Нервные центры регуляции обмена веществ расположены

Регуляция обмена веществ и энергии. Центр регуляции обмена веществ. Модуляторы.

В данной главе представлены общие вопросы нейрогуморальной регуляции обмена веществ и энергии в организме и, главным образом, регуляция метаболизма. Конечной целью регуляции обмена веществ и энергии является обеспечение потребностей организма, его органов, тканей и отдельных клеток в энергии и в разнообразных веществах в соответствии с уровнем функциональной активности. В целостном организме постоянно существует необходимость согласования общих метаболических потребностей с потребностями клетки органа, ткани. Такое согласование достигается посредством распределения между органами и тканями веществ, поступающих из окружающей среды и синтезированных внутри организма.

Обмен веществ, протекающий внутри организма, не связан непосредственно с окружающей средой. Питательные вещества, прежде чем они смогут вступить в обменные процессы, должны быть получены из пищи в желудочно-кишечном тракте в молекулярной форме. Кислород, необходимый для биологического окисления, должен быть получен из воздуха в легких, доставлен в кровь, связан с гемоглобином и перенесен кровью к тканям. Скелетные мышцы, являясь в организме одним из мощных потребителей энергии, также обслуживают обмен веществ и энергии, обеспечивая поиск, прием и обработку пищи. Непосредственное отношение к обмену веществ и энергии имеет выделительная система. Таким образом, регуляция обмена веществ и энергии является мультипараметрической, включающей в себя регулирующие системы множества функций организма (например, дыхания, кровообращения, выделения, теплообмена и др.).

Роль центра в регуляции обмена веществ и энергии играют ядра гипоталамуса. Они имеют непосредственное отношение к генерации чувства голода и насыщения, теплообмену, осморегуляции. В гипоталамусе имеются полисенсорные нейроны, реагирующие на изменения концентрации глюкозы, водородных ионов, температуры тела, осмотического давления, т. е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ состояния внутренней среды и формируются управляющие сигналы, которые посредством эфферентных систем приспосабливают ход метаболизма к потребностям организма.


В качестве звеньев эфферентной системы регуляции обмена используются симпатический и парасимпатический отделы вегетативной нервной системы. Вьщеляющиеся их нервными окончаниями медиаторы оказывают прямое или опосредованное вторичными посредниками влияние на функцию и метаболизм тканей. Под управляющим влиянием гипоталамуса находится и используется в качестве эфферентной системы регуляции обмена веществ и энергии — эндокринная система. Гормоны гипоталамуса, гипофиза и других эндокринных желез оказывают прямое влияние на рост, размножение, дифференцировку, развитие и другие функции клеток. Гормоны принимают участие в поддержании в крови необходимого уровня таких веществ, как глюкоза, свободные жирные кислоты, минеральные вещества.

Химическая энергия питательных веществ используется для ресинтеза АТФ, выполнения всех видов работы и процессы, протекающие внутри клетки. Поэтому важнейшим эффектором, через который оказывается регулирующее воздействие на обмен веществ и энергии, являются клетки органов и тканей. Регуляция обмена веществ заключается в воздействии на скорость биохимических реакций, протекающих в клетках.

Метаболизм клетки в целом невозможен без интеграции многих биохимических превращений. Эта интеграция обеспечивается, главным образом, с помощью аденилатов, участвующих в регуляции любых метаболических превращений клетки.

Интеграция обмена белков, жиров и углеводов клетки осуществляется посредством общих для них источников энергии. При биосинтезе любых простых и сложных органических соединений, макромолекул и надмолекулярных структур в качестве общих источников энергии используется АТФ, которая поставляет энергию для процессов фосфорилирования, или НАД • Н, НАДФ • Н, поставляющих энергию для восстановления окисленных соединений других веществ. За общий энергетический запас клетки, полученный в ходе катаболизма, конкурируют все анаболические процессы, протекающие с затратой энергии. Так, например, при осуществлении печенью синтеза глюкозы из лактата и аминокислот (глюконеогенез) она не может одновременно синтезировать жиры и белки. Глюконеогенез сопровождается расщеплением в печени белков и жиров и окислением образующихся при этом жирных кислот, что ведет к освобождению энергии, необходимой для синтеза АТФ и НАД- Н, необходимых для глюконеоге-неза.

