Нерв раздражается электрическими стимулами разной формы

1. Как изменится мембранный потенциал, если поток натрия внутрь клетки увеличится, а количество калия останется прежним?

Произойдет деполяризация мембраны и снижение мембранного потенциала.

2. Как изменится мембранный потенциал нервного волокна, если закрыть натриевые каналы? Мембранный потенциал увеличится (гиперполяризация), так как калиевый ток теперь не будет уменьшаться за счет противоположного тока натрия, как было до опыта.

3. Как изменится мембранный потенциал, если заблокировать работу Nа-K-зависимой АТФ-азы? В этом случае выключается Na-K-насос, поляризация мембраны постепенно исчезнет, так как произойдет уравнивание концентраций натрия и калия по обе стороны мембраны

4. Порог раздражающего тока 3 в. Ткань раздражается током в 10 в., но возбуждения не возникает. В каком случае это может наблюдаться? Если время действия раздражающего тока будет очень коротким (см. кривую Гоорвега-Вейса).

5. Возникает ли распространяющееся возбуждение в нерве, если известно, что мембранный потенциал равен 90 мв., критический уровень деполяризации на 30% ниже, а раздражающий ток сдвигает мембранный потенциал в одном случае на 10 мв., в другом - на 30 мв.? Возбуждение возникает при условии, если мембранный потенциал меньше или равен критическому уровню деполяризации. Поэтому в данном случае распрост-раняющееся возбуждение возникнет только в том случае, если мембранный потенциал уменьшится на величину, большую чем 27 мв. (на 30%).

6. Как изменится возбудимость ткани, если при гиперполяризации мембраны критический уровень деполяризации остается прежним? Возбудимость уменьшится, так как в этом случае необходимы большая сила и большее время, чтобы сдвинуть мембранный потенциал до критического уровня.

7. Как изменится возбудимость ткани, если мембранный потенциал вырос на 20%, а критический уровень деполяризации - на 30%? Исходные величины : Ео=90 мв., Ек = 60 мв. В данном случае новый мембранный потенциал стал равным 108 мв, а критический уровень деполяризации - 78 мв. Начальные величины этих показателей - 90 мв и 60 мв. Следовательно, исходная разница между мембранным потенциалом и критическим уровнем деполяризации не изменилась и осталась равной 30 мв. Это значит, что возбудимость данной мембраны не изменилась.

9. Каким образом и на какую величину должен сдвинуться критический уровень деполяризации, чтобы на аноде возникло возбуждение при размыкании постоянного тока, который увеличит Ео на 10 мв.? Принять Ео =100 мв., Ек = 70 мв. Мембранный потенциал под анодом увеличивается, а при выключении тока возвращается к исходному уровню. Следовательно, чтобы при размыкании под анодом могло возникнуть возбуждение, необходимо возрастание критического уровня деполяризации на такую величину, чтобы он стал равным исходному мембранному потенциалу. Этот сдвиг не зависит от величины гиперполяризации, а определяется главным образом ее длительностью. Необходимый сдвиг равен 100-70=30 мв.

10. Порог раздражения под анодом при размыкании 2 в. Сократится ли мышца при замыкании и размыкании, если раздражать нервно-мышечный препарат восходящим током в 1,9 в.? При замыкании мышца сократится, так как порог замыкательного удара посто-янного тока меньше размыкательного. При размыкании сокращения не будет.

11. Реобаза размыкательного удара 3 в. Нерв раздражается током в 10 в. Направление тока нисходящее. Что произойдет с мышцей при размыкании цепи раздражающего тока? Сокращения не будет, так как в этом случае катод находится ближе к мышце, и при сильном токе под ним возникает торможение (катодическая депрессия Вериго), которое блокирует возбуждение, приходящее от анода при размыкании тока.

12. Нерв между раздражающими электродами перевязан. При действии тока мышца данного нервно-мышечного препарата сокращалась только в момент замыкания. Какой электрод находится ближе к мышце?

Катод, так как возбуждение при замыкании возникает под катодом и ему ничто не мешает дойти до мышцы.

13. Какой электрод находится ближе к мышце, если при действии сильного тока сокращение возникает только при замыкании? Катод. При размыкании катодическая депрессия блокирует движение возбуждения от анода

14. Схема какого процесса приведена ниже? Добавьте недостающие звенья.

Раздражение нерва ---- ? ----- вход Na внутрь клетки ----- ? --- генерация ПД и перезарядка мембраны --- ? --- увеличение К - проницаемости ----- реполяризация мембраны----- активация Na-K-зависимой АТФ-азы --- - восстановление мембранного потенциала.

