Нейронная сеть это модель нервной системы


Человеческий мозг — восхитительное устройство. Он вдохновляет современных исследователей, которые создают искусственные нейроны, словно ученики скульптора, копирующие бюст Сократа. И результат тому — искусственная нейронная сеть (ИНС), одно из самых обсуждаемых явлений современности.

Почему нейронная, почему сеть

Глубокое понимание нейросетей предполагает, что вы в курсе понятий математическая функция, перцептрон и матрица весов. Мы же предлагаем поговорить про это явление на общечеловеческом языке, чтобы всем было понятно.

Искусственная нейронная сеть неспроста получила такое название, ссылаясь к работе нейронов головного мозга. Под нейросетью понимается система вычислительных единиц — искусственных нейронов, функционирующих подобно нейронам мозга живых существ. Как и биологические, искусственные нейроны получают и обрабатывают информацию, после чего передают ее дальше. Взаимодействуя друг с другом, нейроны решают сложные задачи.Среди них:

  • определение класса объекта,
  • выявление зависимостей и обобщение данных,
  • разделение полученных данных на группы на основе заданных признаков,
  • прогнозирование и т. д.


Нейронная сеть воспроизводит психические процессы, например, речь, распознавание образов, творческий выбор, мышление. Те области, которые еще вчера мыслились нами как возможности исключительно человеческого разума, становятся доступными искусственному интеллекту. Другое преимущество нейросетей перед традиционным ПО — возможность обучаться. Нейронные сети апгрейдятся на основе поступающих данных о мире людей, опыта и ошибок. И, надо сказать, они уже здорово эволюционировали.

Кому это выгодно

Нейросети для развлечений


Нейросети знают многое о человеческих лицах: по фотографии они могут определить возраст, пол, настроение, спрогнозировать, как лицо будет выглядеть в старости, анимировать статическое изображение, заставив Барака Обаму говорить то, что он не говорил, и оживить знаменитую Мону Лизу. По фотографии теперь можно найти человека, а китайские нейросети Megvii даже ищут собак по изображению носа. Причем ИНС работает не только с изображениями, но и со звуком. Массачусетский технологический институт недавно представил нейросеть (Speech2Face), определяющую национальность, пол и возраст человека по голосу.

Звучит впечатляюще и пугающе. Конечно, мы можем развлекаться, играя со своей фотографией, но только представьте, какой отнюдь не развлекательный потенциал у этой технологии. Уже сейчас можно найти любого человека по фото, создать реалистичные несуществующие лица для рекламы, модельного бизнеса или кино, заставить статичные изображения говорить и двигаться. Нетрудно представить, что нейросети скоро станут целой индустрией.

Нейросети на службе правительства


Уже есть несколько примеров проектов внедрения искусственных нейронных сетей в России. В ГИБДД хотят научить нейросеть обнаруживать факт кражи автомобильных номеров. По изображению автомобиля ИНС сможет установить, соответствует ли машина своему номеру. Это поможет своевременно выявлять подделку или кражу номеров. Руководитель Департамента транспорта Москвы Максим Ликсутов подтвердил, что данная программа сейчас проходит тестирование.

Еще один пример возможностей нейросетей в распознавании изображений – эксперимент Департамента информационных технологий Москвы по созданию сервиса для передачи показаний приборов учета воды. Возможно, вскоре нам не придется вводить показания вручную, достаточно будет лишь сфотографировать свой счетчик, а нейросеть сама распознает цифры с изображения.

Нейросети и бизнес

Нейросети — настоящий подарок для бизнеса и горе для работников. Мы живем в эпоху, когда данные имеют огромную ценность. Поверьте, мировые корпорации уже проанализировали ваш профиль в соцсетях и предоставляют вам персонализированную рекламу. Только представьте, что способности сетей искусственных нейронов к анализу и обобщению можно использовать для получения еще большего массива знаний о потребителях. Например, в 2019 году компания McDonald’s наняла специалистов по разработке нейросетей для создания индивидуальной рекламы. Потом не удивляйтесь, откуда бизнес знает о том, какую еду, одежду и косметику вы предпочитаете.

Нейросети в сфере искусства

Специалисты компании OpenAI заявляют, что их программа по созданию текстов пишет любые тексты без человеческого вмешательства. Тексты за авторством нейросети не отличаются от тех, что написаны человеком. Однако в общественный доступ программа не попала, авторы опасаются, что ее будут использовать для создания фейк-ньюс.


