Нервно рефлекторный механизм регуляции

Общая характеристика

А. Два вида влияний нервной системы на органы - пуско­вое и модулирующее.

Пусковое влияние вызывает деятельность органа, находящего­ся в покое; прекращение импульсации, вызвавшей деятельность органа, ведет к возвращению его в исходное состояние. Примером такого влияния может служить запуск секреции пищеварительных желез на фоне их функционального покоя инициация сокращений покоящейся скелетной мышцы при поступлении к ней импульсов от мотонейронов спинного мозга или от мотонейронов ствола моз­га по эфферентным нервным волокнам. После прекращения импуль­сации в нервных волокнах, в частности в соматических волокнах, сокращение мышцы также прекращается, мышца расслабляется.

Модулирующее (корригирующее) влияние ведет к изменению интенсивности деятельности органа, например, усилению или ос­лаблению сокращений сердца, скелетной мышцы, выработке пище­варительных соков.

Модулирующее влияние осуществляется: 1) посредством изме­нения характера электрофизиологических процессов в органе (ги­перполяризация, деполяризация); 2) с помощью изменения интен­сивности обмена веществ в органе - биохимических процессов (трофическое действие нервной системы); 3) за счет изменения кровоснабжения органа (сосудодвигательный эффект). Модулиру­ющее влияние, например, блуждающего нерва на сердце выража­ется в угнетении его сокращений, но этот же нерв может оказы­вать пусковое влияние на пищеварительные железы, на покоящуюся гладкую мышцу желудка, тонкой кишки.

Б. Рефлекторный принцип нервной регуляции.

Рефлекс - реакция организма на раздражение сенсорных ре­цепторов, осуществляемая при обязательном участии нервной



системы. Каждый рефлекс осуществляется посредством рефлек­торной дуги. Рефлекторная дуга это совокупность структур, при помощи которых осуществляется рефлекс. Схематично реф­лекторную дугу вегетативного и соматического рефлексов можно представить состоящей из пяти звеньев (рис. 2.1).

1. Рецептор предназначен для восприятия изменений внешней или внутренней среды организма, что достигается посредством трансформации энергии раздражения в нервный импульс. Совокуп­ность рецепторов, раздражение которых вызывает рефлекс, назы­вают рефлексогенной зоной. Последняя может содержать два вида рецепторов, например, синокаротидная и аортальная рефлексоген­ные зоны содержат механо- и хеморецепторы. Конкретные механиз­мы восприятия раздражителя (света, звука, изменения химизма крови) различны у каждого вида рецепторов, но во всех случаях в рецепторе возникает рецепторный потенциал, обеспечивающий посылку нервного импульса в центральную нервную систему.

2. Афферентный путь, передающий сигнал в ЦНС. Для сома­тической нервной системы это афферентный нейрон с его отрост­ками, тело его расположено в спинномозговых ганглиях или ганг­лиях черепных нервов. Импульс от рецептора поступает на дендрит афферентного нейрона, а по его аксону - в ЦНС.

3. Вставочные нейроны ЦНС. В составе вегетативной нервной системы вставочные нейроны могут находиться вне ЦНС - интра-и (или) экстраорганно. Их назначение - обеспечение связи с дру­гими отделами ЦНС, переработка и передача импульсов к эффек-торному нейрону.

4. Эффекторный нейрон. Для соматической нервной системы это мотонейрон. Его назначение - вместе с другими нейронами ЦНС

переработать информацию, сформировать ответ в виде нервных импульсов, посылаемых к 5 звену рефлекторной дуги.

5. Эффектор (рабочий орган). В простейшем случае рефлек­торная дуга может быть двухнейронной - без вставочного нейрона.

В. Классификация рефлексов проводится по нескольким кри­териям. В частности, по срокам появления рефлексов в онтогенезе их делят на две группы: врожденные (безусловные) и приобре­тенные (условные). Безусловные рефлексы делят также на не­сколько групп. По биологическому значению рефлексы делят на пищедобывательные, половые, защитные (оборонительные) и др. В зависимости от отдела нервной системы выделяют сомати­ческие и вегетативные рефлексы.

