Нервная система учебный материал

Центральная нервная система: анатомия и физиология

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

Печатается по решению редакционно-издательского совета Южного федерального университета (протокол № 4 от 05 мая 2016 г.)

доктор биологических наук, профессор, зав. кафедрой физиологии Томского государственного университета Ю. В. Бушов;

доктор психологических наук, профессор Академии психологии и педагогики Южного федерального университета Е. В. Воробьева

Создание этого учебника продиктовано тенденцией вузов к укрупнению учебных дисциплин. В прежние года в России было издано много учебников по Анатомии ЦНС и Физиологии ЦНС. Однако объединение этих предметов в рамках одного курса потребовало коренной переработки изучаемого материала. В учебнике мы попытались в относительно сжатой форме дать представления обо всех основных вопросах, касающихся строения и функционирования центральной нервной системы. Большое число иллюстраций призвано облегчить восприятие и усвоение изучаемого материала.

Строение различных мозговых структур дается во взаимосвязи с их функциональными особенностями. Самостоятельные главы учебника посвящены вопросам общей структурной и функциональной организации ЦНС, а также вопросам объединения нервных центров в функциональные системы.

Структура учебника фактически отражает модульную структуру курса. Материал разбит на 4 главы (по числу модулей дисциплины). Каждая глава, помимо изучаемого материала, включает вопросы для самоконтроля, темы самостоятельных работ, а также латинские названия основных структурных элементов ЦНС.

Мозг – самое удивительное образование природы и самая величайшая загадка. Как полтора килограмма сероватой желеобразной массы, поражаю щей своей неупорядоченностью, способны не только вмещать весь мир, но и преобразовывать его?

Нервная система занимает в организме особое положение. В эволюции она возникает с появлением многоклеточных животных, и именно она объединяет различные системы в то, что мы называем организмом.

Возможно, первым, кто высказал мысль о связи человеческой психики с мозгом, был римский врач Гален (II век до н. э.). Однако систематическое изучение нервной системы начинается фактически лишь в средние века. Анатомические исследования обнаруживают в головном мозге полости, и это подталкивает монаха и философа XVI века Грегора Рейша к мысли, что вместилищем души являются желудочки мозга, а не сердце.

Появление и развитие новых технологий обогащает науку о мозге все новыми методами ее исследования.

Изучение строения центральной нервной системы (ЦНС) предполагает фиксацию нервной ткани и ее окрашивание различными способами, позволяющими дифференцировать серое и белое вещество, а также прослеживать направление связей между нервными центрами. Все более информативными становятся методы клеточной морфологии.

Изучение функционирования нервной системы предполагает использование как минимум двух операций: воздействия на мозг и регистрации результатов этого воздействия.

Один из видов воздействий вызывает угнетение мозговых функций и выражается либо в искусственном разрушении или временном выключении определенных структур ЦНС (у животных), либо в травматических или органических поражениях отделов мозга (у человека). В этом случае в качестве реакций регистрируются изменения поведения и психики.

Другой вариант воздействий направлен на активацию мозговых структур. Это может быть достигнуто прямой стимуляцией нервных центров (у животных), воздействием на органы чувств, либо решением определенной задачи. Регистрируются поведенческие, электрические или томографические (у человека) реакции.

Все больший вклад в изучение ЦНС вносят нейрохимия, нейрогенетика и нейрокибернетика.

Итак, мы приступаем к изучению уникальной системы организма, которая имеет вход (рецепторы и формируемые ими пути), выход (нейроны, направляющие волокна к мышцам и железам) и то, что находится между ними и определяет всю нашу жизнь.

По топографическому принципу нервная система подразделяется на центральную и периферическую. Периферическая система распределена по всему организму, центральная заключена в костные образования скелета и покрыта тремя мозговыми оболочками. К периферической системе относят ганглии (скопления нервных клеток за пределами центральной нервной системы) и нервы (собранные вместе аксоны – длинные отростки нейронов). Центральная нервная система состоит из нервных центров в виде скоплений нейронов и проводящих путей, соединяющих эти центры. Деление на центральную и периферическую части условно, поскольку нервная система в функциональном отношении едина.


Рис. 1. Центральная нервная система

ЦНС анатомически делится на спинной мозг и головной мозг (рис. 1). Спинной мозг располагается внутри костного канала – позвоночника – и состоит из морфологически однородных сегментов. Головной мозг заполняет черепную коробку и неоднороден по строению и функциям.