15. Мембранный потенциал нервного волокна равен 100 мв. Критический уровень деполяризации отличается от мембранного потенциала на 30%. Какова реобаза нерва, если 1 в. раздражающего тока сдвигает Ео на 5 мв.? . В данном случае Ек = 70 мв. Так как возбуждение возникает при условии, если мембранный потенциал достиг критического уровня деполяризации, то реобаза должна быть равной (100-70):5 = 6 мв.

16. Постройте кривую силы-длительности по следующим данным:

Определите ориентировочные параметры возбудимости данной ткани.

Параметры возбудимости в этом случае будут следующими: реобаза - 0,8 вольт, хронаксия - 28 мсек.

17. Правильно и представлена последовательность событий, которые приводят к возбуждению нерва? Под каким электродом это происходит?

Представлена цепь процессов, возникающих под катодом при действии пос-тоянного тока на ткань. Последовательность извращена. Правильно так:

Пассивная деполяризация --- повышение натриевой проницаемости --- усиление потока натрия в клетку --- активная деполяризация --- локальный ответ --- потенциал действия.

18. Нерв раздражается электрическими стимулами разной формы:

Укажите, при какой форме импульса порог раздражения будет наименьшим и почему? Наименьший порог отмечается при прямоугольном стимуле раздражающего тока, так как при медленном нарастании тока из-за развития явлений аккомодации увеличивается пороговая сила.

19. Нарисуйте кривые тока действия при следующих методах отведения:

При отведении потенциала первым способом регистрируется двуфазный ток действия, при втором способе - однофазный.

20. Какой ответ дает возбудимая мембрана на раздражение, близкое к пороговой силе? Уменьшение мембранного потенциала; деполяризация, местный потенциал, локальный ответ.

21. Изменится ли величина потенциала покоя, если искусственно снизить на 30% концентрацию ионов К внутри нервного волокна? Потенциал покоя уменьшится, так как градиент концентрации калия будет меньше. Степень уменьшения - около 30%.

22. Какая из перечисленных возбудимых структур характеризуется наибольшей возбудимостью: нерв, синапс или мышца ? У какой структуры лабильность наименьшая? Наибольшая лабильность у нерва, наименьшая - у синапса

23. Какая из структур, указанных на схеме ( А,Б,С,Д), обладает повышенной химической чувствительностью. А- нейрон (сома), Б - аксон, В - постсинаптическая мембрана, Г - мембрана мышечного волокна. Повышенной химической чувствительностью обладает постсинаптическая мембрана.

Мотивационная характеристика темы. Приобретение и закрепление практических навыков по физиологии возбудимых тканей, примененяемых с целью диагностики и лечения в клинике, является необходимым условием для практической работы врача.

Цель занятия: Знать: 1. Механизмы возникновения и проведения возбуждения по нервным волокнам, нейро-мышечным синапсам и мышцам. 2. Методы исследования процессов возбуждения в тканях и их клиническое примененение.

Перечень практических навыков по физиологии возбудимых тканей:

1. Рассчитывать и оценивать величину мембранного потенциала покоя, амплитуду ПД нервных и мышечных волокон.

2. Рисовать схемы графиков мембранных потенциалов возбудимых тканей.

3. Определять и рассчитывать порог деполяризации, скорость проведения возбуждения по этим структурам.

4. Рассчитывать и графически изображать типы сокращения мышц в зависимости от частоты их раздражения.

5. Объяснять механизмы сокращения и расслабления мышц, нервно-мышечной передачи возбуждения и влияние разных факторов на эти процессы.

6. Объяснять методику динамометрии и миографии, анализировать и оценивать результаты.

ТЕСТОВЫЕ ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ УРОВНЯ знаний:

1. Динамометрия – это метод измерения …. мышц

С. Амплитуды сокращения

2. Кистевая динамометрия – метод измерения силы мышц- …..

А. сгибателей кисти

В. разгибателей кисти

С. сгибателей спины

D. разгибателей спины

Е. сгибателей и разгибателей спины

3. Становая динамометрия – метод измерения силы мышц-…

А. сгибателей кисти

В. разгибателей кисти

С. сгибателей спины

D. *разгибателей спины

Е. сгибателей и разгибателей кисти

4. Средняя величина абсолютной мышечной силы кисти при динамометрии для мужчин составляют-:

5. Средняя величина абсолютной мышечной силы кисти при динамометрии для женщин составляют :

6. Показатель силы руки (ПСР) при динамометрии рассчитывают по формуле:

А. ПСР (%) = масса тела (кг) /абсолютная сила мышц (кг) х 100 %

В. ПСР (%) = относительная сила мышц (кг) х 100 % / масса тела (кг)

