Наука о жизнедеятельности нейронов их ансамблей и нервных сетей


Нервная система – важнейшая регуляторная система нашего организма. Но она не одинока, существуют еще две системы: эндокринная и иммунная. И для того, чтобы управлять нашим телом, эти системы выделяют особые вещества. Нервная система выделяет медиаторы, эндокринная – гормоны, иммунная – цитокины. Эти вещества действуют на различные органы, ткани, создают адаптацию к тем или иным условиям окружающей среды. Кроме того, эти три системы влияют друг на друга.

Эффекты этой системы наиболее точечные, поскольку отростки нервных клеток подходят к различным органам, тканям и очень-очень точно передают информацию на те или иные системы. В этом смысле иммунная и эндокринная системы действуют более примитивно, поскольку цитокины и гормоны попадают в основном в кровь.


Нервная система человека

Нервная система в процессе эволюции появляется самой последней среди трех систем, лишь на уровне многоклеточных. Она в первую очередь нужна была для питания, ухода от опасности, размножения. И вначале она представляла собой сеть, позже появились структуры, состоящие из нервных узлов и нервной трубки, наконец произошел процесс цефализации.

Нервные клетки и нейроглии

Наш мозг сформирован из нервной ткани, а ее ключевой элемент – нейроны. Данные клетки выглядят очень характерно, обычно у них большое число отростков, подразделяющихся на два типа: дендриты и аксоны. Первые – это отростки, воспринимающие информацию. Они обычно образуют большие ответвления для того, чтобы этой информации было побольше. Аксон – отросток, проводящий сигналы к другим клеткам. Между двумя этими видами отростков располагается тело нервной клетки, отвечающее в основном за обработку информации.

Наряду с нейронами в составе нервной ткани присутствуют еще вспомогательные клетки — глиальные. Их в среднем в 7 раз больше, чем нейронов, и они механически защищают нервные клетки, создают взаимную электрическую изоляцию, а также формируют ГЭБ, то есть барьер между кровью и мозгом, который следит за проникновением веществ в нервную ткань.

То, что нейроны не делятся, знают все. Но это не дефект нервной клетки, а ее необходимое свойство. Разделиться нейрону – это то же самое, как если бы вы взяли компьютерный диск и разрезали его пополам. У вас не получится два диска, а останется один, причем сломанный. Поэтому если нервные клетки в какой-то части мозга делятся, то это очень особые зоны и очень особые функции, например, обоняние.

Электричество и мозг

Если потенциал действия возник хотя бы в одной точке мембраны, он дальше разбегается по всей поверхности нервной клетки и достигает окончания аксона, запуская выделение вещества медиатора. Это вещество повлияет на следующие клетки, органы или мышцы. Такое распространение идет достаточно медленно, его скорость составляет 1-10 метров в секунду, максимум – 100-120.

Синапсы и медиаторы

Если происходит возбуждение, мы наблюдаем вход в клетку-мишень ионов натрия, после чего возможно возникновение потенциала действия. Это значит, что какая-то порция информации благополучно миновала синаптическую щель. Передвигаясь вперед, она, возможно, запустит реакцию или попадет в память нейросети. Если наблюдается торможение, в клетку-мишень, как правило, входит хлор или выходит калий, в результате чего клетка-мишень на время становится менее возбудимой.


Строение синапса

Очень важно то, что на каждом нейроне сходятся сотни и тысячи синапсов, сотни и тысячи аксонов, и сигналы от соседних аксонов суммируются. В итоге нейрон оказывается достаточно сложным вычислительным устройством, которое работает одновременно с сотнями и тысячами информационных каналов. А элементарной структурно-функциональной единицей мозга оказывается все-таки синапс. И вычислительные ресурсы нейросети зависят не от количества нейронов, а от того, насколько много синапсов находится в единице объема нервной ткани, допустим, в одном кубическом миллиметре.

Химия психики

Список медиаторов, то есть веществ, посредством которых нервные клетки влияют на другие клетки, весьма обширен. Но в нем есть и главные действующие лица, и второстепенные. Основные медиаторы нашей центральной нервной системы: глутамат и ГАМК. Первый является ключевым возбуждающим медиатором нашего мозга. А ГАМК – ключевой тормозный медиатор, он контролирует информационные потоки, не допускает лишние сигналы. Большинство задач, которые решаются нашим мозгом, требуют постоянного, тонкого баланса между глутаматом и ГАМК. Если этот баланс нарушается, появляются разнообразные проблемы, начиная от СДВГ и бессонницы и заканчивая эпилепсией.

