, гипертонической болезни.

Ультразвуковая допплерография сосудов головного мозга – метод исследования мозгового кровотока, основанный на эффекте Доплера – изменении параметров ультразвука при отражении от движущейся жидкости (крови). Позволяет измерять линейную скорость кровотока; используется для диагностики сосудистых заболеваний головного мозга.

Эхо-энцефалография – метод исследования головного мозга, основанный на способности ультразвука отражаться от границ раздела сред, обладающих различной акустической плотностью. Ультразвуковой луч подается с височно-теменной области, проходит через мозг, отражаясь от боковых желудочков и срединных структур, а затем воспринимается датчиком на противоположной стороне головы. Сигнал регистрируется на экране прибора в виде симметричных пиков. Этот метод выявляет смещение срединных структур мозга при опухоли, абсцессе, гематоме, а также расширение желудочков мозга вследствие повышения внутричерепного давления.

Электроэнцефалография – метод регистрации электрических потенциалов мозга с множества электродов, приложенных к поверхности головы. Это суммарная характеристика электрической активности мозга. В норме регистрируются ритмичные колебания правильной формы частотой 10 Гц с затылочно-теменных отведений (альфа-волны) и 20 Гц с лобно-височных отведений (бета-волны). При патологии головного мозга эти волны изменяются по частоте, амплитуде, форме, появляются медленные волны частотой 2 Гц (дельта-волны) и 5 Гц (тета-волны). Для выявления скрытой патологической активности используют функциональные нагрузки в виде вспышек света, форсированного дыхания, введения химических препаратов. Наиболее информативна электроэнцефалография для диагностики эпилепсии, опухоли и других очаговых поражений головного мозга.

Электромиография – метод оценки состояния мышцы и нерва на основе регистрации и анализа мышечных биопотенциалов. Позволяет произвести дифференциальную диагностику болезней нерва (неврит), мышцы (миопатия), нарушения нервно-мышечной передачи (миастения), а также различных уровней поражения пирамидного пути (проводящие пути, передний рог, корешок, периферический нерв).

Компьютерная томография. Тонкий рентгеновский луч сканирует головной или спинной мозг под разными углами с шагом в 3 мм. Непоглощенная тканями часть луча регистрируется датчиками. После обработки результатов компьютером воссоздается пространственное соотношение тканей по их плотности, хорошо визуализируются эпидуральное пространство, вещество головного мозга, желудочки, а также различные патологические образования внутри черепа. Компьютерная томография используется для диагностики опухолей, кровоизлияний, рассеянного склероза, грыжи межпозвонковых дисков.

Магнитно-резонансная томография. Метод основан на том, что при облучении электромагнитным полем молекулы воды принимают направление поля. После снятия внешнего магнитного поля молекулы возвращаются в исходное состояние, при этом возникает магнитный сигнал, который улавливается специальными датчиками, обрабатывается компьютером и графически отображается на мониторе. Особенностью метода является возможность получать о головном мозге не только анатомические, но и физико-химические данные. Это позволяет более четко отличать здоровые ткани от поврежденных. Метод используется для диагностики ранних стадий опухолей головного мозга, рассеянного склероза, а также для анализа мозгового кровотока.

Исследование спинно-мозговой жидкости (ликвора) широко применяется в невропатологии. Ликвор получают путем пункции: производят прокол между третьим и четвертым поясничными позвонками и берут из спинно-мозгового канала на исследование 3 мл жидкости. В норме она бесцветная, прозрачная. При менингите ликвор вытекает под повышенным давлением, при гнойном менингите он мутный. При кровоизлиянии в головной мозг или под его оболочки ликвор содержит примесь крови. В лаборатории ликвор центрифугируют, а осадок исследуют под микроскопом. В осадке определяют содержание белка и клеток. Число клеток повышено при менингите, количество белка – при опухоли. Характерные изменения ликвора отмечаются при туберкулезном менингите.

Методы исследования нервной системы

Основные методы исследования ЦНС и нервно-мышечного аппарата — электроэнцефалография (ЭЭГ), реоэнцефалография (РЭГ), электромиография (ЭМГ), определяют статическую устойчивость, тонус мышц, сухожильные рефлексы и др.