С. ПСР (%) = абсолютная сила мышц (кг) х 100 % / масса тела (кг)

D. ПСР (%) = масса тела (кг)*100 % / абсолютная сила мышц (кг)

Е. ПСР (%) = масса тела (кг)*100 % / относительная сила мышц (кг)

7. Средняя величина показателей силы руки (ПСР) при динамометрии у мужчин в % составляют:

8. Средняя величина показателей силы руки (ПСР) при динамометрии у женщин в % составляют:

9. Показатель снижения силы мышц (S) при динамометрии вычисляют по формуле:

10. Средний показатель силы мышц (Р) определяют по формуле:

Ответы: 1.А, 2.A, 3.D, 4.A, 5.B, 6.C, 7.A, 8.C, 9.A, 10.A.

1. При уменьшении запаса кальция в саркоплазматическом ретикулюме скелетной мышцы.

А. Длительность одиночого сокращения уменьшится

В. Длительность одиночного сокращения увеличится

С. Длительность одиночного сокращения не изменится

D. Возникнет только тетаническое сокращение

Е. Расслабление станет невозможным

2. Энергия АТФ в процессе сокращения мышечной клетки необходима для .

А. Скольжения нитей актина и миозина

В. Открытия активных центров актина

С. Выхода Са2+ из саркоплазматического ретикулума

D. Конформации тропониниа

Е. Конформации тропомиозина

3. Потенциал концевой пластинки при нервно-мышечной передаче возникает .

А. На постсинаптической мембране

В. На пресинаптической мембране

С. В синаптической щели

D. На саркоплазматическом ретикулюме

Е. На миофибриллах

4.В условиях действия на скелетную мышцу яда, угнетающего синтез АТФ, серия раздражений приведет к … концентрации Са 2+ в саркоплазме

С. не повлияет на концентрацию

D. снижению до 0

5. Гладкий тетанус скелетной мышцы возникает, если последующее раздражение попадает на .

А. Фазу укорочения предыдущего укрочения

В. Фазу розслабления предыдущего укорочения

С. Латентный период предыдущего укрочения

Е. Любой период предыдущего сокращения

6. Какую функцию выполняют интеграль­ные белки мембраны:

А. Определяют структурную целостность мембраны

B. Являются рецепторами мембраны

C. Образуют ионные насосы

D. Образуют ионные каналы

7.Если последующее раздражение скелетной мышцы попадает на фазу расслабления предыдущего укорочения сокращения, то .

А. Возникает зубчатый тетанус

В. Возникает гладкий тетанус

С. Возникает серия одиночных сокращений

D. Сокращения не возникают

Е. Это не влияет на сокращения

8. В процессе мышечного сокращения Са2+ вступает в связь с.

С. Активными центрами актина

D. Головкой миозина

Е. Саркоплазматическим ретикулюмом

9. Возбуждение в скелетной мышце.

А.Не распространяется с одного мышечного волокна на другое

В. Распространяется с одного мышечного волокна на другое

С. Распространяется с одного мышечного волокна только на расположенное рядом

D. Распространяется с мышечного волокна на нервные

Е. Не происходит

10. При уменьшении в мышечном волокне количества АТФ серия раздражений приведет к тому, что концентрация Са ++ в саркоплазме

D. Снизится до 0

Ответы: 1.А, 2.A, 3.A, 4.A, 5.B, 6.D, 7.A, 8.A, 9.A, 10.A

Ситуационные задачи:

1. Определите, сколько перехватов Ранвье находится между электродами, если известно, что возбуждение проходит это расстояние за 140 мсек.

2.
Нерв раздражается электрическими стимулами разной формы, показанной на рисунке. Укажите, при какой форме импульса порог раздражения будет наименьшим и объясните почему?

3. Объясните механизм и нарисуйте график изменения величины МПП при условии увеличения в околоклеточном пространстве концентрации ионов калия?

4. Объясните, как отразится нарушение синтеза АТФ на уровне электрических потенциалов возбудимой клетки? Нарисуйте график изменения величины МП.

5. Объясните, как изменится мембранный потенциал клетки, если поток натрия внутрь клетки увеличится, а количество калия останется прежним. Нарисуйте график изменения МП. Ответ: Произойдет деполяризация мембраны и снижение мембранного потенциала.

6. Объясните механизм изменения мембранного потенциаа нервного волокна если закрыть натриевые каналы? Нарисуйте график изменения МП.

7. Объясните, почему возбудимость нервных волокон выше, чем мышечных? Нарисуйте графики МП в нервном и мышечном волокне.