Второстепенные медиаторы нужны для функционирования нашей психоэмоциональной сферы. К примеру, дофамин. С этой молекулой связана масса положительных эмоций. Нарушение функций дофамина приводит к таким патологиям, как паркинсонизм и шизофрения. Препараты, схожие с дофамином, работают как наркотики-психостимуляторы.

Еще один медиатор – серотонин. От него зависит целый ряд тормозных функций. Он контролирует центры негативных эмоций и уровень шума в мозговой коре. Благодаря серотонину мышление человека становится более чутким. С данным медиатором связаны препараты, которые мы относим к антидепрессантам. А еще на функции серотонина воздействуют наркотики, способные вызывать галлюцинации.

Эндорфины – ключевые медиаторы, связанные с контролем боли и опять-таки с центрами положительных эмоций. Поэтому на их основе созданы важнейшие группы анальгетиков, а также такие известные наркотические препараты, как морфин и героин, которые влияют на эндорфиновые синапсы.

Список медиаторов можно продолжить: аденозин, глицин, ацетилхолин, норадреналин… Любой из них крайне важен для функционирования мозга и внутренних органов. На их основе созданы важнейшие группы лекарств.

Иерархия отделов мозга

На макроуровне мозг представляет собой сложную иерархию структур. Проще всего устроен спинной мозг. Там мы можем достаточно четко выделить участки, отвечающие за сенсорику; двигательные зоны; вегетативные зоны, которые управляют внутренними органами; интегративные зоны.

В головном мозге сложность структур резко увеличивается, хотя самые нижние зоны – луковица и мост – реализуют довольно простые задачи: дыхание, управление сердечнососудистой системой и так далее.

Надо отметить, что головной мозг эволюционирует вперед и в сторону (как говорят анатомы, рострально и латерально). В нем выделяют структуры, классифицирующиеся по времени возникновения. Древние структуры есть уже у рыб, наших далеких предков. Старые структуры появляются в момент выхода позвоночных на сушу, они часто связаны с деятельностью конечностей. Новые структуры характерны для млекопитающих, а многие из них – лишь для обезьян и человека.

В среднем мозге помещаются древние центры: зрения, слуха, сна, двигательные. Большие полушария — самая крупная часть нашего головного мозга. В них располагаются высшие участки и центры, отвечающие за сенсорику, движение, мышление и так далее.

Промежуточный мозг состоит из верхней зоны (таламуса) и нижней (гипоталамуса). Первый является фильтром, через который проходит практически вся информация, поднимающаяся в наши высшие центры. Второй же преимущественно отвечает за эндокринную и вегетативную регуляцию.


Строение головного мозга

Мозжечок – это центр нашей двигательной памяти, в нем также выделяют новые, старые и древние зоны. Древние отвечают за оптимизацию рефлекторных программ, старые в первую очередь призваны обеспечивать перемещение человека в пространстве (шаг, бег), а новые ответственны за тонкие движения пальцев (например, при игре на музыкальных инструментах, письме, печатании на клавиатуре).

Мозг и потребности

Ключевая задача мозга — руководить поведением, которое в большинстве случаев нацелено на удовлетворение определенной нужды. Есть ряд базовых потребностей, с рождения встроенных в мозг и являющихся основой нашего поведения.

В перечень потребностей прежде всего входят витальные программы, ответственные за выживание человека: питание, защищенность, гомеостаз и так далее. Велика роль социальных программ, отвечающих за жизнь внутри сообщества. И есть особые программы, заставляющие стремиться к свободе, новизне, подражанию.

Центр каждой биологической потребности можно обнаружить в той или иной зоне мозга и проанализировать, на какие факторы реагирует этот центр. Как правило, значимы, во-первых, внешние сигналы, скажем, какие-то болевые стимулы. Во-вторых, внутренние сигналы, допустим, химический состав крови. Огромное значение для некоторых видов поведения имеет гормональный фон.