Г. Нервизм - это концепция, признающая ведущую роль не­рвной системы в регуляции функций всех органов и тканей орга­низма. Выдающийся вклад в развитие концепции физиологическо­го нервизма сделал И. П. Павлов (1849-1936). Он обосновал представление о трофическом влиянии нервной системы на органы и ткани, сформулировал принципы рефлекторной теории, доказал важную роль нервной системы в регуляции секреции желез желу­дочно-кишечного тракта, открыл условные рефлексы и с их помо­щью разработал основы учения о высшей нервной деятельности.

Д. Нервный центр - это совокупность нейронов, расположен­ных на различных уровнях ЦНС, достаточных для приспособитель­ной регуляции функции Органа согласно потребностям организ­ма. Например, нейроны дыхательного центра располагаются и в спинном мозге, и в продолговатом мозге, и в мосту. Однако сре­ди нескольких групп клеток, расположенных на различных уров­нях ЦНС, обычно имеется главная часть центра. Главная часть ды­хательного центра находится в продолговатом мозге и включает инспираторные и экспираторные нейроны.

Рассмотрим более подробно отдельные элементы рефлекторной

Сенсорные рецепторы как первое звено рефлекторнойдуги

Различают эффекторные и сенсорные рецепторы.

Эффекторные рецепторы (лат. геареге - получать) представ­ляют собой белковые структуры клеточных мембран, а также ци­топлазмы и ядра, активируются химическими соединениями (ме­диаторами, гормонами), что запускает ответные реакции клетки.

Сенсорные рецепторы воспринимают раздражители внутрен­ней и внешней среды организма с помощью трансформации энер­гии раздражения в нервный импульс. Их раздражителями являют-



ся изменение температуры, прикосновение, давление, изменение рН, осмотического давления и т.д. Основное физиологическое зна­чение сенсорных рецепторов состоит в обеспечении поступления в ЦНС информации о состоянии внешней и внутренней среды, что обеспечивает регуляцию функций внутренних органов и организа­цию взаимодействия организма и окружающей среды, поддержа­ние тонуса ЦНС.

А. Классификация сенсорных рецепторов.

1.По структурно-функциональной организации различают первичные и вторичные рецепторы. Первичные рецепторы пред­ставляют собой чувствительные окончания дендрита афферентно­го нейрона (рис. 2.2). Его тело локализуется в спинномозговых ган­глиях или в ганглиях черепных нервов. Афферентные нейроны локализуются также в вегетативных ганглиях. К первичным рецеп­торам относятся тактильные, болевые, температурные, проприоре-цепторы, обонятельные рецепторы, механо- и хеморецепторы внут­ренних органов. Вторичные рецепторы имеют специальную клетку, синаптически связанную с окончанием дендрита афферент­ного нейрона (см. рис. 2.2). К вторичным рецепторам относятся ве­стибулярные, слуховые, фоторецепторы и вкусовые рецепторы.

2. С психофизиологической точки зрения рецепторы подраз­деляются в соответствии с органами чувств и формируемыми ощу­щениями на зрительные, слуховые, вкусовые, обонятельные и так­тильные.

3. В зависимости от вида воспринимаемого раздражителя выделяют пять типов рецепторов. Механорецепторы расположены в коже, внутренних органах, сосудах, слуховой и вестибулярной системах, опорно-двигательном аппарате. Хеморецепторы локализуются в слизистой оболочке носа, языка, каротидном и аортальном тельцах, продолговатом мозге и гипоталамусе. Термо­рецепторы (тепловые и холодовые) расположены в коже, сосудах, внутренних органах, гипоталамусе, продолговатом, спинном и среднем мозге, фоторецепторы - в сетчатке глаза. Болевые рецепторы (ноцицепторы) — их раздражителями являются механические, термические и химические (гистамин, брадикинин, К + , Н + и другие вещества) факторы - локализуются в коже, мышцах, внутренних органах, сосудах, дентине.