8. Объясните, как бы изменилась величина потенциала покоя, если бы клеточная мембрана была абсолютно непроницаема для ионов? Нарисуйте график изменения величины МП.

9. Объясните, что покажет гальванометр, если: А. микроэлектрод проколол мембрану; б)введен глубоко вглубь клетки? Нарисуйте графики МП в одном и другом случае.

10. Объясните, может ли какое-либо вещество повлиять на состояние нервной клетки, если это вещество не способно пройти через клеточную мембрану?

11. Под влиянием химического фактора в мембране клетки увеличилось количество калиевых каналов, которые могут активироваться при возбуждении. Объясните, как это скажется на потенциале действия и почему?

12. Объясните явление лабильности. Как определяют уровень лабильности и какой параметр используют как меру лабильности возбудимой ткани? У каких из перечисленных тканей лабильность выше или ниже и почему – миелиновые нервные волокна, безмиелиновые нервные волокна, мышечные волокна, химические синапсы?

13. Объясните механизм и нарисуйте изменение кривой ПД при замедлении процесса инактивации натриевых каналов?

14.
Объясните, почему гиперполяризация мембраны приводит к снижению уровня возбудимости? Нарисуйте примеры графиков.

15. На рисунке изображена серия потенциалов действия при длительном раздражении. Объясните, что произойдет с нервом, если нанести новое пороговое раздражение в период, отмеченным стрелкой? Как называется это явление, объясните его механизм ?

16. Порог раздражающего тока 3 в. Ткань раздражается током в 10 В, но возбуждения не возникает. В каком случае это может наблюдаться?

17. При измерении возбудимости сомы, дендритов и аксонального холмика нейрона получены следующие цифры: реобаза различных структур клетки оказалась равной 100 мв, 30 мв, 10 мв. Объясните, каким структурам соответствует каждый из параметров и почему?

18. Объясните, почему возбуждение, переходя в участок, соседний с возбужденным, не возвращается в уже пройденную точку? Ответ: В невозбужденном участке нормальная возбудимость, а в том, который был только что возбужден, возникает рефрактерность. Поэтому возбуждение не может вернуться обратно.

19. Известно, что суммарный потенциал действия нерва складывается из потенциалов действия одиночных нервных волокон, входящих в нерв. Экспериментально исследовали суммарный потенциал действия изолированного седалищного нерва, выделенного из крупного животного. Раздражение наносили на проксимальный конец нерва. На дистальном конце нерва суммарный потенциал имел сложную форму и состоял из нескольких пиков и волн. Амплитуда его значительно уменьшилась. Объясните: 1) С чем связано изменение формы суммарного потенциала действия по ходу проведения возбуждения в нерве? 2) Как диаметр нервного волокна и наличие миелина влияют на скорость проведения возбуждения? 3) Почему происходит уменьшение амплитуды суммарного потен­циала?

20. Нарисуйте кривую мышечного сокращения, обозначьте ее фазы и объясните, какие процессы протекают в мышце во время латентного периода при непрямом раздражении?

ответы к Ситуационным задачам:

1. Так как время перескока возбуждения через один межпере-хватный участок равен 0,07 мсек, то в данном случае таких участков 140 : 0,07 = 2000, а перехватов — на один больше, т. е. 2001.

2. Наименьший порог отмечается при прямоугольном стимуле раздражающего тока, так как при медленном нарастании тока из-за развития явлений аккомодации увеличивается пороговая сила.

3. МПП уменьшится, т.к. уменьшается K + - градиент и меньше ионов калия будет выходить из клетки.

4. При нарушении синтеза АТФ приводит к нарушению работы ионных насосов мембраны. В результате уменьшится или исчезнут натрий и калиевый градиенты. Клетка потеряет способность к возбужденю, уменьшится величина или исчезнет МПП. Уменьшится амплитуда или не возникнет ПД.

5. Произойдет деполяризация мембраны и снижение мембранного потенциала.

6. Мембранный потенциал увеличится (гиперполяризация) так как калиевый ток теперь не будет уменьшаться за счет противоположного тока натрия, как было до опыта.

7. В нерве и мышце разница между мембранным потенциалом и критическим уровнем деполяризации отличается: в нерве она меньше (20 мВ) в мышце - больше (40 мВ).

8. Потенциал покоя возникает за счет диффузии ионов калия из клетки в межклеточное пространство. Если бы мембрана была непроницаема для ионов, в том числе и для калия, то ПП был бы равен нулю.

9. В том и другом случае гальванометр покажет величину, рав­ную потенциалу покоя, так как он одинаков в любом участке клетки.