Электроэнцефалография (ЭЭГ) — метод регистрации электрической активности (биотоков) мозговой ткани c целью объективной оценки функционального состояния головного мозга. Она имеет большое значение для диагностики травмы головного мозга, сосудистых и воспалительных заболеваний мозга, а также для контроля за функциональным состоянием спортсмена, выявления ранних форм неврозов, для лечения и при отборе в спортивные секции (особенно в бокс, карате и другие виды спорта, связанные с нанесением ударов по голове).
При анализе данных, полученных как в состоянии покоя, так и при функциональных нагрузках, различных воздействиях извне в виде света, звука и др.), учитывается амплитуда волн, их частота и ритм. У здорового человека преобладают альфа-волны (частота колебаний 8—12 в 1 с), регистрируемые только при закрытых глазах обследуемого. При наличии афферентной световой импульсации открытые глаза, альфа-ритм полностью исчезает и вновь восстанавливается, когда глаза закрываются. Это явление называется реакцией активации основного ритма. В норме она должна регистрироваться.
У 35—40% людей в правом полушарии амплитуда альфа-волн несколько выше, чем в левом, отмечается и некоторая разница в частоте колебаний — на 0,5—1 колебание в секунду.
При травмах головы альфа-ритм отсутствует, но появляются колебания большой частоты и амплитуды и медленные волны.
Kроме того, методом ЭЭГ можно диагностировать ранние признаки неврозов (переутомлений, перетренированости) у спортсменов.

Реоэнцефалография (РЭГ) — метод исследования церебрального кровотока, основанный на регистрации ритмических изменений электрического сопротивления мозговой ткани вследствие пульсовых колебаний кровенаполнения сосудов.
Реоэнцефалограмма состоит из повторяющихся волн и зубцов. При ее оценке учитывают характеристику зубцов, амплитуду реографической (систолической) волн и др.
О состоянии сосудистого тонуса можно судить также по крутизне восходящей фазы. Патологическими показателями являются углубление инцизуры и увеличение дикротического зубца со сдвигом их вниз по нисходящей части кривой, что характеризует понижение тонуса стенки сосуда.
Метод РЭГ используется при диагностике хронических нарушений мозгового кровообращения, вегетососудистой дистонии, головных болях и других изменениях сосудов головного мозга, а также при диагностике патологических процессов, возникающих в результате травм, сотрясений головного мозга и заболеваний, вторично влияющих на кровообращение в церебральных сосудах (шейный остеохондроз, аневризмы и др.).

Электромиография (ЭМГ) — метод исследования функционирования скелетных мышц посредством регистрации их электрической активности — биотоков, биопотенциалов. Для записи ЭМГ используют электромиографы. Отведение мышечных биопотенциалов осуществляется с помощью поверхностных (накладных) или игольчатых (вкалываемых) электродов. При исследовании мышц конечностей чаще всего записывают электромиограммы с одноименных мышц обеих сторон. Сначала регистрируют ЭМ покоя при максимально расслабленном состоянии всей мышцы, а затем — при ее тоническом напряжении.
По ЭМГ можно на ранних этапах определить (и предупредить возникновение травм мышц и сухожилий) изменения биопотенциалов мышц, судить о функциональной способности нервно-мышечного аппарата, особенно мышц, наиболее загруженных в тренировке. По ЭМГ, в сочетании с биохимическими исследованиями (определение гистамина, мочевины в крови), можно определить ранние признаки неврозов (переутомление, перетренированность). Kроме того, множественной миографией определяют работу мышц в двигательном цикле (например, у гребцов, боксеров во время тестирования). ЭМГ характеризует деятельность мышц, состояние периферического и центрального двигательного нейрона.
Анализ ЭМГ дается по амплитуде, форме, ритму, частоте колебаний потенциалов и других параметрах. Kроме того, при анализе ЭМГ определяют латентный период между подачей сигнала к сокращению мышц и появлением первых осцилляций на ЭМГ и латентный период исчезновения осцилляций после команды прекратить сокращения.

Хронаксиметрия — метод исследования возбудимости нервов в зависимости от времени действия раздражителя. Сначала определяется реобаза — сила тока, вызывающая пороговое сокращение, а затем — хронаксия. Хронансия — это минимальное время прохождения тока силой в две реобазы, которое дает минимальное сокращение. Хронаксия исчисляется в сигмах (тысячных долях секунды).
В норме хронаксия различных мышц составляет 0,0001—0,001 с. Установлено, что проксимальные мышцы имеют меньшую хронаксию, чем дистальные. Мышца и иннервирующий ее нерв имеют одинаковую хронаксию (изохронизм). Мышцы — синергисты имеют также одинаковую хронаксию. На верхних конечностях хронаксия мышц-сгибателей в два раза меньше хронаксии разгибателей, на нижних конечностях отмечается обратное соотношение.
У спортсменов резко снижается хронаксия мышц и может увеличиваться разница хронаксий (анизохронаксия) сгибателей и разгибателей при перетренировке (переутомлении), миозитах, паратенонитах икроножной мышцы и др.