4. По расположению в организме различают экстеро- и инте-рорецепторы. К экстерорецепторам относятся рецепторы кожи, видимых слизистых оболочек и органов чувств: зрительные, слухо­вые, вкусовые, обонятельные, тактильные, кожные, болевые и температурные. К интерорецепторам относят рецепторы внут­ренних органов, рецепторы опорно-двигательного аппарата

(проприорецепторы) и вестибулорецепторы. Имеются и другие классификации.

Б. Механизм возбуждения рецепторов.

Возникновение рецепторного потенциала (РП). При дей­ствии на рецептор адекватного раздражителя (к которому он эво-люционно приспособлен), способного вызывать конформационные изменения воспринимающих структур (активацию рецепторного белка), формируется рецепторный потенциал. В рецепторах (кроме фоторецепторов) энергия раздражителя, после ее преобразования и усиления, приводит к открыванию ионных каналов и перемеще­нию ионов, среди которых основную роль играет движение № + в клетку. Это приводит к деполяризации мембраны рецептора. Полагают, что в механорецепторах растяжение мембраны ведет к расширению каналов. Рецепторный потенциал является локаль­ным, он может распространяться только электротонически на не­большие расстояния - до 3 мм. Возникновение потенциала действия (ПД) в первичных и вторичных рецепторах происходит по-разному.

Возникновение ПД. В первичном рецепторерецепторная зона является частью афферентного нейрона - окончанием его дендрита. Она прилежит к рецептору. Возникший РП, распрост­раняясь электротонически, вызывает деполяризацию нервного окончания и возникновение ПД. В миелиновых волокнах ПД воз­никает в ближайших перехватах Ранвье, в безмиелиновых - в бли­жайших участках, имеющих достаточную концентрацию потенци-алзависимых натриевых и калиевых каналов, а при коротких дендритах (например, в обонятельных клетках) - в аксонном хол­мике. При достижении деполяризации мембраны критического уровня происходит генерация ПД. Во вторичных рецепторах РП возникает в рецепторнои клетке, синаптически связанной с оконча­нием дендрита афферентного нейрона. РП обеспечивает выделе­ние рецепторнои клеткой медиатора в синаптическую щель. Под влиянием медиатора на постсинаптической мембране возникает генераторный потенциал, обеспечивающий возникновение ПД в нервном окончании вблизи постсинаптической мембраны. Ге­нераторный потенциал, как и рецепторный, является локальным потенциалом.

В. Свойства рецепторов.

1. Высокая возбудимость рецепторов. Например, для возбуж­дения фоторецептора сетчатки достаточно одного кванта света, для обонятельного рецептора - одной молекулы пахучего вещества.

2. Адаптация рецепторов - уменьшение их возбудимости при длительном действии раздражителя (только темновая адаптация фоторецепторов - это повышение их возбудимости). Адаптация

рецепторов выражается в снижении амплитуды РП и, как следствие, в уменьшении частоты импульсации в афферентном волокне.

3. Спонтанная активность рецепторов, т.е. способность воз­буждаться без действия раздражителя, присуща проприорецепто-рам, фоно-, фото-, вестибуло-, термо-, хеморецепторам. Эта способ­ность связана со спонтанным колебанием проницаемости клеточной мембраны, перемещением ионов и периодической деполяризацией рецептора, которая, достигая критического уровня, приводит к ге­нерации ПД в афферентном нейроне. Возбудимость рецепторов, обладающих фоновой активностью, выше, даже слабый раздражи­тель способен значительно повысить частоту импульсации в них. Фоновая активность рецепторов участвует в поддержании тонуса ЦНС.

Последнее изменение этой страницы: 2017-02-08; Нарушение авторского права страницы

Нервный механизм регуляции. Виды влияний нервной системы и механизмы их реализации.