Еще одним проявлением интеграции метаболических превращений белков, жиров и углеводов в клетке является существование общих предшественников и общих промежуточных продуктов обмена веществ. Общим промежуточным продуктом обмена является ацетил-КоА. Важнейшими конечными путями превращений веществ в клетке являются цикл лимонной кислоты и реакции дыхательной цепи, протекающие в митохондриях. Цикл лимонной кислоты — главный источник С02 для последующих реакций глюконеогенеза, синтеза жирных кислот и мочевины.


Одним из механизмов согласования общих метаболических потребностей организма с потребностями клетки являются нервные и гормональные влияния на ключевые ферменты. Характерными особенностями этих ферментов являются: положение в начале того метаболического пути, к которому принадлежит фермент; приближенность расположения или ассоциированность со своим субстратом; реагирование не только на действие внутриклеточных регуляторов метаболизма, но и на внеклеточные нервные и гормональные воздействия.

Процесс гликогенолиза в мышцах может одновременно активироваться нервной системой и катехоламинами. Этот эффект достигается с участием ионов Са2+, который связывается с кальмодулином, являющимся субъединицей фосфорилазы. Она при этом активируется и приводит к мобилизации гликогена. Нервный механизм мобилизации гликогена осуществляется через меньшее число промежуточных этапов, чем гормональный. Этим достигается его быстродействие.

Удовлетворение энергетических потребностей организма посредством ускорения внутриклеточных процессов расщепления триглицеридов в жировой клетчатке достигается активацией гормончувствительной липазы. Повышение активности этого фермента (адреналином, норадреналином, глюкагоном) приводит к мобилизации свободных жирных кислот, являющихся основным энергетическим субстратом окисления в мышцах при выполнении ими интенсивной и длительной работы.

Переход органов и тканей с одного уровня функциональной активности на другой всегда сопровождается соответствующими изменениями их трофики (питания). Например, при рефлекторном сокращении скелетных мышц нервная система осуществляет не только пусковое действие, но и трофическое влияние путем усиления в них местного кровотока и интенсивности обмена веществ. Увеличение силы сокращений миокарда под влиянием симпатической нервной системы обеспечивается одновременным усилением коронарного кровотока и метаболизма в мышце сердца. О влиянии нервной системы на трофику скелетных мышц свидетельствует тот факт, что денервация мышцы приводит к постепенной атрофии мышечных волокон. Важнейшее значение в осуществлении трофической функции нервной системы играет ее симпатический отдел. Через симпато-адреналовую систему достигается не только активация обмена веществ и энергии в клетке.

Норадреналин и адреналин, выброс которых в кровоток возрастает при возбуждении симпатической нервной системы, вызывают увеличение глубины дыхания, расширяют мускулатуру бронхов, что способствует доставке кислорода в кровь. Адреналин, оказывая положительное инотропное и хронотропное действие на сердце, увеличивает минутный объем крови, повышает систолическое артериальное давление. В результате активации дыхания и кровообращения возрастает доставка кислорода к тканям.

Установите соответствие между характеристиками и отделами головного мозга: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

А) обеспечение постоянства внутренней среды и обменных процессов

Б) ориентировочные рефлексы на зрительные и звуковые раздражители, поворот головы

В) регулирует деятельность дыхательной, пищеварительной и сердечно-сосудистой систем

Г) регуляция мышечного тонуса и позы тела

Д) обеспечивает защитные рефлексы чихания, моргания, кашля, рвоты

Е) сбор и оценка всей информации, посту-

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

АБВГДЕ

1) средний:Б) ориентировочные рефлексы на зрительные и звуковые раздражители, поворот головы;

Г) регуляция мышечного тонуса и позы тела;

2) продолговатый:В) регулирует деятельность дыхательной, пищеварительной и сердечно-сосудистой систем;

Д) обеспечивает защитные рефлексы чихания, моргания, кашля, рвоты;

3) промежуточный:А) обеспечение постоянства внутренней среды и обменных процессов;

Е) сбор и оценка всей информации, поступающей от органов чувств

Функции отделов головного мозга.