Определение равновесия в статических позах
Регулярные тренировки способствуют совершенствованию координации движений. В ряде видов спорта (акробатика, спортивная гимнастика, прыжки в воду, фигурное катание и др.) данный метод является информативным показателем в оценке функционального состояния ЦНС и нервно-мышечного аппарата. При переутомлении, травме головы и других состояниях эти показатели существенно изменяются.
Тест Яроцкого позволяет определить порог чувствительности вестибулярного анализатора. Тест выполняется в исходном положении стоя с закрытыми глазами, при этом спортсмен по команде начинает вращательные движения головой в быстром темпе. Фиксируется время вращения головой до потери спортсменом равновесия. У здоровых лиц время сохранения равновесия в среднем 28 с, у тренированных спортсменов — 90 с и более. Порог уровня чувствительности вестибулярного анализатора в основном зависит от наследственности, но под влиянием тренировки его можно повысить.
Пальцево-носовая проба. Обследуемому предлагается дотронуться указательным пальцем до кончика носа с открытыми, а затем — с закрытыми глазами. В норме отмечается попадание, дотрагивание до кончика носа. При травмах головного мозга, неврозах (переутомлении, перетренированности) и других функциональных состояниях отмечается промахивание (непопадание), дрожание (тремор) указательного пальца или кисти.
Теппинг-тест определяет максимальную частоту движений кисти.
Для проведения теста необходимо иметь секундомер, карандаш и лист бумаги, который двумя линиями разделяют на четыре равные части. В течение 10 с в максимальном темпе ставят точки в первом квадрате, затем — 10-секундный период отдыха и вновь повторяют процедуру от второго квадрата к третьему и четвертому. Общая длительность теста — 40 с. Для оценки теста подсчитывают количество точек в каждом квадрате. У тренированных спортсменов максимальная частота движений кисти более 70 за 10 секунд. Снижение количества точек от квадрата к квадрату свидетельствует о недостаточной устойчивости двигательной сферы и нервной системы. Снижение лабильности нервных процессов ступенеобразно (с увеличением частоты движений во 2-м или 3-м квадратах) — свидетельствует о замедлении процессов врабатываемости. Этот тест используют в акробатике, фехтовании, в игровых и других видах спорта.

Исследования нервной системы, анализаторы.
Kинестетическая чувствительность исследуется кистевым динамометром. Вначале определяется максимальная сила. Затем спортсмен, глядя на динамометр, 3—4 раза сжимает его с усилием, равным, например, 50% от максимального. Затем это усилие повторяется 3—5 раз (паузы между повторениями — 30 с), без контроля зрением. Kинестетическая чувствительность измеряется отклонением от полученной величины (в процентах). Если разница между заданным и фактическим усилием не превышает 20%, кинестетическая чувствительность оценивается как нормальная.

Исследование мышечного тонуса.
Мышечный тонус — это определенная степень наблюдаемого в норме напряжения мышц, которое поддерживается рефлекторно. Афферентную часть рефлекторной дуги образуют проводники мышечно-суставной чувствительности, несущие в спинной мозг импульсы от проприорецепторов мышц, суставов и сухожилий. Эфферентную часть составляет периферический двигательный нейрон. Kроме того, в регуляции мышечного тонуса участвуют мозжечок и экстрапирамидная система. Тонус мышц определяется тонусометром В.И. Дубровского и Е.И. Дерябина (1973) при спокойном состоянии (пластический тонус) и напряжении (контрактильный тонус).
Повышение мышечного тонуса носит название мышечной гипертонии (гипертонус), отсутствие изменения — атонии, снижение — гипотонии.
Повышение мышечного тонуса наблюдается при утомлении (особенно хроническом), при травмах и заболеваниях опорно-двигательного аппарата (ОДА) и других функциональных нарушениях. Понижение тонуса отмечается при длительном покое, отсутствии тренировок у спортсменов, после снятия гипсовых повязок и др.