Что нужно знать, чтобы понять тему: ключевые термины

1. Нервная система — это совокупность специальных структур, объединяющая и координирующая деятельность всех органов и систем организма в постоянном взаимодействии с внешней средой.

2. Нервную систему подразделяют на центральную (головной и спинной мозг) и периферическую — нервные клетки и волокна за пределами полости черепной коробки и спинномозгового канала.


3. Вегетативная нервная система (автономная) – непроизвольная, т. е. не контролируется сознанием. К автономной (вегетативной) нервной системе относят структуры, которые обеспечивают восприятие сигналов преимущественно внутренней среды организма, регулируют работу сердца, других внутренних органов, гладкой мускулатуры, экзокринных и части эндокринных желез.Соматическая же нервная система является произвольной. . К соматической относят структуры нервной системы, которые обеспечивают восприятие сенсорных сигналов преимущественно внешней среды через органы чувств, и контролируют работу поперечно-полосатой (скелетной) мускулатуры.


4. Структурно-физиологической единицей нервной системы является нервная клетка - нейрон Он состоит из тела (сомы), отростков (дендритов) и аксона.

5. Нервный механизм регуляции- изменение физиологических функций под влиянием нервных импульсов, передаваемых из центральной нервной системы по нервным волокнам к тканям и органам организма.

6. Рефле́кс (от лат. reflexus— отражённый)– ответная реакция организма на изменения внутренней и внешней среды, осуществляемая при участии ЦНС.

7. Рефлекторная дуга (нервная дуга) — путь, проходимый нервными импульсами при осуществлении рефлекса.

8. Гомеостаз - относительное динамическое постоянство внутренней среды и физиологических функций организма

Существует два варианта нервной регуляции:

· соматическая– регуляция скелетной мускулатурой;-произвольная

· вегетативная (автономная)– регуляция деятельности внутренних органов-не произвольная

Для нервного механизма регуляции характерно:

· высокая скорость распространения;

· точная передача объекту регулирования управляющих воздействий;

· высокая надежность осуществления связи

В нашем организме для постоянной регуляции физиологических процессов используется два механизма – нервный и гуморальный.

Нервная регуляция осуществляется с помощью нервной системы. Для нее характерна быстрота реакции. Нервные импульсы распространяются с большой скоростью – до 120 м/с по некоторым нервам. Нервная регуляция характеризуется направленностью процесса, четкой локализацией нервных влияний.

Гуморальная регуляция – это древнейшая форма взаимодействия между клетками многоклеточного организма. Химические вещества, образующиеся в организме в процессе его жизнедеятельности, поступают в кровь, тканевую жидкость. Переносясь жидкостями организма, химические вещества действуют на деятельность его органов, обеспечивают их взаимодействие.

Гуморальная регуляция характеризуется следующими особенностями:

· отсутствие точного адреса, по которому направляется химическое вещество, поступающее в кровь и другие жидкости нашего организма. Действие этого вещества не локализовано, не ограничено определенным местом;

· химическое вещество распространяется относительно медленно (максимальная скорость – 0,5 м/с);

· химическое вещество действует в ничтожных количествах и обычно быстро разрушается или выводится из организма.

Взаимосвязь между нервной и гуморальной регуляцией

В целом организме нервной и гуморальный механизмы регуляции действуют совместно. Оба механизма регуляции взаимосвязаны.В качестве примера давайте вспомним регуляцию уровня сахара в крови. При избытке сахара в крови нервная система стимулирует функцию внутрисекреторной части поджелудочной железы. В результате в кровь поступает больше гормона инсулина, и лишний сахар под его влиянием откладывается в печени и в мышцах в виде гликогена. При усиленной мышечной работе, когда повышается потребление сахара и в крови его становится недостаточно, усиливается деятельность надпочечников.

Гормон надпочечников адреналин способствует превращению гликогена в сахар.

Так нервная система, воздействуя на железы внутренней секреции, стимулирует или тормозит отделение ими биологически активных веществ.