Продолговатый мозг является продолжением спинного мозга. В нем находятся ядра VIII—XII пар череп но мозговых нервов. Здесь расположены жизненно важные центры регуляции дыхания, сердечно-сосудистой деятельности пищеварения, обмена веществ. Ядра продолговатого мозга принимают участие в осуществлении безусловных пищевых рефлексов (отделение пищеварительных соков, сосание, глотание), защитных рефлексов (рвота, чихание, кашель, моргание). Проводниковая функция продолговатого мозга заключается в передаче импульсов от спинного мозга в головной и в обратном направлении.

Через средний мозг проходят восходящие пути к коре больших полушарий и мозжечку и нисходящие пути к продолговатому и спинному мозгу (проводниковая функция). В среднем мозге находятся ядра III и IV пар черепно-мозговых нервов. С их участием осуществляются первичные ориентировочные рефлексы на свет и звук: движение глаз, поворот головы в сторону источника раздражения. Средний мозг также участвует в поддержании тонуса скелетных мышц.

Промежуточный мозг расположен над средним мозгом. Главные его отделы — таламус (зрительные бугры) и гипоталамус (подбугровая область). Через таламус к коре головного мозга проходят центростремительные импульсы от всех рецепторов организма (за исключением обонятельного). Информация получает в таламусе соответствующую эмоциональную окраску и передается в большие полушария мозга. Гипоталамус является главным подкорковым центром регуляции вегетативных функций организма, всех видов обмена веществ, температуры тела, постоянства внутренней среды (гомеостаза), деятельности эндокринной системы. В гипоталамусе расположены центры чувства насыщения, голода, жажды, удовольствия. Ядра гипоталамуса участвуют в регуляции чередования сна и бодрствования.

ОТ СОСТАВИТЕЛЕЙ САЙТА.

Передний мозг — самый крупный и развитый отдел головного мозга. В сенсорные (чувствительные) зоны коры поступают импульсы от всех рецепторов организма. Так, зрительная зона коры расположена в затылочной доле, слуховая — в височной и т. д. В ассоциативных зонах коры осуществляется хранение, оценка, сопоставление поступающей информации с полученной ранее и т. п. Таким образом, в этой зоне происходят процессы запоминания, научения, мышления.

Но изз тех вариантов, которые предлагаются для выбора и с учетом функции промежеточного мозга (Через таламус к коре головного мозга проходят центростремительные импульсы от всех рецепторов организма)

Гормональная регуляция обменных процессов обусловлена деятельностью эндокринной системы. Выделяют три основных вида влияний гормонов на метаболизм: 1) на активность ферментов, 2) на синтез ферментов, 3) на проницаемость мембран (Меньшиков, 1970).

Влияние гормонов на активность ферментов обусловлено их воздействием на структуру молекулы фермента, переводом фермента из неактивной формы в активную и. т. д. При этом гормоны активируют одни ферменты и тормозят действие других.

Влияние гормонов на синтез ферментов осуществляется путем воздействия на генетический аппарат клетки. Так, гормоны коры надпочечников активируют гены ДНК и усиливают синтез РНК, как информационной, так и транспортной. В результате повышается синтез соответствующих ферментов.

Многие гормоны способны активно воздействовать и на проницаемость клеточных мембран и мембран клеточных органелл, в которых осуществляются отдельные фазы обмена веществ. Так, инсулин повышает проницаемость клеточных мембран некоторых тканей по отношению к глюкозе, в результате чего ее поступление в клетки усиливается. Гормон щитовидной железы — тироксин влияет на состояние мембраны митохондрий, гормон коры надпочечников — гидрокортикозона на мембрану лизосом.