Удивительно, как органично нейросети вписались в мир современного искусства. Получим ли мы робота-Толстого через пару лет? Сможет ли нейросеть постигнуть все глубины человеческих проблем и чувств, чтобы творить не компиляцию, а настоящее искусство? Пока эти вопросы остаются открытыми.

Нейросети в медицине

Нейросети уже помогают улучшить качество диагностики различных заболеваний. Анализируя данные пациентов, искусственный интеллект способен выявлять риск развития сердечно-сосудистых заболеваний, об этом заявляют ученые Ноттингемского университета. По данным исследования, обученная нейросеть прогнозирует вероятность инсульта точнее, чем обычный врач по общепринятой шкале.

В открытом доступе появились даже приложения для диагностики на основе нейросетей, например SkinVision, которое работает с фотографиями родинок и определяет доброкачественность или злокачественность вашего невуса. Точность приложения — 83 %.


Скайнет готовится к атаке?

Все ли так оптимистично в применении нейросетей? Есть ли сценарии, при которых эта технология может нанести вред человечеству? Вот несколько самых актуальных проблем на сегодняшний день.

  • Фейки. Благодаря возможностям нейросетей появились программы для замены лиц и даже времени года на фото и видео. Как, например, нейросеть Nvidia на основе генеративной состязательной сети (GAN). Страшно представить, какие фото и видео можно получить, если применять подобные программы с целью создания убедительных фейков. Также нейросеть может на основе короткого фрагмента голоса создать синтетический голос, полностью идентичный оригиналу. Подделать чью-то речь? Легко. Подделать чью-то фотографию? Проще простого.
  • Трудности понимания. Когда процесс обучения нейросети завершается, человеку становится трудно понять, на каких основаниях она принимает решения. До сих пор непонятно, как у ИНС получилось обыграть лучшего игрока мира в Го. В этом смысле нейросеть — ящик Пандоры.


  • Оружие хакеров и мошенников. Считается, что хакеры могут использовать возможности нейросетей для преодоления систем антивирусной защиты и создания нового поколения вредоносных программ. Также нейросети соблазнительны для мошенников, например, искусственный интеллект, способный имитировать общение с живым человеком и заполучать доверие.

Выводы и прогнозы

Нейросети стремятся сделать мир более персонализированным: каждому из нас будут предлагаться блюда, музыка, фильмы и литература по вкусу. В сериалах мы сможем выбирать развитие сюжета, кстати, Netflix уже экспериментирует с такими решениями.

Так как искусственный интеллект уже начал выполнять человеческие задачи, миллионы квалифицированных специалистов могут постепенно лишаться рабочих мест. Работодателю будет проще запустить нейросеть, чем нанимать человека. По тонкому замечанию Антона Балакирева, руководителя интернет-портала Robo-sapiens.ru, нейросети не уходят на пенсию, не страдают алкоголизмом и депрессией. Идеальный работник.

Однако искусственный интеллект по-прежнему не может заменить человеческий мозг. В вопросах ответственности, норм морали и нравственности, а также критических систем безопасности нам не следует доверять нейросети безраздельно, пусть она и умнее нас. Доверяй, но проверяй.

Содержание


Вопросы искусственного интеллекта и нейронных сетей в настоящее время становится популярным, как никогда ранее. Множество пользователей все чаще и чаще обращаются в поисковую систему с вопросами о том, как работают нейронные сети, что они из себя представляют и на чём построен принцип их деятельности?

Эти вопросы вместе с популярностью имеют и немалую сложность, так как процессы представляют собой сложные алгоритмы машинного обучения, предназначенные для различных целей, от анализа изменений до моделирования рисков, связанных с определёнными действиями.

Что такое нейронные сети и их типы?

Первый вопрос, который возникает у интересующихся, что же такое нейронная сеть? В классическом определении это определённая последовательность нейронов, которые объединены между собой синапсами. Нейронные сети являются упрощённой моделью биологических аналогов.

Программа, имеющая структуру нейронной сети, даёт возможность машине анализировать входные данные и запоминать результат, полученный из определённых исходников. В последующем подобный подход позволяет извлечь из памяти результат, соответствующий текущему набору данных, если он уже имелся в опыте циклов сети.