Каждый конкретный поведенческий акт может приводить либо к удовлетворению потребности, либо к тому, что она не удовлетворяется. Если нужду удается удовлетворить, в мозге генерируются позитивные чувства. Они заставляют мозг запоминать успешные алгоритмы поведения. При фрустрации же возникают негативные чувства. На их основе происходит забывание, снижение рейтинга тех программ, которые окончились неудачей.

Обучение и запоминание


Ключевой структурой, отвечающей за кратковременную память, является гиппокамп – зона, которая расположена у нас в глубине височных долей. Там находятся особые рецепторы (NMDAR), способные почти мгновенно менять свою активность при получении сильного сигнала. Если возникает большое количество потенциалов действия, эти рецепторы переходят в активное состояние, в результате чего синапсы, где они локализуются, начинают проводить информационные потоки. Это активное состояние сохраняется в течение нескольких часов.

Для возникновения долговременной памяти, как правило, нужно, чтобы в нейронах были синтезированы новые рецепторы, которые встроились бы в мембрану, воспринимающую действие медиатора. Почти всегда данным медиатором является глутамат. Формирование долговременной памяти, как правило, происходит на фоне эмоций, которые генерируются в центре потребностей.

Таким образом, независимо от того, какую конкретно информацию мы запоминаем, в разных частях нашей коры головного мозга происходит одно и то же событие: повышается эффективность синапсов, проводящих сигналы от глутаминовой кислоты. Этот механизм является универсальным способом вписать в нейросеть новую информацию и создать новые каналы для ее проведения.

Мозг и мышление

Высшие функции больших полушарий связаны с ассоциативной корой. Ассоциативность здесь подразумевает то, что она объединяет многие информационные потоки. И на боковой поверхности полушарий мы видим прежде всего ассоциативную теменную кору и ассоциативную лобную кору. Первая занимает в основном заднюю часть теменной доли, располагается она между двумя главными сенсорными центрами. В итоге здесь собирается зрительная, слуховая, тактильная, вкусовая информация и прочие информационные потоки. Формируется целостная сенсорная картина внешнего мира.

Лобная кора – это главный центр управления поведением. Здесь принимаются решения о запуске тех или иных программ. И первое, что она делает, — это оценивает выраженность различных потребностей. Этот участок мозга выбирает доминирующую нужду, а дальше он должен запустить программу, которая позволила бы эту нужду удовлетворить. При этом лобная кора учитывает сигналы от ассоциативной теменной коры, а также от центров памяти: от гиппокампа, от тех нейросетей, которые модифицировались в ходе долговременного обучения. Она запускает программу и мониторит ее реализацию. Такой мониторинг особенно важен в том случае, если программа длительная, если нужно за каждым этапом смотреть, удалось или не удалось достичь некой текущей цели.

Повреждение этого участка приводит к тому, что такие функции человеческого мозга, как воля и инициатива, очень сильно страдают. Кроме того, свойства ассоциативной лобной коры определяют такие особенности нашего темперамента, как импульсивность и настойчивость.

Опасности и ловушки

За последние 20-30 лет человечество узнало о работе мозга очень-очень много. Эта информация чрезвычайно важна и полезна, если мы хотим как-то корректировать работу нервной системы, улучшать ее, помогать в случае тех или иных патологий. Сейчас мы гораздо яснее видим различные ловушки и проблемы. Например, проблему использования психотропных препаратов. Мы очень четко понимаем, что любой серьезный психотропный препарат (нейролептик, антидепрессант, снотворный препарат) фатально влияет на работу синапсов и состояние нейросетей и вызывает привыкание и зависимость.

В еще большей степени это относится к наркотическим препаратам, которые порой не просто меняют состояние нейросетей на очень длительный срок, но и разрушают эти нейросети и приводят к гибели нервных клеток, например, в центрах положительных эмоций.

Особая группа проблем связана с тем, что мозг человека, судя по всему, слишком быстро эволюционировал. В результате некоторые высшие функции мозга оказались не совсем адекватно инсталлированы, в связи с чем каждый сотый человек является шизофреником, а каждый двухсотый страдает эпилепсией. Список таких проблем можно продолжать. Чтобы корректировать такие патологические состояния организма ученым и медикам придется еще очень много потрудиться.