10. Если вещество может блокировать ионные каналы или повредить структурные компоненты мембраны, действуя снаружи, то состояние клетки изменится.

11. Увеличивается выход калия из клетки, увеличивается МПП, возбудимость клетки снизится, амплитуда ПД уменьшится.

12. 1. Лабильность определяют с помощью нанесения ритмических раздражений с увеличивающейся частотой и регистрацией процессов возбуждения или сокращения в исследуемой возбудимой ткани. 2. Мерой лабильности является максимальная частота раздражения, которую возбудимая ткань может воспроизвести без трансформации ритма. Мера лабильности обратно пропорциональна длительности рефрактерного периода. 3.Миелиновые нервные волокна обладают наибольшей лабильностью. Безмиелиновые нервные волокна имеют меньшую лабильность. Лабильность мышечных волокон еще меньше. Наименьшей лабильностью обладают синапсы, что связано с задержкой проведения возбуждения в синапсах.

13. Инактивация натриевых каналов полностью прекращает процесс деполяризации мембраны, и он сменяется реполяризацией, что приводит к восстановлению исходного уровня МП. Если инактивация замедляется, то будет затягиваться фаза деполяриза­ции, и это вызовет удлинение ПД.

14. При гиперполяризации возрастает разница между мем­бранным потенциалом и критическим уровнем деполяризации. При этом для того, чтобы возникло возбуждение, необходима большая сила раздражения.

15. Нерв не возбудится, так как в это время в результате суммации положительных следовых потенциалов мембрана находится в состоянии гиперполяризации, что сопровождается снижением возбудимости. Это явление называется посттетаническим торможением (торможением вслед за возбуждением).

16. Если время действия раздражающего тока будет очень коротким (см. кривую Гоорвега — Вейса).

17. Дендрит имеет реобазу 100 мв, сома — 30 мв, аксонный холмик 10 мв.

18. В невозбужденном участке нормальная возбудимость, а в том, который был только что возбужден, возникает рефрактерность. Поэтому возбуждение не может вернуться обратно.

19. 1. Расслоение суммарного потенциала действия на отдельные вол­ны связано с различной скоростью проведения возбуждения в волокнах, образующих нерв. 2. Скорость проведения возбуждения больше в миелиновых во­локнах с большим диаметром. 3. Амплитуда суммарного потенциала уменьшается вследствие уменьшения количества нервных волокон на дистальном конце нерва, что связано с ответвлениями от нерва нервных волокон по ходу его длины.

20. Раздражение называется непрямым, если оно производится через нерв, подходящий к мышце. От момента раздражения нерва до момента начала мышечного сокращения происходят следующие события: Возбуждение нерва — движение возбуждения по нерву — возбуждение пресинаптической мембраны — выделение медиатора — возбуждение постсинаптической мембраны — возбуждение мембраны мышечного волокна — движение возбуждения по мышечному волокну — электро-механическое сопряжение — активация актомиозинового комплекса — сокращени

Содержательный модуль 3.

Последнее изменение этой страницы: 2016-08-10; Нарушение авторского права страницы

Кафедра физиологии

СИТУАЦИОННЫЕ

ЗАДАЧИ И УПРАЖНЕНИЯ

ПО ФИЗИОЛОГИИ

Для студентов медицинских ВУЗов

Красноярск, 2009 г.

Задачи и упражнения по физиологии (для студентов медвузов). КрасГМА . - Красноярск, 2009.- 270 с.

В учебном пособии собраны более 1200 задач и упражнений по всем разделам нормальной физиологии и развернутые их решения. Пособие предназначено ля студентов всех факультетов медицинских Вузов и направлено на оптимизацию учебного процесса и контроля знаний на всех этапах обучения. Издание второе, исправленное и дополненное. Кроме оригинальных задач, составленных коллективом кафедры физиологии КрасГМА, в сборник включены некоторые задачи, заимствованные из пособий и учебников, ранее изданных другими авторами, о чем в тексте сборника имеются обязательные ссылки. Эти авторы включены в состав авторского коллектива данного издания.

Редактор - проф. Ю.И. Савченков

Авторы задач и упражнений:

Савченков Ю.И. Медведев В.С., Пац Ю.С., Солдатова О.Г., Михайлова Л.А., Мальцева Е.А., Чеснокова Л.Л., Толмачева, Трегубчак, П.Н. Т.В., Косицкий Г.И., Милютина Л.А., Судаков К.В., Волков В.Ф., Смирнов В.М..