Многие воспринимают нейронную сеть, как аналог человеческого мозга. С одной стороны, можно считать это суждение близким к истине, но, с другой стороны, человеческий мозг слишком сложный механизм, чтобы была возможность воссоздать его с помощью машины хотя бы на долю процента. Нейронная сеть — это в первую очередь программа, основанная на принципе действия головного мозга, но никак не его аналог.

Нейронная сеть представляет собой связку нейронов, каждый из которых получает информацию, обрабатывает её и передаёт другому нейрону. Каждый нейрон обрабатывает сигнал совершенно одинаково.

Как тогда получается различный результат? Все дело в синапсах, которые соединяют нейроны друг с другом. Один нейрон может иметь огромное количество синапсов, усиливающих или ослабляющих сигнал, при этом они имеют особенность изменять свои характеристики с течением времени.

Именно правильно выбранные параметры синапсов дают возможность получить на выходе правильный результат преобразования входных данных.

Определившись в общих чертах, что собой представляет нейронная сеть, можно выделить основные типы их классификации. Прежде чем приступить к классификации необходимо ввести одно уточнение. Каждая сеть имеет первый слой нейронов, который называется входным.

Он не выполняет никаких вычислений и преобразований, его задача состоит только в одном: принять и распределить по остальным нейронам входные сигналы. Это единственный слой, который является общим для всех типов нейронных сетей, дальнейшая их структура и является критерием для основного деления.

  • Однослойная нейронная сеть. Это структура взаимодействия нейронов, при которой после попадания входных данных в первый входной слой сразу передаётся в слой выхода конечного результата. При этом первый входной слой не считается, так как он не выполняет никаких действий, кроме приёма и распределения, об этом уже было сказано выше. А второй слой производит все нужные вычисления и обработки и сразу выдаёт конечный результат. Входные нейроны объединены с основным слоем синапсами, имеющими различный весовой коэффициент, обеспечивающий качество связей.
  • Многослойная нейронная сеть. Как понятно из определения, этот вид нейронных сетей помимо входного и выходного слоёв имеет ещё и промежуточные слои. Их количество зависит от степени сложности самой сети. Она в большей степени напоминает структуру биологической нейронной сети. Такие виды сетей были разработаны совсем недавно, до этого все процессы были реализованы с помощью однослойных сетей. Соответственно подобное решение имеет намного больше возможностей, чем её предок. В процессе обработки информации каждый промежуточный слой представляет собой промежуточный этап обработки и распределения информации.

В зависимости от направления распределения информации по синапсам от одного нейрона к другому, можно также классифицировать сети на две категории.

  • Сети прямого распространения или однонаправленная, то есть структура, в которой сигнал движется строго от входного слоя к выходному. Движение сигнала в обратном направлении невозможно. Подобные разработки достаточно широко распространены и в настоящий момент с успехом решают такие задачи, как распознавание, прогнозы или кластеризация.
  • Сети с обратными связями или рекуррентная. Подобные сети позволяют сигналу двигаться не только в прямом, но и в обратном направлении. Что это даёт? В таких сетях результат выхода может возвращаться на вход исходя из этого, выход нейрона определяется весами и сигналами входа, и дополняется предыдущими выходами, которые снова вернулись на вход. Таким сетям свойственна функция кратковременной памяти, на основании которой сигналы восстанавливаются и дополняются в процессе обработки.

Это не единственные варианты классификации сетей.

Их можно разделить на однородные и гибридные опираясь на типы нейронов, составляющих сеть. А также на гетероассоциативные или автоассоциативные, в зависимости от метода обучения сети, с учителем или без. Также можно классифицировать сети по их назначению.

Где используют нейронные сети?

А вот задачи ещё более сложного уровня требуют совсем иного подхода. В частности, это относится к распознаванию образов, речи или сложному прогнозированию. В голове человека подобные процессы происходят неосознанно, то есть, распознавая и запоминая образы, человек не осознаёт, как происходит этот процесс, а соответственно не может его контролировать.

Именно такие задачи помогают решить нейронные сети, то есть то есть они созданы чтобы выполнять процессы, алгоритмы которых неизвестны.