Влияние нервной системы осуществляется через секреторные нервы. Нервы подходят к кровеносным сосудам эндокринных желез. Меняя просвет сосудов, они влияют на деятельность этих желез.

Итак, каждый из двух основных механизмов в организме – нервный и гуморальный – тесно взаимодействуют. Оба вместе, дополняя друг друга, обеспечивают важнейшую особенность нашего организма – саморегуляцию физиологических функций, приводящую к поддержанию гомеостаза – постоянства внутренней среды организма.

Виды влияний нервной системы и механизмы их реализации. Существует два вида влияний нервной системы на органы: пусковое и модулирующее (корригирующее).

Пусковое влияние вызывает деятельность органа, находящегося в покое, а также прекращение импульсации, вызвавшей деятельность, ведет к возвращению органа в исходное состояние. Примером такого влияния могут служить: запуск секреции пищеварительных желез на фоне их функционального покоя; инициация сокращений покоящейся скелетной мышцы при поступлении к ней импульсов от мотонейронов спинного мозга или от мотонейронов ствола мозга по эфферентным нервным волокнам. После прекращения импульсации в нервных волокнах, в частности в соматических волокнах, сокращение мышцы также прекращается, мышца расслабляется.

Модулирующее (корригирующее) влияние ведет к изменению интенсивности деятельности органа, деятельность которых без нервных влияний невозможна. Так и на органы, которые могут работать без пускового влияния нервной системы. Примером модулирующего влияния на уже работающий орган могут быть усиление ил угнетение секреции пищеварительных желез, усиление или ослабление сокращения скелетных мышц. Модулирующее влияние осуществляется:

1) посредством изменения характера электрических процессов в органе;

2) с помощью изменения интенсивности обмена веществ в органе, т.е. биохимических процессов;

3) за счет изменения кровоснабжения органа (сосудодвигательный эффект). Пусковое влияние реализуется посредством инициации процессов возбуждения в органе.

Рефлекторный принцип нервной регуляции.

Рефлекс - реакция организма на раздражение сенсорных рецепторов, осуществляемая с помощью нервной системы. Каждый рефлекс осуществляется посредством рефлекторной дуги. Рефлекторная дуга - это совокупность структур, с помощью которых осуществляется рефлекс. У рефлекторной реакции может быть гормональное звено, что характерно для регуляции функций внутренних органов, т.е. вегетативных функций. Если включается гормональное звено, то это осуществляется за счет дополнительной выработки биологически активных веществ.

Дата добавления: 2019-02-22 ; просмотров: 150 ;

Осуществление нервнорефлекторного механизма движений требует предварительного создания во всей системе определенных оптимальных условий, обеспечивающих двигательный акт:

Нервнорефлекторный механизм регуляции двигательного акта основывается на действии нескольких субординированных саморегулирующихся подсистем:

а. Круговая органная саморегуляция представляет собой наиболее низкий уровень органной саморегуляции, при которой рефлекторное кольцо, расположенное сегментарно, начинается и кончается в одном и том же органе: мышца-мышца.
б. Внутрисистемная саморегуляция осуществляет согласованную деятельность различных органов в одной системе: сердце - кровеносные сосуды - кровообращение.
в. Межсистемная висцеральная саморегуляция обеспечивает согласованную деятельность двух или более различных систем: дыхание – кровообращение – кардио - пульмональная функция.
г. Саморегуляция во взаимной деятельности локомоторной и висцеральной сфер на подкорковом уровне (сегментарный и надсегментарный). Например, на основе метамерных сегментарных реакций построены принципы сегментарного массажа по Щербаку.
д. Общая корковая саморегуляция включается в этот механизм только при невозможности справиться с возникшими двигательными ситуациями на уровне низших субординированных систем, обеспечивающих эффективность выполнения двигательной программы.