Наконец, проблема нейродегенерации. Нервные клетки порой накапливают в своей цитоплазме дефектные белки, которые нарушают их работу и приводят к гибели. К сожалению, все усилия нейрофизиологии и других нейронаук пока что не привели к радикальному успеху в этой области. Такие заболевания, как паркинсонизм и болезнь Альцгеймера, мы пока толком лечить не умеем, и это, безусловно, задача 21 века.

Морфология нервных клеток и их физиология.

Структурно-функциональной единицей нервной системы является нейрон . У человека -содержится свыше 100 миллиардов нервных клеток. Несмотря на такое количество нейрон ов у всех их имеется общее строение – чувствительные, эфферентные, отростки дендрит ы, по которым импульс передается в сому, и от сомы импульс распространяется на афферентные, единичные, отростки – аксон ы. Взаимосвязь между отдельными нейрон ами осуществляется при помощи посредников, так называемыми синапс ами, число которых в 10^15 степени превышает самих нейрон ов. Синапсы осуществляют взаимосвязь не только с нервными клетками, но и способствуют передачи импульсов на исполнительные органы.

Нервную клетку с наружной стороны покрывает нейролема, которая образует замкнутое пространство, в котором содержится цитоплазма и собственно ядро. Цитоплазму, условно, можно разделить на два основных компонента- гомогенная гиалоплазма и органеллы. Большинство органелл и ядро заключены как и в других нервных клетках в свои отсеки – компартменты, образуемые собственными мембранами, обладающие собственной избирательной проницаемостью длю отдельных ионов и молекул. Эта особенность и лежит в дифференцировки нейроцитов для различных отделов ЦНС, выполняющих различную функцию.

Нервные клетки имеют свой потенциал ( потенциал покоя), который в среднем равен 60 -80 мВ. Во время возбуждения нервной клетки потенциал возрастает до 80-100 мВ. Это так называемый потенциал действия.

Рассмотрим наглядно строение нервной клетки:

На рисунке видно, что нервная клетка получает импульсы не только от дендрит ов, но и от множества синапс ов подходящих к телу и дендрит ам нейроцита. Количество синаптических бутонов на одном нейрон е может достигать 10 тысяч . Импульс поступив в нейроцит и при этом по силе оказался пороговым или же надпороговым, переходит в область генерации нового импульса в области аксон ного холмика, от которого и начинается отдел нейрон а под названием - аксон . Интересным является и тот факт, что диаметр сомы составляет от 10 до 100 микрометров, а аксон а 1-6 микрометр при длине свыше 1 метра! Нейроны мозга формируют колонки, ядра и слои в нервной системе с выполнением различных функций. Серое вещество формируется из демиелизированных волокон и тел нервных клеток, а белое состоит из миелизированных аксон ов и клеток глии- выполняющих в основном питательную и защитную функцию.

Классификация нейрон ов.

по основному медиатору:

в зависимости от отдела ЦНС

соматические и вегетативные

вставочные (интер нейрон ы)

по количеству модальности воспринимаемой сенсорной информации:

моно- (являются нейрон ы центра слуха в коре головного мозга)

би- (во вторичных зонах анализатора в коре ( нейрон ы вторичной зоны зрительного анализатора в коре головного мозга реагируют на световые и звуковые раздражители))

полимодальные ( нейрон ы ассоциативных зон коры головного мозга)

На теле и дендрит ах нейроцита есть шипики, которые непосредственно участвуют в восприятии раздражения и сотавляют 40 % площади поверхности клетки. Синапсы могут подходить и к аксон у - аксо- аксон альные синапс ы (например: пресинаптическое торможение).

Необходимо сказать и то, что синапс ы также являются не однородными- они бывают возбуждающими или тормозящими по эффекту; аксо- аксон альные, аксо-соматические, аксо- дендрит ные, дендро-соматические, дендро- дендрит ные по месту действия.

Нервные клетки обладают неспецифическими функциями, которые характерны для всех клеток нашего организма (катаболизм, анаболизм и тд.), и специфические, которые и представляют для нас непосредственный интерес- передача сигнала, переработка поступающей информации(за счет возбуждения и торможения), хранение информации, и трофическая.

Нейроцит обладает способностью раздражаться, возбуждаться и проводить импульс(возбуждение).