- доктор мед. наук, профессор С.Н. Шилов

- академик РАМН, профессор М.А. Медведев

Введение

Задачи и упражнения по физиологии для медицинских институтов преследуют цель помочь студенту освоить программный материал по курсу нормальной физиологии в наиболее интересной и оптимальной форме, В данное пособие включены задачи упражнения четырех типов: охватывающие все необходимые уровни усвоения материала. Типы эти следующие:

1. Задачи по узнаванию, расшифровке и анализу различных кривых (ЭЭГ, ЭКГ, АД, артериальной осциллограммы, сфигмограммы и т.д.).

2. Задачи логические, ответы на которые строятся на основе знания современных физиологических представлений (типа: что будет, если. ).

3. Задачи цифровые, требующие точных знаний определенных физиологических параметров, формул и методов расчетов.

4. Задачи диагностические, включающие определение и оценку имеющихся сдвигов в заданной сумме анализов (параметров).

5. Задачи ситуационные, в которых задается определенная физиологическая ситуация, которую требуется разрешить, используя свои знания по предмету.

Данное издание существенно переработано и дополнено новыми упражнениями и задачами по сравнению с пособием 2007 года. Часть задач и упражнений составлена с учетом особенностей детского возраста и предназначены для студентов педиатрического факультета.

В данный вариант сборника задач включены, кроме собственных, задачи и упражнения, составленные и ранее опубликованные другими авторами, поэтому, это Пособие является, по существу, альманахом, в котором собраны наиболее интересные задачи и упражнения, которые используются в ходе учебного процесса на кафедре физиологии КрасГМА.

При составлении учебного пособия составители старались сочетать элементы занимательности с клинической направленностью. Приближение ряда задач к клинической практике дает возможность развивать у студентов навыки клинического мышления.

По своей сути и целям пособие является программированным руководством, направленным на оптимизацию учебного процесса на кафедре нормальной физиологии. Оно имеет две части. В первой изложены условия задач упражнений, во второй - даны развернутые на них ответ. Последние позволяют студенту проверить правильность своих рассуждений при решении той или иной задачи или упражнения.

Исследования, проведенные на кафедре физиологии КрасГМА с момента выхода первого и второго издания задачника показали, что решение задач и упражнений лучше всего использовать во время опроса, особенно в конце теоретической части занятия для закрепления материала, а также как домашние задания. Опят показывает, что студенты охотно занимаются разбором задач и упражнений. Целесообразно обсудить ход решения каждой задачи или упражнения вместе со всем коллективом группы, в заключение предложив для решения другую задачу того же типа. Студент может сам, решая задачи дома, проверить правильность решения, прочитав ответ во второй части пособия.

Для работы в учебной комнате удобно иметь набор карточек с текстами задач и упражнений. Эти карточки раздаются студентам перед занятием, а ответы обсуждаются в ходе опроса.

На экзаменах решение задач и упражнений позволяет вывить способность студентов логически мыслить, применять свои знания для решения необычных вопросов, принимать самостоятельные решения в модельных ситуациях, проверить их память и сообразительность.

Распределение задач и упражнений по отдельным темам и занятиям осуществляется преподавателем в зависимости от содержания и цели занятия, необходимости повторения пройденного материала, уровня усвоения теоретического материала студентами, наличия времени для решения задач. Число задач, которое дается каждому студенту, определяется его индивидуальными способностями, наклонностями к устным или письменным ответам, способностью к абстрагированию и общей успеваемостью.

Работа по составлению задач, упражнений и кроссвордов может быть одной из действенных форм учебно-исследовательской работы студентов (УИРС).

Часть 1. ЗАДАЧИ И УПРАЖНЕНИЯ

ОБЩАЯ ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ

1-1. Как изменится мембранный потенциал, если поток натрия внутрь клетки увеличится, а количество калия останется прежним?

1-2. Как изменится мембранный потенциал нервного волокна, если закрыть натриевые каналы?

1-3. Как изменится мембранный потенциал, если заблокировать работу Nа-K-зависимой АТФ-азы?

1-4. Порог раздражающего тока 3 в. Ткань раздражается током в 10 в., но возбуждения не возникает. В каком случае это может наблюдаться?

1-5. Возникает ли распространяющееся возбуждение в нерве, если известно, что мембранный потенциал равен 90 мв., критический уровень деполяризации на 30% ниже, а раздражающий ток сдвигает мембранный потенциал в одном случае на 10 мв., в другом - на 30 мв.?

1-6. Как изменится возбудимость ткани, если при гиперполяризации мембраны критический уровень деполяризации остается прежним?

1-7. Как изменится возбудимость ткани, если мембранный потенциал вырос на 20%, а критический уровень деполяризации - на 30%? Исходные величины : Ео=90 мв., Ек = 60 мв.