Включение всех этих нервнорефлекторных механизмов и осуществление соответствующей двигательной программы зависят от ряда условий. Прежде всего патологические процессы, нарушающие морфологическую целостность и структуру или функцию отдельных звеньев этого механизма, могут изменить его совершенство и точную согласованную деятельность, что приведет к различным по характеру и степени расстройствам движения. Большое значение имеют также различные раздражители, действующие на рецепторы и имеющие пусковой характер. Различные по силе раздражители (подпороговые, слабые, сильные, сверхсильные) вызывают различный двигательный, а оттуда и различный лечебный эффект. Характер раздражителя (перво- или второсигнальный) также имеет значение. Например, первосигнальные раздражения поражают конкретное двигательное восприятие, которое оставляет след, ведущий к конкретному двигательному представлению, распространяющемуся путем элективной иррадиации и на вторую сигнальную систему. Это позволяет второсигнальному раздражению вызывать не только конкретный двигательный акт, но также идеаторные двигательные реакции.

Функциональное состояние тканей и нейромышечного аппарата также имеет большое значение для точного и полного осуществления двигательной программы. При различных видах лабильности тканей один и тот же по силе раздражитель может вызывать различный эффект. При высокой степени лабильности, например, сильные раздражители приводят к истинному пессимуму (последовательное торможение после возбуждения), в результате чего развиваются электропозитивные и интенсивные ассимиляционные процессы, т. е. полное восстановление. И, наоборот, при низкой степени лабильности сильные раздражители приводят к ложному пессимуму (запредельное, охранительное торможение), в результате чего развиваются электронегативные и интенсивные дессимиляционные процессы, т. е. истощение.

Фазность возбудительного процесса как элемента функционального состояния (уравнительная, трансформационная, парадоксальная, тормозящая) также отражается на выполнении двигательной программы.

Состояние и функция внутренних органов и вегетативных функциональных систем (сердечно-сосудистая система и кровообращение, дыхание и газообмен, морфологический и биохимический состав крови, эндокринная система, выделительная система и др.), вегетативно обеспечивающие процесс движения, играют исключительно важную роль.

Адаптационно-трофические и функциональные изменения органов или создававшиеся патологические динамические стереотипы в их деятельности (при ряде заболеваний) могут оказать положительное или отрицательное воздействие на выполнение двигательной программы.

Теория по нормальной физиологии: Регуляция тонуса кровеносных сосудов. Рассматриваются механизмы, влияющие на тонус сосудов.

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Все сосуды, за исключением капилляров, имеют гладкомышечные клетки (ГМК), благодаря которым меняется просвет сосуда, следовательно сопротивление кровотоку и интенсивность кровотока меняется в данном регионе.

Местные механизмы регуляции:

  • всем сосудам, имеющим ГМК, свойственен исходный — базальный тонус, создаваемый автоматией гладких мышц;
  • под влиянием различных факторов базальный тонус может усиливаться, при этом сосуды суживаются и в регион поступает меньше крови;
  • когда тонус сосудов уменьшается, они расширяются и кровоток в регион возрастает.

Уменьшение тонуса приводит к расширению сосудов, повышение — у сужению сосудов.

Тонус сосудов

Тонус — напряжение, создаваемое асинхронным сокращением ГМК среднего слоя стенки сосудов, обладающих автоматией.

Компоненты тонуса:

  • базальный тонус,
  • гуморальный,
  • центральный (нейрогенный).

Механизмы регуляции тонуса сосудов:

  1. Местные механизмы, обеспечивающие кровоток через отдельные органы и ткани, то есть контролирующие величину кровотока в отдельных регионах.
  2. Центральные механизмы, регулирующие системное кровообращение, — это постоянство АД, МОК, ОЦК и др.

Принцип местной регуляции — обеспечение независимости кровотока в органах от изменений системной гемодинамики, то есть обеспечение кровью данного региона в его интересах.

К местным механизмам регуляции тонуса кровеносных сосудов относятся:

  • миогенный,
  • метаболический.