Исследование рефлексов
.
Рефлекс — это основа деятельности всей нервной системы. Рефлексы разделяются на безусловные (врожденные реакции организма на различные экстероцептивные и интероцептивные раздражения) и условные (новые временные связи, вырабатываемые на основе безусловных рефлексов в результате индивидуального опыта каждого человека).
В зависимости от участка вызывания рефлекса (рефлексогенной зоны) все безусловные рефлексы можно разделить на поверхностные, глубокие, дистантные и рефлексы внутренних органов. В свою очередь, поверхностные рефлексы разделяют на кожные и слизистых оболочек; глубокие — на сухожильные, периостальные и суставные; дистантные — на световые, слуховые и обонятельные.
При обследовании брюшных рефлексов для полного расслабления стенки живота спортсмену необходимо согнуть ноги в коленных суставах. Врач затупленной иглой или гусиным пером производит штриховое раздражение на 3—4 пальца выше пупка параллельно реберной дуге. В норме наблюдается сокращение брюшных мышц на соответствующей стороне.
При исследовании подошвенного рефлекса врач производит раздражение вдоль внутреннего или наружного края подошвы. В норме наблюдается сгибание пальцев стопы.
Глубокие рефлексы (коленный, ахиллова сухожилия, бицепса, трицепса) относятся к числу наиболее постоянных. Kоленный рефлекс вызывается нанесением удара молоточком по сухожилию четырехглавой мышцы бедра ниже коленной чашечки; ахиллов рефлекс — ударом молоточка по ахиллову сухожилию; трицепс-рефлекс вызывается ударом по сухожилию трехглавой мышцы над олекраноном; бицепс-рефлекс — ударом по сухожилию в локтевом сгибе. Удар молоточком наносится отрывисто, равномерно, точно по данному сухожилию.
При хрокическом утомлении у спортсменов отмечается снижение сухожильных рефлексов, а при неврозах — усиление. При остеохондрозе, пояснично-крестцовом радикулите, невритах и других заболеваниях отмечается снижение или исчезновение рефлексов.

Исследования остроты зрения, цветоощущения, поля зрения.
Острота зрения
исследуется с помощью таблиц, удаленных от обследуемого на расстояние 5 м. Если он различает на таблице 10 рядов букв, то острота зрения равна единице, если же различаются только крупные буквы, 1-й ряд, то острота зрения составляет 0,1 и т.д. Острота зрения имеет большое значение при отборе для занятий спортом.
Так, например, для прыгунов в воду, штангистов, боксеров, борцов при зрении -5 и ниже занятия спортом противопоказаны!
Цветоощущение исследуется с помощью набора цветных полосок бумаги. При травмах (поражениях) подкорковых зрительных центров и частично или полностью корковой зоны нарушается распознавание цветов, чаще красного и зеленого. При нарушении цветоощущения противопоказаны авто- и велоспорт и многие другие виды спорта.
Поле зрения определяется периметром. Это металлическая дуга, прикрепленная к стойке и вращающаяся вокруг горизонтальной оси. Внутренняя поверхность дуги разделена на градусы (от нуля в центре до 90°). Отмеченное на дуге число градусов показывает границу поля зрения. Границы нормального поля зрения для белого цвета: внутренняя — 60°; нижняя — 70°; верхняя — 60°. 90° свидетельствует об отклонениях от нормы.
Оценка зрительного анализатора важна в игровых видах спорта, акробатике, спортивной гимнастике, прыжках на батуте, фехтовании и др.
Исследование слуха.
Острота слуха исследуется на расстоянии 5 м. Врач шепотом произносит слова и предлагает их повторить. В случае травмы или заболевания отмечается снижение слуха (неврит слухового нерва). Наиболее часто отмечается у боксеров, игроков в водное поло, стрелков и др.
Исследование анализаторов.
Сложная функциональная система, состоящая из рецептора, афферентного проводящего пути и зоны коры головного мозга, куда проецируется данный вид чувствительности, обозначается как анализатор.
Центральная нервная система (ЦНС) получает информацию о внешнем мире и внутреннем состоянии организма от специализированных к восприятию раздражений органов рецепции. Многие органы рецепции называют органами чувств, потому что в результате их раздражения и поступления от них импульсов в большие полушария головного мозга возникают ощущения, восприятия, представления, то есть различные формы чувственного отражения внешнего мира.
В результате поступления в ЦНС информации от рецепторов возникают различные акты поведения и строится общая психическая деятельность.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.