Более подробно остановимся на медиаторах и рецептор ах к ним в синапс ах:

ацетилхолин встречается в различных отделах ЦНС. Известен кА возбуждающий медиатор на тормозящие и возбуждающие рецептор ы синапс ов. В частности, действует на альфа мото нейрон ы, которые могут передавать импульс на клетки Реншоу оказывающие торможение. У человека обнаружены М и Н холино рецептор ы. Тормозящее влияние ацетилхолина осуществляется за счет М-холинорецеторовв глубоких слоях коры большого мозга, в стволе и хвостатом ядре.

Амины (норадреналин, дофамин, серотонин, гистамин) в своем большинстве содержаться в нейрон ах ствола головного мозга и в гораздо меньших количествах в других отделах. Они обеспечивают возникновение процессов возбуждения и торможения, например, в промежуточном мозге, черной субстанции, в лимбической системе и полосатом теле.

норадреналин. Норадренергические нейрон ы сосредоточенны в основном в области голубого пятна в среднем мозге, где их насчитывается всего несколько сотен, но ответвления их аксон ов встречается во всей центральной нервной системе. Он является тормозным медиатором клеток пуркинье мозжечка, и возбуждающим в гипоталамусе, ядрах эпиталамуса. В ретикулярной формации ствола мозга и гипоталамусе обнаружены альфа и бета адрено рецептор ы. Норадреналин регулирует настроение, эмоциональные реакции, обеспечивает бодрствование, участвует в формирование некоторых фаз сна, сноведений.

дофаминорецеторы подразделяются наД1 и Д2 подтипы. Д1 локализуются на телах полосатого тела, действуя посредством дофаминзависимой аденилатциклазы. В гипофизе обнаруженныД2 рецептор ы-они угнетают синтез и секрецию пролактина, окситоцина, меланин стимулирующего гормона, эндорфина. Функция Д2 рецептор ов на полосатом теле пока еще не известна. Дофамин участвует в формировании чувства удовольствия, регулирует эмоциональную реакцию, поддерживает бодрствование. Дофамин полосатого тела регулирует продукцию сложных движений.

серотонин. С помощью серотонина в коере головного мозга передается торможение, в других отделах – возбуждающее влияние. Действие его опосредованно через аденилатциклазу. В основном регулирует вегетативные функции. Серотонин ускоряет процессы обучения , формирование болевых ощущений, сенсорное восприятие, засыпание,

гистамин в довольно высоких концентрациях обнаружен в гипофизе и срединном возвышении гипоталамуса. Как медиатор изучен недостаточно.

аминокислоты . Кислые аминокислоты(глицин, гамма-аминомаслянная кислота) являются тормозными медиаторами: глицин – в спинном мозге, ГАМК – в коре большого мозга, мозжечке, стволе и спинном мозге. Нейтральные аминокислоты (альфа-глутамат и аспартат) передают возбуждение на одноименные рецептор ы. Предполагают, что глутамат медиатор рецептор ов афферентной передачи возбуждения. Глутамат основной возбуждающий медиатор в ЦНС ( 75% возбуждающих синапс ов). Рецепторы глутамата ионно-(К,Са,Na) и метатропные (цАМФ и ИФ3ДАГ).

Полипептиды также выполняют медиаторную функцию. В субстанции Р – передают сигналы боли. Особенно много их в дорсальных корешках спинного мозга.

Энкефалины и эндорфины медиаторы нейрон ов блокирующих болевую пульсацию. Они реализуют свое действие через опиоидные рецептор ы, которые наиболее сконцентрированы в лимбической системе.

Эндорфины, энкефалины, пептид вызывающий сигма сон- дают антиболевой эффект, повышают устойчивость к стрессу, вызывают сон.

Принцип Дейла: один нейрон синтезирует и использует один медиатор (медиаторы).

Один медиатор – один быстрый синаптический эффект.

Взаимоотношение отдельных нервных клеток и их совокупность образуют сложнейшие ансамбли процессов, которые необходимы для полноценной жизнедеятельности человека, для формирования человека как социума, определяет его как высокоорганизованное существо, что ставит человека на более высокий уровень развития по отношению к другим животным. Благодаря высокоспецефичным взаимоотношениям нервных клеток человек может продуцировать сложные действия и усовершенствовать их. Рассмотрим ниже процессы необходимые для осуществления произвольных движений.