  • миогенная ауторегуляция характерна для сосудов мозга, почек, сердца, печени, чревной области, то есть регионов, где необходимо поддержание постоянного кровотока;
  • адекватным раздражителем ГМК является их растяжение;
  • при увеличении артериального давления (АД) -> растяжение стенок сосудов -> сокращение ГМК сосудов -> увеличение тонуса сосудов и сохранение прежнего просвета -> кровоток в сосудах при этом не меняется;
  • уменьшение АД вызывает снижение тонуса сосудов вследствие расслабления ГМК:
    • при этом, несмотря на уменьшение АД, сохраняется поступление в сосуды того же объема крови,
    • таким образом, на величину базального тонуса влияет уровень АД.
  • продукты метаболизма, расширяя сосуды, усиливают кровоток в работающих органах;
  • в результате недостаточного снабжения региона кислородом и питательными веществами, в тканях накапливаются метаболиты и кровоток усиливается вследствие расширения прекапилляров.

Тонус сосудов уменьшается при снижении давления кислорода и углекислого газа, увеличении ионов H, C3H6O3 и температуры — вследствие этого увеличивается кровоток в работающих органах пропорционально их активности.

  • нервные (рефлекторные),
  • гуморальные.

Вазомоторные — сосудодвигательные нервы:

  • вазоконстрикторы — сосудосуживающие нервы,
  • вазодилататоры — сосудорасширяющие нервы.

Вазоконстрикторы

  1. Все вазоконстрикторы — это нервы симпатические адренергические.
  2. Сосудосуживающий эффект наступает при воздействии норадреналина (НА) на α-адренорецепторы.
  3. Импульсы по симпатическим вазоконстрикторам постоянно поступают к сосудам от нейронов боковых рогов тораколюмбальных сегментов СМ с частотой 1-3 имп/с, поддерживая тонус покоя.
  4. При частоте больше 3 имп/с (от 3 до 15) — повышенный тонус.

Вазодилататоры

  1. Парасимпатические холинэргические нервы:
    • chorda tympani — барабанная струна — расширяет сосуды подчелюстной слюнной железы;
    • n. lingualis — язычный нерв — расширяет сосуды языка;
    • n. glossopharingeus — языкоглоточный — расширяет сосуды миндалин, задней трети языка, околоушной слюнной железы;
    • n. pelvicus — тазовый — расширяет сосуды одноименной области.
  2. Симпатические нервы:
    • холинэргические, иннервирующие сосуды скелетных мышц;
    • адренергические — сосудосуживающий эффект наступает при воздействии НА на β-адренорецепторы сосудов сердца, мозга и легких.
  3. Заднекорешковые чувствительные нервы — расширяют сосуды кожи по механизму аксон-рефлекса (медиатор — АХ).

  • расширение сосудов кожи наблюдается при укусе насекомых, под действием горчичников, потирании, почесывании кожи;
  • кровеносные сосуды, которые не имеют специальных вазодилататоров, расширяются за счет снижении тонуса вазоконстрикторов (напр.: в органах брюшной полости).

Импульсы по вазомоторным нервам к сосудам постоянно идут от сосудодвигательного центра (СДЦ).

Основная локализация сосудодвигательного центра — в продолговатом мозге (Овсянников, 1871).

Сосудодвигательный центр (СДЦ)

Центры СМ (боковые рога серого вещества) -> бульбарные центры: сосудосуживающий, сосудорасширяющие -> центры гипоталамуса (передний (депрессорная зона) и задний (прессорная зона) отделы гипоталамуса) -> корковое представительство СДЦ.

После перерезки ствола мозга выше четверохолмия АД не снижается, а при перерезке мозга между продолговатым и спинным оно падает со 120 мм рт. ст. до 70-80.

СДЦ состоит из 2-х отделов:

  • прессорный отдел,
  • депрессорный отдел.

Оба эти отдела не имеют четких границ. Они располагаются на дне 4-го желудочка среди нейронных структур ретикулярной формации и взаимно перекрывают друг друга.

Прессорные и депрессорные нейроны СДЦ находятся в реципрокных отношениях.

Прессорных нейронов больше, чем депрессорных. О состоянии СДЦ судят по прессорным нейронам.