Рис. 2. Отделы головного мозга (сагиттальный срез).

Спинной мозг и все отделы головного мозга имеют полости, заполненные цереброспинальной жидкостью. Эта жидкость содержит биологически активные вещества и участвует в обменных процессах. Наполнение полостей этой жидкостью определяет величину внутримозгового давления.

Нервная ткань состоит из клеток двух типов: нервных и глиальных. Нервные клетки выполняют специфические для нервной системы функции, глиальные клетки (нейроглия) выполняют вспомогательные функции (опорная, трофическая и защитная), обеспечивая нормальное функционирование нейронов. При этом глиальных клеток примерно в 10 раз больше, чем нервных, и они заполняют пространство между нейронами. Глиальные клетки, в отличие от нейронов, способны делиться в течение всей жизни.

Нервная клетка состоит из сомы (тело клетки) и отходящих от нее отростков (рис. 3). Размер сомы у разных нейронов может отличаться в десятки раз: от 5 до 150 мкм. Сома заполнена цитоплазмой, в которой располагаются ядро клетки и органеллы. От тела отходят многочисленные короткие ветвящиеся отростки, которые называются дендриты, а также один длинный отросток, который называется аксон. Дендриты представляют собой короткие трубчатые выросты толщиной менее 1 нм. Диаметр аксона составляет у разных клеток от 1 до 6 мкм, а длина может достигать метра и более. На своем конце аксон делится на множество ответвлений – аксонных терминалей, каждая из которых заканчивается утолщением – синаптической бляшкой. Синаптической бляшкой аксонная терминаль контактирует с дендритом или сомой другого нейрона, образуя межклеточный контакт – синапс.

Тело клетки и ее отростки покрыты типичной для всех клеток организма оболочкой. Эта мембрана представляет собой липопротеидную пластинку толщиной 5–6 нм (рис. 4). Большая часть мембраны образована двумя слоями липидных молекул, которые гидрофильными концами направлены друг к другу, а гидрофобными обращены к внутренней и наружной ее поверхности. Липидные слои обеспечивают барьерную функцию мембраны – защищают клетку и поддерживают ее форму. В липидную пластинку встроены молекулы белков, которые выполняют транспортную и рецепторную функцию. Первая определяет состав веществ внутри клетки, вторая – специфическую чувствительность клетки к медиаторам, гормонам, антигенам и другим клеткам.


Рис. 3. Строение нервной клетки


Рис. 4. Липопротеидная мембрана нейрона.1 – двойной слой липидов, 2 – белковые молекулы

Нервные клетки классифицируются по характеру отростков на 4 типа (рис. 5): мультиполярные, биполярные, псевдоуниполярные и униполярные. Самыми распространенными являются мультиполярные клетки – типичные для ЦНС нейроны. Они состоят из тела, дендритного дерева и аксона. Биполярный нейрон имеет продолговатое тело, с одной стороны которого отходит дендрит, а с другого – аксон. Такие клетки встречаются лишь в сетчатке глаза, а также в слуховом и вестибулярном ганглиях. Псевдоуниполярные нейроны формируют спинальные ганглии (утолщения задних корешков спинномозговых нервов). От шарообразного тела такой клетки отходит один отросток, который Т-образно делится на две ветви: одна направляется к периферии, другая входит в спинной мозг. Такого же типа нейроны располагаются в чувствительных ядрах черепномозговых нервов.


Рис. 5. Типы нейронов

Униполярные клетки характерны тем, что от шарообразного тела отходит лишь один отросток с терминалями. Эти клетки типичны для нервной трубки зародыша. У взрослого человека они сохраняются только в мезэнцефалическом ядре тройничного нерва (обеспечивают проприоцептивную чувствительность жевательных мышц).

Мембрана аксона, в отличие от сомы и дендритов, как правило, дополнительно покрыта миелиновой оболочкой, которую формируют особые глиальные клетки – олигодендроциты (Шванновские клетки) (рис. 6). Эта оболочка придает аксонам беловатый оттенок. Тела клеток и дендриты не имеют такой оболочки и окрашены в серый цвет (под цвет мембраны). Поэтому на срезах нервной ткани имеются участки, окрашенные в белый и серый цвета. На основании этого все вещество ЦНС делится на белое и серое. Серое вещество – это скопления тел нейронов с их дендритными деревьями. Они образуют нервные центры. Белое вещество – это скопления аксонов. Они образуют проводящие пути между нервными центрами. За пределами ЦНС проводящие пути представлены нервами. ЦНС взаимодействует с органами и тканями с помощью 31 пары спинномозговых нервов и 12 пар черепномозговых нервов.