Таким образом, нейронные сети находят широкое применение в следующих областях:

  • распознавание, причём это направление в настоящее время самое широкое;
  • предсказание следующего шага, эта особенность применима на торгах и фондовых рынках;
  • классификация входных данных по параметрам, такую функцию выполняют кредитные роботы, которые способны принять решение в одобрении займа человеку, полагаясь на входной набор разных параметров.

Способности нейросетей делают их очень популярными. Их можно научить многому, например, играть в игры, узнавать определённый голос и так далее. Исходя из того, что искусственные сети строятся по принципу биологических сетей, их можно обучить всем процессам, которые человек выполняет неосознанно.

Что такое нейрон и синапс?

Так что же такое нейрон в разрезе искусственных нейросетей? Под этим понятием подразумевается единица, которая выполняет вычисления. Она получает информацию со входного слоя сети, выполняет с ней простые вычисления и проедает её следующему нейрону.

Уважаемые посетители, сохраните эту статью в социальных сетях. Мы публикуем очень полезные статьи, которые помогут Вам в вашем деле. Поделитесь! Жмите!

В составе сети имеются три типа нейронов: входной, скрытый и выходной. Причём если сеть однослойная, то скрытых нейронов она не содержит. Кроме этого, есть разновидность единиц, носящих названия нейрон смещения и контекстный нейрон.

Каждый нейрон имеет два типа данных: входные и выходные. При этом у первого слоя входные данные равны выходным. В остальных случаях на вход нейрона попадает суммарная информация предыдущих слоёв, затем она проходит процесс нормализации, то есть все значения, выпадающие из нужного диапазона, преобразуются функцией активации.

Как уже упоминалось выше, синапс — это связь между нейронами, каждая из которых имеет свою степень веса. Именно благодаря этой особенности входная информация видоизменяется в процессе передачи. В процессе обработки информация, переданная синапсом, с большим показателем веса будет преобладающей.

Получается, что на результат влияют не нейроны, а именно синапсы, дающие определённую совокупность веса входных данных, так как сами нейроны каждый раз выполняют совершенно одинаковые вычисления.

При этом веса выставляются в случайном порядке.

Схема работы нейронной сети

Чтобы представить принцип работы нейронной сети не требуется особых навыков. На входной слой нейронов поступает определённая информация. Она передаётся посредством синапсов следующему слою, при этом каждый синапс имеет свой коэффициент веса, а каждый следующий нейрон может иметь несколько входящих синапсов.

В итоге информация, полученная следующим нейроном, представляет собой сумму всех данных, перемноженных каждый на свой коэффициент веса. Полученное значение подставляется в функцию активации и получается выходная информация, которая передаётся дальше, пока не дойдёт до конечного выхода. Первый запуск сети не даёт верных результатов, так как сеть, ещё не натренированная.

Функция активации применяется для нормализации входных данных. Таких функций много, но можно выделить несколько основных, имеющих наиболее широкое распространение. Их основным отличием является диапазон значений, в котором они работают.

  • Линейная функция f(x) = x, самая простая из всех возможных, используется только для тестирования созданной нейронной сети или передачи данных в исходном виде.
  • Сигмоид считается самой распространённой функцией активации и имеет вид f(x) = 1 / 1+e–×; при этом диапазон её значений от 0 до 1. Она ещё называется логистической функцией.
  • Чтобы охватить и отрицательные значения используют гиперболический тангенс. F(x) = e²× – 1 / e²× + 1 — такой вид имеет эта функция и диапазон который она имеет от -1 до 1. Если нейронная сеть не предусматривает использование отрицательных значений, то использовать её не стоит.

Для того чтобы задать сети данные, которыми она будет оперировать необходимы тренировочные сеты.

Интеграция — это счётчик, который увеличивается с каждым тренировочным сетом.

Эпоха — это показатель натренированности нейронной сети, этот показатель увеличивается каждый раз, когда сеть проходит цикл полного набора тренировочных сетов.

Соответственно, чтобы проводить тренировку сети правильно нужно выполнять сеты, последовательно увеличивая показатель эпохи.

В процессе тренировки будут выявляться ошибки. Это процентный показатель расхождения между полученным и желаемым результатом. Этот показатель должен уменьшаться в процессе увеличения показателя эпохи, в противном случае где-то ошибка разработчика.

Длина статьи зависит от специфики и тематики сайта. Узнай здесь, какая она должна быть для интернет-магазина.