К СДЦ относят также и другие отделы ЦНС.

В покое гипоталамус не принимает активного участия в регуляции АД.

Влияние коры на регуляцию АД — условнорефлекторное — повышение АД перед стартом, при волнении.

Вывод: многоэтажная система регуляции функций сердечно-сосудистой системы обеспечивает адекватное приспособление к условиям внешней и внутренней среды.

Тонус СДЦ зависит от нервных импульсов, постоянно идущих к нему от рецепторов различных рефлексогенных зон.

Сосудистые рефлексы

Сосудистые рефлексы подразделяются на:

  • собственные и
  • сопряженные.

Осуществляются с механорецепторов, расположенных в сердце и в кровеносных сосудах ( барорецепторов ).

Данные рецепторы стабилизируют АД.

Различают собственные рефлексы:

  • прессорные — повышающие пониженное АД,
  • депрессорные — понижающие повышенное АД.

Рефлексогенные зоны (зоны максимального скопления рецепторов):

  • дуга аорты,
  • каротидный синус (бифуркация общей сонной артерии на наружную и внутреннюю).

Депрессорный рефлекс: при увеличении АД -> раздражаются барорецепторы дуги аорты и каротидного синуса -> возбуждение по чувствительным нервам — аортальный (депрессорный) и синусный (нерв Геринга) -> продолговатый мозг -> возбуждается центр вагуса и тормозится сосудодвигательный центр -> ЧСС уменьшается -> сосуды расширяются -> АД снижается (нормализуется).

При падении АД — все наоборот, то есть осуществляется прессорный рефлекс .

  • осуществляются также с хеморецепторов, находящихся в аортальном и каротидном тельцах;
  • они возбуждаются при увеличении в крови CO2, ионов H и при уменьшении O2;
  • импульсы, поступающие от хеморецепторов в продолговатый мозг, увеличивают тонус СДЦ, что приводит к увеличению давления.

Хеморецепторы находятся не в стенке сосуда, а в аортальном и каротидном тельцах или клубочках под адвентицией сосуда и пронизан сетью капилляров.

От хеморецепторов -> СДЦ продолговатого мозга -> СДЦ возбуждается -> сужение сосудов -> увеличение АД -> быстрое обновление крови.

Осуществляются с рецепторов, расположенных вне сердца и сосудов :

  • они нарушают стабильность АД, вызывая прессорные реакции;
  • различают сопряженные рефлексы:
    • экстероцептивные — с рецепторов кожи,
    • интероцептивные — с внутренних органов.

Гуморальная регуляция

  1. Гормоны, образованные в железах внутренней секреции: адреналин, норадреналин, вазопрессин и др. — суживают сосуды .
  2. Вазоактивные агенты (местные гормоны), образующиеся в тканях, — ацетилхолин, брадикинин, гистамин, простагландины и др. — расширяют сосуды .
  3. Вещества двоякого действия — катехоламины:
    • альфа — сужение
    • бетта — расширение.

Гормоны адреналин, норадреналин суживают артерии и артериолы кожи, скелетных мышц, органов брюшной полости. Коронарные сосуды, сосуды мозга, легких при этом расширяются , так как все это зависит от того, какие адренорецепторы воспринимают гормон. При взаимодействии НА с α-адренорецепторами сосуды суживаются , при взаимодействии с β-адренорецепторами — расширяются . В сосудах сердца, легких, мозга преобладают β-адренорецепторы.

Вазопрессин суживает в основном артериолы и вены.

Ангиотензин II образуется из α-глобулинов плазмы под действием ренина (клетки ЮГА коркового слоя почек) и также суживают сосуды.

Тонус сосудов:

  • базальный тонус — тонус ГМК и влияние симпатических вазоконстрикторов;
  • тонус покоя — тонус ГМК и влияние симпатических нервов с частотой 1-3 имп/с;
  • повышенный тонус — импульсы по симпатическим вазоконстрикторам с частотой 3-15 имп/с.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.