1-8. В результате длительного раздражения постоянным током критический уровень деполяризации (Ек) упал на 20%. Величина деполяризации - 10% от уровня мембранного потенциала (Ео). Исходные величины Ео = 100 мв7, Ек=70 мв. Как изменится возбудимость нерва в данном случае?

1-9. Каким образом и на какую величину должен сдвинуться критический уровень деполяризации, чтобы на аноде возникло возбуждение при размыкании постоянного тока, который увеличит Ео на 10 мв.? Принять Ео =100 мв., Ек = 70 мв.

1-10. Порог раздражения под анодом при размыкании 2 в. Сократится ли мышца при замыкании и размыкании, если раздражать нервно-мышечный препарат восходящим током в 1,9 в.?

1-11. Реобаза размыкательного удара 3 в. Нерв раздражается током в 10 в. Направление тока нисходящее. Что произойдет с мышцей при размыкании цепи раздражающего тока?

1-12. Нерв между раздражающими электродами перевязан. При действии тока мышца данного нервно-мышечного препарата сокращалась только в момент замыкания. Какой электрод находится ближе к мышце?

1-13. Какой электрод находится ближе к мышце, если при действии сильного тока сокращение возникает только при замыкании?

1-14. Схема какого процесса приведена ниже? Добавьте недостающие звенья.

Раздражение нерва ---- ? ----- вход Na внутрь клетки ----- ? --- генерация ПД и перезарядка мембраны --- ? --- увеличение К - проницаемости ----- реполяризация мембраны----- активация Na-K-зависимой АТФ-азы --- - восстановление мембранного потенциала.

1-15. Мембранный потенциал нервного волокна равен 100 мв. Критический уровень деполяризации отличается от мембранного потенциала на 30%. Какова реобаза нерва, если 1 в. раздражающего тока сдвигает Ео на 5 мв.?

1-16. Постройте кривую силы-длительности по следующим данным и определите ориентировочные параметры возбудимости данной ткани:

0,5 в 1000 мсек 1,0 в 80 мсек 1,2 в 40 мсек

2,0 в 25 мсек 3,0 в 10 мсек 4,0 в 9 мсек

1-17. Правильно и представлена последовательность событий, которые приводят к возбуждению нерва? Под каким электродом это происходит?

Пассивная деполяризация ---- усиление потока Na в клетку ---- повышение натриевой проницаемости ---- локальный ответ ---- активная деполяризация ---- потенциал действия.

1-18. Нерв раздражается электрическими стимулами разной формы:

Укажите, при какой форме импульса порог раздражения будет наименьшим и почему?

1-19. Нарисуйте кривые тока действия при следующих методах отведения:

1-21. Изменится ли величина потенциала покоя, если искусственно снизить на 30% концентрацию ионов К внутри нервного волокна?

1-23. Какая из структур, указанных на схеме ( А,Б,С,Д), обладает повышенной химической чувствительностью. Замените буквы обозначениями.

1-28. Добавьте недостающие звенья в цепи следующих процессов:

Нервный импульс --- высвобождение ацетилхолина --- ? --- повышение ионной проницаемости постсинаптической мембраны --- ? --- возникновение ПД и распространение его по мышечному волокну.

1-39. Перед Вами два нерва. Как будет проходить по ним возбуждение, если нарушить целостность мембраны в указанных участках? Раздражение наносится в точку А.

1-40. Сколько времени потребуется на регенерацию нерва, если его длина до травмы была равна 45 см.? Скорость регенерации принять за 3 мм/сутки. Нерв перерезан на границе верхней и средней его трети.

1-41. Каким будет время проведения возбуждения по нерву типа А, если расстояние между раздражающими и регистрирующими электродами 10 см.?

1-42. Каким будет время проведения возбуждения по волокну типа В, если расстояние между раздражающими и отводящими электродами равно 8 см.?

1-43. Через какое время волна возбуждения достигнет отводящих электродов, если они наложены на нервное волокно типа С на расстоянии 5 см. от раздражающих электродов.

1-44. К какому типу относится нервное волокно, если при межэлектродном расстоянии в 5 см. время проведения возбуждения равно 0,05 сек.?

1-46. Каково время проведения возбуждения по мякотному волок ну, если между отводящими и регистрирующими электродами находится 15 перехватов Ранвье?

1-47. Определите, сколько перехватов Ранвье находится между электродами, если известно, что возбуждение проходит это расстояние за 140 мсек.

1-48. Определите центральное время рефлекса в сложной рефлекторной дуге, если в ее составе 15 синапсов (без учета времени распространения возбуждения по нервам).