Наиболее важная регуляция метаболизма осуществляется нервной системой.Воздействие нервной системы на метаболизм связывают главным образом с деятельностью симпатического отдела нервной системы, с его адаптационно-трофической функцией (Л. А. Орбели). Трофический эффект свойствен и другим нервным волокнам, кроме симпатических. Перерезка нервов приводит к нарушению метаболизма в тканях.

Сущность непосредственного трофического влияния нервной системы на клетки изучена недостаточно. Полагают, что вещества, регулирующие трофику тканей (возможно, продукты метаболизма нуклеиновых кислот), синтезируются в теле нервной клетки и поступают в аксоплазму. Последняя непрерывно передвигается в проксимально-дистальном направлении. Таким путем ток аксоплазмы обеспечивает транспорт их к периферическим органам. Существенная роль в регуляции метаболизма принадлежит медиаторам симпатической нервной системы — норадреналину и ацетилхолину. В метаболизме клетки эти медиаторы влияют на активность ферментов.

Центральная нервная система оказывает свое влияние на обмен веществ. Особая роль принадлежит гипоталамической области головного мозга, в гипоталамусе локализованы ядра и центры, в которых осуществляется анализ состояния внутренней среды организма, формируются управляющие сигналы и посредством эфферентных систем приспосабливают ход метаболизма потребностям организма.

Эфферентными звеньями системы регуляции обмена являются симпатический и парасимпатический отделы вегетативной нервной системы и эндокринная система. Сигналы из гипоталамуса могут доходить до отдельных эндокринных желез чисто нервным путем, главным образом по симпатическим ветвям. Кроме того, в гипоталамусе вырабатываются вещества пептидной структуры (нейрогормоны), стимулирующие функцию передней доли гипофиза, а через нее — ряда эндокринных желез.

Через гипоталамическую область мозга осуществляется и влияние коры больших полушарий мозга на обмен веществ. Таким образом, нервные и эндокринные механизмы функционируют как единая нейрогуморальная система (рис. 25).

Рис. 25. Интегрирующие функции нервной, эндокринной и сосудистой систем в метаболизме (по: Андреева и др., 1998)

Регуляция белкового обмена. Влияния центральной нервной системы на процессы синтеза и распада белка осуществляется как прямым путем, так и опосредовано, путем изменения функционального состояния желез внутренней секреции. Мозговая регуляция белкового обмена связана с деятельностью гипоталамической области промежуточного мозга.Удаление коры больших полушарий у животных вызывает понижение интенсивности белкового обмена, особенно синтеза белка. Это доказано в опытах на животных, так у молодых животных резко замедляется рост и накопление массы тела.

Влияние гормонов на белковый обмен довольно разнообразно: одни гормоны стимулируют синтез белка, то есть оказывают анаболическое действие, другие преимущественно активируют процессы распада белка, то есть являются гормонами катаболического действия (рис. 26).



АНАБОЛИЗМ

Гормоны щитовидной железы

Гормоны коры надпочечников

Рис. 26. Влияние гормонов на обмен белков (по: Држевецкая, 1994)

Соматотропин — гормон, вырабатываемый в передней доле гипофиза, является мощным анаболическим гормоном. В период роста организма он стимулирует рост скелета и увеличение белковой массы всех органов и тканей. На протяжении остальной жизни человека соматотропин обеспечивает процессы синтеза белка, необходимые для нормальной жизнедеятельности.

Инсулин также является гормоном анаболического действия. Он оказывает на белковый обмен как непосредственное влияние, так и опосредовано через углеводный обмен. Непосредственное влияние инсулина на белковый обмен обусловлено тем, что он повышает проницаемость клеточных мембран по отношению к аминокислотам. В результате усиливается переход аминокислот из внеклеточной среды внутрь клетки и тем самым активируется внутриклеточный синтез белка. Кроме того, под влиянием инсулина усиливается потребление глюкозы клетками ряда тканей, в результате чего освобождается значительное количество энергии. Эта энергия частично используется на процессы белкового синтеза.