Рис. 6. Формирование миелиновой оболочки

Все проводящие пути делятся на афферентные и эфферентные. Афферентные (приносящие) пути представлены волокнами, направляющимися с периферии в ЦНС, а также восходящими связями в пределах ЦНС. К эфферентным (выносящим) путям относятся нисходящие связи ЦНС и нервные волокна, направляющиеся из ЦНС к исполнительным органам.

Все структуры ЦНС имеют парную организацию, то есть представлены в обеих половинах мозга. При этом реализуется контралатеральный принцип иннервации: левая половина мозга связана с правой половиной тела, а правая половина мозга – с левой. Исключение составляют задний и продолговатый мозг. Здесь иннервация носит ипсилатеральный характер.

Филогенез – это эволюционное развитие. У животных нервная система формируется с появлением многоклеточных организмов, когда возникает необходимость согласованного функционирования различных клеток. Фактически именно нервная система связывает все клетки организма в единое целое. Считается, что в ходе эволюции нервная система проходит 3 основных этапа своего развития: 1) диффузная; 2) узловая; 3) трубчатая нервная система (рис. 7).


Рис. 7. Эволюция нервной системы.

А – диффузная, Б – узловая, В – трубчатая

Итак, первым этапом эволюционного развития нервной системы является диффузная (сетчатая) нервная система. На этой стадии все нервные клетки однородны по своим функциям, их отростки не специализированы, а сама нервная система представляет собой однородную сеть. Одним из обладателей диффузной нервной системы является гидра (представитель кишечнополостных) (рис. 8).


Рис. 8. Пример диффузной нервной системы (гидра)

Функционирование такой нервной системы весьма примитивно: возбуждение, возникающее в локальном участке нервной сети, распространяется и охватывает всю сеть. В результате реакция на любое раздражение всегда одинакова – общее сокращение тела.

Обладателями узловой нервной системы являются высшие беспозвоночные. На этом этапе эволюционного развития нервной системы происходит специализация нервных клеток. Появляются чувствительные, вставочные и двигательные нейроны. Чувствительные (афферентные) нейроны получают сигналы об изменениях среды и передают эту информацию вставочным нейронам. Вставочные нейроны (интернейроны) обрабатывают полученную информацию, а результаты обработки передают двигательным нейронам. Двигательные (эфферентные) нейроны формируют и посылают команды исполнительным структурам, обеспечивающим реагирование на изменения среды.


Рис. 9. Пример узловой нервной системы (высшие черви)

Появление в передней части тела органов чувств способствует большему развитию передних ганглиев, поскольку обработка сенсорной информации требует дополнительных нервных ресурсов. Наивысшего развития узловая нервная система достигает у насекомых (рис. 10).


Рис. 10. Нервная система насекомых

Наиболее совершенной по своей организации считается трубчатая нервная система. Ее обладателями являются хордовые. Возникновение трубчатой нервной системы связывают с появлением внутреннего скелета и, как следствие, нового двигательного аппарата. Развитие трубчатой нервной системы проходит в несколько этапов. Сначала появляется метамерная нервная трубка с сегментарными нервами (у ланцетника). Это так называемый туловищный мозг, который у позвоночных преобразуется в спинной мозг. Между его сегментами формируются собственные связи спинного мозга. Развитие органов чувств ведет к преимущественному развитию передней части трубки (цефализация) и появлению головного мозга. Этот процесс сопровождается формированием двусторонних связей между спинным и головным мозгом – спинной мозг становится проводником афферентных и эфферентных сигналов.

В головном мозге формируется 3 отдела: задний, средний и передний мозг. Задний мозг развивается под влиянием рецепторов акустики и статики, средний – под влиянием зрительных рецепторов, передний мозг формируется как субстрат анализа обонятельных сигналов. Задний мозг делится на продолговатый мозг и собственно задний мозг. Продолговатый мозг становится переходным отделом от спинного мозга к головному. Из заднего мозга развиваются мозжечок и Варолиев мост. Передний мозг делится на промежуточный и конечный. Конечный мозг увеличивается за счет роста и развития полушарий. Важным этапом развития полушарий является появление у рептилий новой коры, которая получает прогрессивное развитие у млекопитающих.