Способны роботы журналисты заменить людей журналистов, читай в нашей статье.

Что такое нейрон смещения и для чего он нужен?

В нейронных сетях есть ещё один вид нейронов — нейрон смещения. Он отличается от основного вида нейронов тем, что его вход и выход в любом случае равняется единице. При этом входных синапсов такие нейроны не имеют.

Расположение таких нейронов происходит по одному на слой и не более, также они не могут соединяться синапсами друг с другом. Размещать такие нейроны на выходном слое не целесообразно.


Для чего они нужны? Бывают ситуации, в которых нейросеть просто не сможет найти верное решение из-за того, что нужная точка будет находиться вне пределов досягаемости. Именно для этого и нужны такие нейроны, чтобы иметь возможность сместить область определения.

То есть вес синапса меняет изгиб графика функции, тогда как нейрон смещения позволяет осуществить сдвиг по оси координат Х, таким образом, чтобы нейросеть смогла захватить область недоступную ей без сдвига. При этом сдвиг может быть осуществлён как вправо, так и влево. Схематически нейроны сдвига обычно не обозначаются, их вес учитывается по умолчанию при расчёте входного значения.

Также нейроны смещения позволят получить результат в том случае, когда все остальные нейроны выдают 0 в качестве выходного параметра. В этом случае независимо от веса синапса на каждый следующий слой будет передаваться именно это значение.

Наличие нейрона смещения позволит исправить ситуацию и получить иной результат. Целесообразность использования нейронов смещения определяется путём тестирования сети с ними и без них и сравнения результатов.

Но важно помнить, что для достижения результатов мало создать нейронную сеть. Её нужно ещё и обучить, что тоже требует особых подходов и имеет свои алгоритмы. Этот процесс сложно назвать простым, так как его реализация требует определённых знаний и усилий.


  1. Нейронные сети
  2. Биологические нейронные сети
  3. История нейронных сетей
  4. Типы нейронных сетей
  5. Обучение нейронной сети
  6. Обучение с учителем
  7. Обучение без учителя
  8. Сколько нейронным сетям еще до человеческого мозга?
  9. Почему нейронные сети стали так популярны именно сейчас
  10. Применение нейронных сетей

Нейронные сети – это современный тренд, применяемый в науке и технике. С их помощью улучшаются программы и создаются целые системы, способные автоматизировать, ускорять и помогать в работе человеку. Основная урбанистическая цель – научить систему самостоятельно принимать решения в сложных ситуациях так, как это делает человек.

Биологические нейронные сети

Многое из того, что человечество желает достичь искусственно, уже сделано природой. Человеческий мозг наделен великолепной нейронной сетью, изучение которой ведется и по сей день. Генетически, биологические нейронные сети устроены довольно сложно и человеку без соответствующей технической подготовки будет сложно понять процесс работы естественной нейросети.


В упрощённой трактовке можно сказать так: биологическая нейронная сеть это та часть нервной системы, что находится в мозге человека. Совокупность нейронов и сети позволяет нам думать, принимать решения и воспринимать окружающий мир. Биологический нейрон – клетка, основные составляющие которой: ядро, отростки, тела и иные компоненты для тесной связи с тысячами нейронов. По этой связи передаются электрохимические импульсы, приводящие нейронную сеть в состояние спокойствия или возбуждения. Например, перед сдачей экзаменов или другим важным событием, порождается импульс и распространяется по всей нейронной сети в головном мозге, проводя сеть в состояние возбуждения. Затем, по нервной системе передается это состояние другим органам, что приводит к учащению сердцебиения, частому морганию ресниц и прочим проявлениям волнения.



Нарисовать и представить алгоритм работы можно с помощью абстрактной схемы. Есть несколько методов представления схем нейронных сетей, но для наглядности проще будет использовать кружки со стрелками.


Изучив основные аспекты, можно дать определение искусственной нейронной сети – это построенная по математическим правилам модель естественной нейросети, которая воплощена в жизнь с помощью программных и аппаратных составляющих.

История нейронных сетей

Типы нейронных сетей

Распознание образов, принятие решений, прогнозирование, аппроксимация, анализ данных


Только в студенческие годы, я познакомился с некоторыми статьями на тему искусственных нейронных сетей, знакомство с ними на меня произвели неоднозначное впечатление. С одной стороны, удивило столь серьезные различия между моделью нейрона, принятым за основу перцептрона и биологическим нейроном. С другой стороны, описательные методы, использованные в искусственных нейронных сетях, позволили мне пересмотреть свои гипотезы о работе нейрона и представить их в уже более систематизированном виде. Хотя и тогда это были весьма иллюзорные представления.