Гормоны щитовидной железы (тироксин и трийодтиронин)оказывают на белковый обмен различное действие в зависимости от белкового питания, исходного состояния белкового обмена и функции самой щитовидной железы. При нормальном функционировании щитовидной железы гормоны стимулируют синтез белка и благодаря этому активируют рост, развитие и дифференциацию тканей и органов. Наиболее выраженное анаболическое влияние гормоны щитовидной железы оказывают в условиях недостатка белкового питания, тем самым способствуя максимальному использованию поступающих в организм аминокислот. В условиях избыточного белкового питания гормоны щитовидной железы оказывают катаболическое действие, активируя процессы распада белка.

Глюкокортикоиды (гидрокортизон, кортикостерон) — гормоны коры надпочечников — оказывают на обмен белка выраженное катаболическое действие, причем степень этого действия в разных тканях неодинакова. Наиболее усиленный распад белка под влиянием глюкокортикоидов обнаруживается в лимфоидной, мышечной и соединительной тканях. При этом освобождаются аминокислоты, которые подвергаются дезоминированию. Безазотистый остаток аминокислот превращается затем в глюкозу и гликоген. Таким образом, глюкокортикоиды не только усиливают распад белка ряда тканей, но и активируют гликогенез — новообразование углеводов. Иное действие оказывают глюкокортикоиды на печень. Они активируют процессы синтеза белковых структур в печени, а также происходящий в печени синтез белков плазмы крови.

Кортикотропин влияет на белковый обмен в основном через кору надпочечников, стимулируя биосинтез глюкокортикоидов.

Половые гормоны. Женские половые гормоны (эстрогены) стимулируют синтез белка в тканях женской половой сферы (матка, грудные железы и др.) Мужские половые гормоны (андрогены) также обладают анаболическим действием, но значительно более широким, чем эстрогены. Андрогены усиливают синтез белка не только в мужских половых органах, но и в других тканях. Анаболическое свойство андрогенов имеет практическое значение и используется для создания синтетических препаратов, обладающих выраженным анаболическим влиянием на белковый обмен. Они применяются для стимуляции роста детей, отстающих в физическом развитии.

У детей в регуляции белкового обмена отмечаются существенные изменения. Так, в периоде внутриутробного развития синтез белка активирует гормон плаценты — соматотропин. После рождения усиленный синтез белка продолжается под влиянием собственного соматотропина ребенка. Он стимулирует рост скелета и увеличение массы органов. В связи с этим в здоровом растущем организме азотистый баланс всегда положителен.

Важное анаболическое действие осуществляет инсулин, продукция которого у детей относительно больше, чем у взрослых людей. Инсулин усиливает транспорт аминокислот через цитоплазматические мембраны, а вызываемое им понижение уровня глюкозы в крови стимулирует выделение соматотропина из гипофиза. При недостатке инсулина (сахарном диабете) дети отстают в росте от своих здоровых сверстников.

После начала функционирования гонад анаболическое действие на белковый обмен начинают оказывать половые гормоны. Тестостерон активирует синтез белка в печени, почках, сердце и скелетных мышцах.

Глюкокортикоиды действуют двояко: в лимфоидной, мышечной и соединительной ткани они усиливают распад белка, в результате чего освобождаются аминокислоты для синтеза белка в других тканях, а также углеводов — важнейшего источника энергии.

Регуляция углеводного обмена. Нервная регуляция углеводного обмена осуществляется структурами продолговатого мозга (расположенными в области дна IV желудочка), гипоталамической областью и корой больших полушарий головного мозга. Центральным звеном регуляции углеводного и других видов обмена является гипоталамус. Отсюда регулирующие влияния реализуются через вегетативную нервную систему и гуморальным путем, включающим эндокринные железы.