Таким образом, главное правило филогенеза центральной нервной системы можно сформулировать так: с каждым этапом эволюции возникают новые вышележащие нервные центры, функционально подчиняющие себе старые.

Онтогенез – это индивидуальное развитие. Онтогенез делится на пренатальный (внутриутробный) и постнатальный (послеродовой).

Зачатком нервной системы является мозговая трубка. Она формируется из соединительной ткани (рис. 11).


Рис. 11. Формирование мозговой трубки зародыша

Ее задняя часть образует зачаток спинного мозга, а передний конец путем перетяжек разделяется на 3 первичных мозговых пузыря: передний, средний и задний (рис. 12).


Рис. 12. Первичные мозговые пузыри

В последующем в переднем и заднем пузырях возникают новые перетяжки (рис. 13). В результате из переднего мозгового пузыря образуется два отдела: конечный мозг и промежуточный мозг, из среднего пузыря формируется средний мозг, а из заднего образуются задний мозг и добавочный мозг. Добавочный мозг развивается в продолговатый мозг.


Рис. 13. Дифференциация мозговых пузырей

Интенсивный прирост массы мозга начинается со второго месяца внутриутробного развития (рис. 14).

На пятом месяце начинается миелинизация аксонов, и появляются первые синапсы. Головной мозг новорожденного весит 300–400 граммов. К 8-му месяцу постнатального развития вес мозга удваивается, а к 4–5 годам – утраивается. Ствол мозга принимает окончательный вид к 5 годам. К этому же возрасту завершается миелинизация аксонов. Форма и размер борозд и извилин полушарий наиболее интенсивно меняется на первом году жизни, и этот процесс завершается примерно к 5 годам. Человек рождается с готовым набором нейронов, и в течение жизни их число может только снижаться. Масса и размер мозга ребенка увеличиваются благодаря увеличению числа отростков нейронов и их миелинизации, а также за счет развития нейроглии.


Рис. 14. Пренатальный онтогенез головного мозга

Словарь латинских терминов

сагиттальная (вдоль структуры параллельно средней линии) – sagittalis

фронтальная (поперек структуры) – frontalis

СЧАСТЬЕ ЕСТЬ! Философия. Мудрость. Книги.

1.1. История анатомии ЦНС
1.2. Методы исследования в анатомии
1.3. Анатомическая терминология

Анатомия человека — наука, изучающая строение человеческого организма и закономерности развития этого строения.
Современная анатомия, являясь частью морфологии, не только исследует строение, но и старается объяснить принципы и закономерности формирования определенных структур. Анатомия центральной нервной системы (ЦНС) является частью анатомии человека. Знание анатомии ЦНС необходимо для понимания связи психологических процессов с теми или иными морфологическими структурами как в норме, так и при патологии.

1.1. История анатомии ЦНС
Уже в первобытные времена существовало знание о расположении жизненно важных органов человека и животных, о чем свидетельствуют наскальные рисунки. В Древнем мире, особенно в Египте, в связи с мумификацией трупов, были описаны некоторые органы, но их функции представлялись не всегда правильно.

Анатомы эпохи Возрождения добились разрешения на проведение вскрытий. Благодаря этому были созданы анатомические театры для проведения публичных вскрытий. Зачинателем этого титанического труда явился Леонардо да Винчи, а основоположником анатомии как самостоятельной науки— Андрей Везалий (1514-1564). Андрей Везалий изучал медицину в Сорбоннском университете и очень скоро осознал недостаточность существовавших тогда анатомических знаний для практической деятельности врача. Положение осложнялось запретом церкви на вскрытие трупов - единственный источник изучения человеческого тела в то время. Везалий, несмотря на реальную опасность со стороны инквизиции, систематически изучал строение человека и создал первый действительно научный атлас человеческого тела. Для этого ему приходилось тайком выкапывать свежезахоронеиные трупы казненных преступников и на них проводить свои исследования. При этом он разоблачил и устранил многочисленные ошибки Галена, чем заложил аналитический период в анатомии, в течение которого было сделано множество открытий описательного характера. В своих трудах Везалий уделил основное внимание планомерному описанию всех органов человека, в результате чего ему удалось открыть и описать много новых анатомических фактов (рис. 1.1).

Рис. 1.1. Рисунок вскрытого мозга из атласа Андрея Везалия (1543 г.):

За свою деятельность Андрей Везалий подвергся преследованию со стороны церкви, был отправлен на покаяние в Палестину, попал в кораблекрушение и умер на острове Занте в 1564 г.