В моторной коре лучше, чем в других зонах коры, выражен слой крупных пирамидных клеток Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецептор ов, а также от базальных ядер и мозжечка. Пирамидные и сопряженные с ними вставочные нейрон ы расположены вертикально по отношению к коре. Такие рядом расположенные нейрон ные комплексы, выполняющие сходные функции, получили название функциональных двигательных колонок. Пирамидные нейрон ы двигательной колонки могут тормозить или возбуждать мото нейрон ы стволовых или спинальных центров, например, иннервирующих одну мышцу. Соседние колонки в функциональном плане перекрываются, а пирамидные нейрон ы, регулирующие деятельность одной мышцы, как правило, расположены в нескольких колонках.

Пирамидные пути состоят из 1миллиона волокон кортикоспинального пути, начинающихся от коры верхней и средней трети прецентральной извилины, и 20 миллионов волокон кортикобульбарного пути, начинающегося от коры нижней трети прецентральной извилины(проекция лица и головы). Волокна пирамидного пути оканчиваются на альфа мото нейрон ах двигательных ядер 3-7 и 9-12 черепных нервов (кортикобульбарный путь) или на спинальных двигательных центрах(кортикоспинальный путь). Через двигательную кору и пирамидные пути осуществляются произвольные простые движения и сложные целенаправленные двигательные программы (профессиональные навыки)формирование которых начинается в базальных ганглиях и мозжечке и заканчивается в вторичной моторной зоне. Большинство волокон двигательного пути перекрещены, но малая их часть идет на ту же сторону, что способствует компенсации при одностороннем поражении.

К корковым экстрапирамидным путям относятся кортикорубральный и кортикоретикулярные пути, начинающиеся приблизительно от тех зон в которых начинаются пирамидные пути. Волокна кортикорубрального пути оканчиваются на нейрон ах красных ядер среднего мозга от которых далее начинается руброспинальный путь. Волокна кортикоретикулярного пути оканчиваются на медиальных ядрах ретикулярной формации моста (начало медиального ретикулярного пути), и на нейрон ах гиганских клеток ретикулярного пути продолговатого мозга, от которых начинается латерал ьные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, обеспечивающие точные движения. Эти экстрапирамидные пути являются составными элементами экстрапирамидной системы, к которой также относится мозжечок, базальные ядра, моторные центры ствола мозга; она осуществляет регуляцию тонуса, позы равновесия, выполнение заученных двигательных актов, таких как ходьба, бег, речь, письмо и тд.

Оценивая в общем роль различных структур головного мозга в регуляции сложных целенаправленных движений, можно отметить, что побуждение к движению создаются в лимбической системе, замысел движения - в ассоциативной зоне больших полушарий, программы движения-в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Об авторе:
Этот материал взят из источника в свободном доступе интернета. Вся грамматика источника сохранена.


Где находятся истоки особенностей поведения личности и как можно объяснить закономерности психических процессов? Ответы на эти вопросы дает нейропсихология – наука, функционирующая на стыке нейробиологических открытий, клинической неврологической практики и психологии.

Нейропсихологические открытия Александра Романовича Лурии связывают нематериальную психику и ее материальный субстрат – головной мозг. Изменения в функциональной активности клеток коры головного мозга вызывают расстройства поведенческих реакций и нарушают взаимодействие организма с окружающим миром. В научном труде Лурия показывает, что высшая психическая деятельность человека связана с особенностями работы нейронов коры головного мозга. Постулаты нейропсихологии открывают новые возможности для клинических психологов и максимально приближают эту сферу к медицинским дисциплинам и нейрофизиологии. Читая книгу, невольно задумываешься: а не нужна ли при расстройствах поведения в первую очередь медицинская помощь?

Системная динамическая локализация

Психические функции характеризуют человека как неповторимую и самобытную личность. Такие индивидуальные характеристики, как память, внимание, мышление, речевая активность, эмоции, имеют базу в цитоархитектонике серого вещества коры головного мозга.

Нейронные связи между отдельными клеточными структурами создают устойчивые функциональные блоки, которые несут непосредственную ответственность за адекватные реакции на внешние раздражители. Большинство психических функций не имеют четкого анатомического представительства в головном мозге, часто межнейронные связи образуются между его разными отделами.