1-49. Сколько синапсов входит в состав центральной части рефлекторной дуги рефлекса, если его центральное время равно 100 миллисекундам?

1-50. Параметры возбудимости ткани: реобаза, хронаксия, лабильность. Все ли параметры перечислены?

1-51. Что покажет гальванометр, если: а) микроэлектрод проколол мембрану; б) введен глубоко вглубь клетки?

1-52. Если бы клеточная мембрана была абсолютно непроницаема для ионов, как бы изменилась величина потенциала покоя?

1-53. Яд тетродотоксин блокирует электроуправляемые ионоселективные натриевые каналы мембраны возбудимой клетки. Как изменится мембранный потенциал (МП) нервного волокна, если подействовать на него тетродотоксином? Повлияет ли тетродотоксин на проведение возбуждения по данному волокну?

1-54. При нанесении алкалоида батрахотоксина на нервную клетку в эксперименте существенно увеличивается проницаемость плазматической мембраны для натрия. Как изменяется величина мембранного потенциала покоя (МП) нервной клетки при действии батрахотоксина?

1-55. Гигантский аксон кальмара поместили в среду, которая по своему составу соответствовала межклеточной жидкости. При раздражении в аксоне возник ПД. Затем концентрацию ионов натрия в среде уравняли с их концентрацией в аксоне и повторили раздражение. Что обнаружили?

1-56. Как изменится кривая ПД при замедлении процесса инактивации натриевых каналов?

1-57. Порог раздражения одной возбудимой структуры – 10 мв, другой – 50 мв. Какой показатель соответствует нервному волокну? Почему возбудимость нервных волокон отличается от соответствующего показателя мышечных?

1-58. Почему гиперполяризация мембраны приводит к снижению возбудимости?

1-59. Что произойдет с нервной клеткой, если ее обработать цианидами?

1-60. Нерв раздражают с частотой 10, 100 и 1000 раз в секунду. Сколько ПД будет возникать в каждом случае?

1-61. Концентрацию ионов натрия внутри нервной клетки повысили. Как это повлияет на возникновение ПД?

1-62. Может ли какое-либо вещество повлиять на состояние нервной клетки, если это вещество не способно пройти через клеточную мембрану?

1-63. Если обработать нерв протеолитическими ферментами, то пострадают ли при этом механизмы, связанные с генерацией ПД?

1-64. Два человека случайно подверглись кратковременному действию переменного тока одинаково высокого напряжения, но разной частоты. В одном случае частота тока составляла 50 гц, в другом - 500000 гц. Один человек не пострадал, другой получил электротравму. Какой именно?

1-65. Может ли воздействие на человека высокочастотного тока, который не вызывает возбуждения из-за кратковременности действия каждого колебания тока, вызвать, тем не менее, патологический эффект?

1-66. Почему возбуждение, переходя в участок, соседний с возбужденным, не возвращается в уже пройденную точку?

(Задачи №№ 1-67 – 1- 72 из Сборника задач под ред. Г.И. Косицкого [ 1 ])


1-67. Назовите фазы потенциала действия, обо­значенные на рисунке цифрами. Какова величина мембранного потен-циала? Какова величина реверсии? Чему равна амплитуда потенциала действия?


1-68. Рассмотрите, представ­ленную на рисунке схему изменения МП нервного волокна при про­хождении через него постоянного тока. Где изображены изменения МП, происходящие под ка­тодом, а где под анодом? Какие явления наблюдаются под катодом в зависимо­сти от силы раздражающего тока? Какие изменения наблюдаются под анодом при возра­стающих силах раздражения?

1-70. Назовите фазы потенциала действия. Сопоставьте фазы потенциала дейст­вия с периодами изменений возбудимости, обозначенными буквами

1-73. В эксперименте на гигантском аксоне кальмара проводится внутриклеточная регистрация потенциалов действия (ПД) нервного волокна. Затем волокно обрабатывается препаратом, замедляющим переход электроуправляемых натриевых каналов в закрытое состояние. Как при этом изменится форма кривой ПД?

1-74. Фазы потенциала действия (ПД): быстрая деполяризация и Реполяризация возникают вследствие движения ионов натрия и калия вдоль концентрационных градиентов и не требуют непосредственной затраты энергии. В эксперименте на нервное волокно, находящееся в установке, обеспечивающей его длительную жизнедеятельность, подействовали уабаином – веществом, подавляющим активность АТФ-азы. Изменится ли с течением времени передача ПД по обработанному уабаином нервному волокну?

Дата добавления: 2018-04-05 ; просмотров: 607 ;

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.