После работ А. Везалия анатомия стала развиваться более быстрыми темпами, кроме того, церковь уже не так жестко преследовала вскрытие трупов врачами и анатомами. В результате изучение анатомии стало неотъемлемой частью подготовки врачей во всех университетах Европы (рис. 1.2).

Рис. 1.2. Рембрандт Харменс ван Рейн. Урок анатомии доктора Тульпа (конец XVII века):

Попытки связать анатомические структуры с психической деятельностью породили в конце XVIII века такую науку, как френология. Ее основатель, австрийский анатом Франц Галь, пытался доказать наличие жестко определенных связей между особенностью строения черепа и психическими особенностями людей. Однако спустя некоторое время объективные исследования показали необоснованность френологических утверждений (рис. 1.3).

Следующие открытия в области анатомии ЦНС были связаны с совершенствованием микроскопической техники. Сначала Август фон Валлер предложил свой метод валлеровской дегенерации, позволяющий прослеживать пути нервных волокон в организме человека, а затем открытие новых способов окрашивания нервных структур Э. Гольджи и С. Рамон-и-Кахалом позволило выяснить, что помимо нейронов в нервной системе существует еще огромное количество вспомогательных клеток — нейроглий.

Вспоминая историю анатомических исследований ЦНС, следует отметить, что такой выдающийся психолог, как Зигмунд Фрейд, начинал свою карьеру в медицине именно как невролог — т. е. исследователь анатомии нервной системы.

В России развитие анатомии было тесно связано с концепцией нервизма, провозглашающей преимущественное значение нервной системы в регулировании физиологических функций. В середине XIX века киевский анатом В. Бец (1834-1894) открыл в V слое коры головного мозга гигантские пирамидные клетки (клетки Беца) и выявил различие в клеточном составе разных участков мозговой коры. Тем самым он положил начало учению о цитоархитектонике мозговой коры.

Крупный вклад в анатомию головного и спинного мозга внес выдающийся невропатолог и психиатр В. М. Бехтерев (1857-1927), который расширил учение о локализации функций в коре мозга, углубил рефлекторную теорию и создал анатомо-физиологическую базу для диагностики и понимания проявлений нервных болезней. Кроме того, В. М. Бехтерев открыл ряд мозговых центров и проводников.

В настоящее время фокус анатомических исследований нервной системы из макромира переместился в микромир. Ныне наиболее значительные открытия совершаются в области микроскопии не только отдельных клеток и их органоидов, но и на уровне отдельных биомакромолекул.

1.2. Методы исследования в анатомии
Все анатомические методы можно условно разделить на макроскопические, которые изучают весь организм целиком, системы органов, отдельные органы или их части, и на микроскопические, объектом которых являются ткани и клетки организма человека и клеточные органеллы. В последнем случае анатомические методы смыкаются с методами таких наук, как гистология (наука о тканях) и цитология (наука о клетке) (рис. 1.4).

Рис. 1.4. Основные группы методов исследования морфологии ЦНС:

В свою очередь, макроскопические и микроскопические исследования состоят из набора различных методических приемов, позволяющих изучать различные аспекты морфологических образований в нервной системе в целом, в отдельных участках нервной ткани или даже в отдельном нейроне. Соответственно, можно выделить набор макроскопических (рис. 1.5) и микроскопических (рис. 1.6) методов исследования морфологии ЦНС

Рис. 1.5. Макроскопические методы исследования нервной системы:

Рис. 1.6. Микроскопические методы исследования нервной системы:

Так как задачей анатомического исследования (с точки зрения психологии) является выявление связей анатомических структур с психическими процессами, то к методам исследования морфологии (структуры) ЦНС можно подключить несколько методов из арсенала физиологии (рис. 1.7).

Рис. 1.7. Общие методы для физиологии и анатомии ЦНС:


1.3. Анатомическая терминология
Для правильного представления о структурах головного и спинного мозга необходимо знать некоторые элементы анатомической номенклатуры.

Тело человека представлено в трех плоскостях, соответственно горизонтальной, сагиттальной и фронтальной.
Горизонтальная плоскость проходит, как следует из ее названия, параллельно горизонту, сагиттальная делит тело человека на две симметричные половины (правую и левую), фронтальная плоскость разделяет тело на переднюю и заднюю части.