Модель нейрона в основе классических искусственных сетей обычно представлялась, как клетка с множеством входов – дендритов и с одним выходом – аксоном. Клетка анализировала сигналы, поступающие с входов, и подобно функции выдавала результат, который передавался следующим нейронам. На самом деле нейрон с аксоном лишь частный случай в нервной системе, большинство нейронов в мозгу человека не имеет аксона. Нейрон принимает сигналы практически всей поверхностью мембраны, специальными рецепторами. После чего, передает сигналы по дендритам через синапсы к другим клеткам, причем, синапсы клетки имеют различную силу, их сила определяется независимо друг от друга. У биологического нейрона много входов и множество независимо определяемых выходов. Получалось что, в математическом нейроне анализируются и подсчитываются коэффициенты весов входных сигналов, а в биологическом нейроне происходит анализ силы выходных.

Несмотря на сильные несоответствия искусственных сетей от биологических, они оказались весьма продуктивными, работы в этой области дали множество интересных и практичных результатов.
Классические нейронные сети являются очень удобными для реализации, у меня был опыт написания простой программы на Delphi в основе перцептрона, но к моему стыду, у меня навыков в программировании было недостаточно для реализации своих идей по моделированию нервной системы.

Я долгое время не обращался к этой теме, но продолжал интересоваться и изучать книги и статьи по нейробиологии и психологии. Примерно два года назад, я занялся изучением игрового движка Unity3D, меня он интересовал именно, как игровой движок. Создав пару игровых приложений на нем, я понял, что Unity3D лучше всего подходит для отработки идей. Здесь и рабочее трехмерное пространство, и удобство в программировании, и свобода в организации структуры объектов. Я поставил себе задачу сделать простую модель, демонстрирующую элементарные принцы работы нейрона и нервной системы, основанную на своих предположениях.
Уже через некоторое время работы над моделью, меня ждало первое разочарование. Модель представляла собой некоторое подобие клеточного автомата, связанных между собой элементов. Созданная сеть нейронов, примерно 450 клеток, расположенных в трёхмерном пространстве, в кубическую сетку, работала не в соответствии с моими представлениями. Попытки откорректировать её работу были безуспешными.
Расположение в трехмерном пространстве, является очень важным аспектом для системы, так как для анализа и определения силы своих выходов, в нейроне принимается в расчет его местоположение относительно других активных клеток.



Первая неудачная архитектура нейронной сети

Посчитав, что причиной моих неудач может служить предопределённость в количестве нейронов и количестве связей имеющихся у нейрона. Было принято решение создавать нейроны динамически. Дело в том, что существует принцип последовательной передачи возбуждения от нейрона к нейрону, каждый рефлекторный акт можно представить, как цепочку последовательных передач нервного сигнала. Некоторые нейроны могли быть не задействованы ни в одном рефлекторном акте, при этом использовать ресурсы компьютера и мешать обзору при изучении сети.
При динамическом создании нейронов, можно сказать, что рабочая область программы представляет собой пространство, заполненное гипотетическими нейронами, которые будут активированы при необходимости. Программа создает нейроны там, где они необходимы с определёнными ограничениями, имитирующими предварительную наполненность пространства клетками.

Однако, после внесённых модификаций процесс работы с моделью, представлял собой поиски, круговорот из гипотез и их проверок. Я вносил изменения в скрипт нейрона, наблюдал за поведением системы, которая вела себя не в соответствии с моими ожиданиями, что заставляло меня строить новые гипотезы и опять вносить правки в программу. Данная работа заставила меня переоценить важность некоторых аспектов в биологии нейрона, которые ранее для меня казались незначащими. К примеру, пришлось учитывать изменение отрицательного следового потенциала, добавлять усталость нейронов и тормозящие клетки.
В результате я получил результат, который ставил перед собой изначально. Программа, которая может продемонстрировать, как происходит ассоциативное обучение в нервных тканях, формирование новых рефлекторных дуг, подобно тому, как это происходит в мозгу собаки в экспериментах И.П. Павлова.
В сравнении с классическими нейронными сетями, которые с меньшим количеством элементов могут распознавать лица, рисовать картины и сочинять музыку, функционально моя нейронная сеть практически бесполезна. Однако, для меня большее значение имеет потенциал, заложенный в ней.