Александр Романович Лурия объединяет положения теорий узкого локализационизма и антилокализационизма психических процессов. Пересматриваются такие фундаментальные понятия, как симптом и функция. Доминирующее значение для определения субстрата высшей нервной деятельности придается следующим определениям:

  • синдром;
  • функциональная система;
  • нейропсихологический фактор.

Лурия вводит принципиально новое понятие – структурно-физиологические блоки головного мозга.

Концепция трех структурно-функциональных блоков головного мозга

Головной мозг человека – это сложная высокоорганизованная система. Высшая нервная деятельность осуществляется благодаря интеграции трех блоков головного мозга. Каждый блок – звено в цепи единого процесса. Нарушение каждой из структурных единиц приводит к сбою и патологическим изменениям. Любая разновидность психической деятельности возможна при последовательном включении трех функционально-структурных блоков:

  1. Первый несет ответственность за активацию мозговых структур в состоянии бодрствования.
  2. Второй перерабатывает информационный поток из внешней среды и хранит полученные данные.
  3. Третий блок отвечает за планирование предполагаемых действий, регулирует и контролирует психическую деятельность.

Благодаря блокам головной мозг человека функционирует как единая интегральная система, которая превосходит по эффективности самый совершенный компьютер.

Все звенья перечисленной функциональной системы пластичны и взаимозаменяемы. На формирование связей между ними оказывают влияние как внутренние, так и внешние факторы. Интегральная система головного мозга не несет на себе печать детерминированности, это расширяет возможности педагогики и медицины.

Два полушария: единство и противоположность

Головной мозг функционирует как единая система двух полушарий. Правая и левая половины большого мозга выполняют разные задачи, но воспроизведение психических функций невозможно при изолированной их работе. Расщепленный мозг неполноценен, при патоморфологических и функциональных изменениях в них развиваются патологические расстройства.

Левое полушарие отвечает за логику и математические способности. Центр речи обусловливает понимание и воспроизведение речевых конструкций, его работа обеспечивает общение людей между собой, передачу опыта и знаний. Нарушение работы соответствующей части левого полушария вызывает афазию. Расстройство приводит к нарушению воспроизведения речи и понимания ее смысла.

Правая часть большого мозга несет ответственность за ассоциативную деятельность, творческие способности, интуицию. Человек с правополушарной активностью проявляет интерес к музыке, поэзии и живописи.

Нейропсихологический фактор

Понятие нейропсихологического фактора необходимо рассматривать как основную структурно-функциональную единицу осуществления психических функций.

Гнозис и праксис – основы жизнедеятельности человека

С помощью трех структурных блоков головного мозга человек получает всестороннюю информацию об окружающем мире. Познавание происходит с помощью чувствительных анализаторов: зрительного, слухового, обонятельного, вкусового и тактильного. Гнозис (познавание мира) наиболее активно функционирует в детском возрасте. В современном мире поток информации приобрел небывалую интенсивность, это значит, гностическая деятельность должна продолжаться на протяжении всей жизни. Расстройство познавания называется агнозия, которая приводит к нарушению узнавания знакомых раньше лиц и предметов.

Для того чтобы действовать и применять на практике полученные знания, функционирует праксис. Все бытовые и профессиональные навыки возможны при активном функционировании соответствующих участков лобных долей. При патологических изменениях в них человек теряет способность выполнять привычные действия, развивается апраксия.

Для полноценного существования и саморазвития необходимо развивать каждое из полушарий и координировать их взаимодействие. Стимуляция неактивных нейронов приводит к повышению эффективности психической деятельности.

Значение основных концепций нейропсихологии

  • 1. Лурия А.Р. Основы нейропсихологии. – Москва. - Издательский центр Академия 2013 г., 384 стр.
  • 2. Хомская Е. Д. Нейропсихология. - Издательство Питер. - 2018 г., 496 стр.
  • 3. Визель Т. Г. Основы нейропсихологии: учебник для студентов ВУЗов., Москва. - АСТ Астрель Транзиткнига, 2005, 384 стр.

Редактор: Чекардина Елизавета Юрьевна

Если вы заметили ошибку или опечатку в тексте, выделите ее курсором и нажмите Ctrl + Enter

Не понравилась статья? Напиши нам, почему, и мы постараемся сделать наши материалы лучше!

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.