В горизонтальной плоскости выделяют две оси. Если объект находится ближе к спине, то о нем говорят, что он расположен дорсально, если ближе к животу — вентрально. Если объект расположен ближе к средней линии, к плоскости симметрии человека, то о нем говорят как о расположенном медиально, если дальше — то латерально.

Во фронтальной плоскости также выделяют две оси: медио-латеральную и ростро-каудальную. Если объект расположен ближе к нижней части тела (у животных — к задней, или хвостовой), то о нем говорят как о каудальном, а если к верхней (ближе к голове) — то он расположен рострально.

В сагиттальной плоскости человека также выделяют две оси; ростро-каудальную и дорсо-вентральную. Таким образом, взаиморасположение любых анатомических объектов можно охарактеризовать их взаиморасположением в трех плоскостях и осях.

Второе высшее образование "психология" в формате MBA
предмет: Анатомия и эволюция нервной системы человека.
Методичка "Анатомия центральной нервной системы"

Нервная система контролирует, регулирует и координирует деятельность и согласованную работу всех органов и систем органов, обеспечивает связь организма с внешней средой, служит для поддержания гомеостаза - постоянства внутренней среды организма.

Напомню, что важнейшими свойствами нервной ткани является возбудимость и проводимость. Структурно-функциональная единица нервной системы - нейрон - отростчатая клетка, имеющая дендрит - отросток, по которому нервный импульс перемещается к телу нейрона, и аксон, по которому нервный импульс перемещается от тела нейрона.

Места на аксоне, в которых прерывается миелиновая оболочка, называются перехватами Ранвье.


Заметим, что регуляция функций с помощью нервных структур эволюционно моложе, чем гуморальная регуляция: вспомните инфузорию-туфельку, у которой отсутствуют нервные структуры, а регуляция осуществляется гуморальными механизмами.

Соединяясь друг с другом отростками, нейроны образуют сложноустроенную нервную систему. Для ее успешного изучения мы воспользуемся классификациями: анатомической и функциональной.

Анатомически нервная система подразделяется на центральную и периферическую:

    Центральная

Центральная нервная система (ЦНС) состоит из головного и спинного мозга. Скопление тел нейронов в пределах ЦНС называется ядром.

Периферическая нервная система (ПНС) состоит из нервных структур, лежащих за пределами головного и спинного мозга. К ним относятся нервы и нервные ганглии (греч. ganglion — узел). Скопление нервных клеток вне ЦНС как раз и называется нервным узлом.

Помните, что спинномозговые и черепные нервы (несмотря на их близость к спинному и головному мозгу :) также относятся к периферическому отделу нервной системы.


Функционально нервная система подразделяется на соматическую и вегетативную (автономную), которая в свою очередь также подразделяется на симпатическую и парасимпатическую системы.

    Соматическая (от греч. soma — тело)

Иннервирует мышцы туловища, конечностей, головы и некоторых внутренних органов (гортань, язык, глотка). С помощью нее человек осуществляет произвольный контроль собственного организма, она позволяет нам перемещаться в пространстве, выражать эмоции, говорить.

Вегетативная (автономная - греч. autos — сам + nomos — закон)

Вегетативная часть нервной системы регулирует функции нашего организма, которыми произвольно управлять мы не можем. К ним относится кровообращение, дыхание, пищеварение и др. В вегетативной системе выделяют симпатический и парасимпатический отделы, которые требуют нашего внимательного изучения.


Ядра симпатического отдела располагаются в боковых рогах спинного мозга на уровне грудного и поясничного отделов позвоночника. Симпатический отдел (запомните мнемонически по первой букве - "с" - стресс) активируется в условиях стресса (вообразите волнение на экзамене, бег).

Симпатический отдел усиливает сокращения сердца и учащает их ритм, сужает кровеносные сосуды, в результате чего артериальное давление повышается, тормозит секрецию желез пищеварительного тракта ("во рту пересохло"), снижает перистальтику кишечника и расширяет зрачки.


Ядра парасимпатического отдела расположены в продолговатом и среднем мозге, а также в крестцовом отделе спинного мозга. Парасимпатический отдел (запомните мнемонически по первой букве - "п" - покой) - активируется в покое (вообразите, что вы сдали экзамен и расслабляетесь)).

Парасимпатический отдел ослабляет сокращения сердца и уряжает их ритм, кровеносные сосуды расширяются, при этом уровень артериального давления понижается, активируется секреция желез ЖКТ и перистальтика кишечника.


Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.