В системе существуют двенадцать входов, представляющие собой рецепторы-кнопки, это кнопки клавиатуры, которым соответствуют индикаторы обозначенные буквами и двенадцать выходов, которые представляют собой индикаторы активности определённых клеток. Программа позволяет редактировать сеть: создавать нейроны, настраивать их синапсы (связи), настраивать входы и выходы.
Изначально создаются безусловные рефлексы, на базе которых происходит обучение. Человек рождается с уже готовым набором безусловных рефлексов, которые старательно подготовила и подобрала эволюция. Этот набор рефлексов и предопределяет вариативность нашего обучения.

Это только начало пути, еще предстоит множество работы. Сейчас я планирую работу над новой версией программы, которая позволит мне разобраться в некоторых деталях, касательно торможения в нервной системе. Планирую расширить возможности входных сигналов, более развернутую и разнообразную систему чувств, а так же учесть специфические химические информационные сигналы, которые позволят смоделировать подобие эмоций.

Отработав на подобных моделях, все аспекты работы нейронов, можно будет переходить к созданию системы, позволяющей создавать, как в редакторе структуры имитирующих работу мозга животных. На этом этапе будут так же востребованы знания специалистов в области физиологии мозга.
Способность к самоидентификации личности и самосознании являются неотъемлемыми элементами интеллекта, как известно, все это заложено в структурах мозга. И не возможно создание мыслящей машины без копирования структур и принципов работы мозга.

P.S.
Исследования в области искусственного интеллекта, как и написание статей на эту тему не является основным видом моей деятельности, поэтому не судите строго. Буду благодарен любому содействию в работе, помощи, совету, напутствию. Ваше мнение и конструктивная критика для меня очень важны.

Ой, у вас баннер убежал!

Присылаем лучшие статьи раз в месяц

Скоро на этот адрес придет письмо. Подтвердите подписку, если всё в силе.

  • Скопировать ссылку
  • Facebook
  • Twitter
  • ВКонтакте
  • Telegram
  • Pocket


Похожие публикации

  • 19 октября 2016 в 20:47

Курсы

AdBlock похитил этот баннер, но баннеры не зубы — отрастут

Комментарии 12



в математическом нейроне анализируются и подсчитываются коэффициенты весов входных сигналов, а в биологическом нейроне происходит анализ силы выходных.

Успехов в начинании!


Я думаю, начинать с этой концепции плохо, и вот почему:



Спасибо, очень круто!

Я также интересуюсь созданием нейросетей с динамическим образованием нейронов (считаю, что основное преимущество, которое цифровые модели имеют перед биологическими — это то, что цена создания новой ноды (нейрона) в графе — сравнима с ценой передачи нервного импульса. Мозг себе такого в физической реализации позволить не может, только создаёт новые синапсы, и то очень медленно по сравнению со скоростью передачи информации. Я думаю в этой области для цифровых моделей — огромный потенциал)



Думаю вам будет интересно как ведет себя живой нейрон.
Вот что происходит с дентритом / синапсом за 23 мин.


Спасибо, подобные видео вдохновляют

Есть неплохая серия статей на хабре, в которой описана интересная теория работы мозга: Логика мышления

Мне кажется, вместо поиска центров удовольствия лучше искать замкнутые пути, в том числе и через внешний мир: удовольствие получается от связанности результата действия и ожидаемого результата. Тут могу ошибаться, просьба высказать альтернативные предложения.

И еще вопрос: чем у вас входы от выходов отличаются, ведь для образования ассоциативной связи требуется активность обоих?


К сожалению в окружающем мире не существует абсолютных истин, придерживаясь которых можно обучаться. Какой результат поведения более ожидаемый, как определить? В реальных условиях, иногда даже не существует учителей, которые укажут, подскажут, что истинно, а что нет. Организм обучается с позиции того, что удовлетворяет его внутренним целям, получение пищи защита и удовлетворение в потребности к размножению.

Спасибо, за ссылку на статью. Я начал работу над подобной, но опишу используемую здесь модель нейрона.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.