Выраженным влиянием на углеводный обмен обладает инсулин — гормон, вырабатываемый В-клетками островков поджелудочной железы. При введении инсулина уровень глюкозы в крови снижается. Это объясняется тем, что под влиянием инсулина увеличивается потребление сахара клетками тканей, особенно мышечной и жировой. В печени и мышцах усиливается синтез гликогена, а в жировой ткани происходит образование жира из глюкозы. Наряду с этим инсулин тормозит процессы гликогенеза в печени.

Гюкогон — гормон, продуцируемый А-клетками поджелудочной железы. Он активирует гликогенолиз в печени, в результате чего освобождается свободная глюкоза, поступающая затем в кровь. Адреналин — гормон мозгового слоя надпочечников. Совместно с глюкагоном активирует фосфорилазу печени, тем самым вызывает распад печеночного гликогена. Одновременно усиливает распад гликогена мышц, поэтому после введения адреналина или избыточного его образования увеличивается концетрация и сахара, и молочной кислоты в крови.

Глюкокортикоиды — гормоны коркового слоя надпочечников. Под их действием усиливается глюконеогенез — образование сахара из неуглеводов, что приводит к увеличению уровня глюкозы в крови и содержания гликогена в печени. Соматотропин — гормон гипофиза — уменьшает утилизацию глюкозы периферическими тканями и одновременно усиливает распад жира, доставляя тем самым исходный материал для глюконеогенеза. Гормоны щитовидной железы — тироксин и трийодтиронин, по современным представлениям, в умеренных дозах усиливают всасывание моносахаридов в кишечнике.

Регуляция жирового обмена осуществляется нервной и эндокринной системами, а также тканевыми механизмами и тесно связана с углеводным обменом. Так повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот тормозит синтез триглицеридов и усиливает их расщепление.

Таким образом, осуществляется взаимосвязь жирового и углеводного обмена в обеспечении энергетических нужд в организме: при избытке одного из источников энергии (глюкозы) происходит депонирование триглицеридов в жировой ткани, при недостатке углеводов (гипогли­кемия) триглицериды расщепляются с образованием неэстерифицированных жирных кислот, служащих источником энергии. Указанные процессы находятся под влиянием нервных и эндокринных воздействий. Нервные влияния на жировой обмен контролируются гипоталамусом. Особую роль играют ядра, расположенные в его задней доле.

Так, при разрушении вентромедиальных ядер гипоталамуса развивается длительное повышение аппетита и усиление отложения жира. Разрушение вентролатеральных ядер напротив ведет к потере аппетита и исхуданию.

Имеются данные, свидетельствующие о прямых нервных влияниях на обмен жиров (опыты с перерезкой нервов). Симпатические влияния тормозят синтез триглицеридов и усиливают их распад, а парасимпатические, наоборот, способствуют отложению жира.

Ряд гормонов оказывает влияние на жировой обмен. Так, выраженным жиромобилизующим действием обладают адреналини норадреналин — гормоны мозгового слоя надпочечников. Аналогичным действием обладают соматотропный гормон гипофиза и тироксин — гормон щитовидной железы. Наоборот тормозят мобилизацию жира глюкокортикоиды — гормоны коры надпочечников. Подобное действие оказывает инсулин — гормон поджелудочной железы.

| следующая лекция ==>
Возрастные особенности жирового обмена | Роль минеральных веществ и воды в жизнедеятельности организма

Дата добавления: 2017-11-04 ; просмотров: 4043 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Нервная система

Раздражимость или чувствительность – характерная черта всех живых организмов, означающая их способность реагировать на сигналы или раздражители.

Сигнал воспринимается рецептором и передается с помощью нервов и (или) гормонов к эффектору, который осуществляет специфическую реакцию или ответ.

Животные имеют две взаимосвязанные системы координации функций – нервную и гуморальную (см. таблицу).

Нервная регуляция

Гуморальная регуляция

Электрическое и химическое проведение (нервные импульсы и нейромедиаторы в синапсах)

Химическое проведение (гормоны) по КС

Быстрое проведение и ответ

Более медленное проведение и отстроченный ответ (исключение - адреналин)

В основном кратковременные изменения

В основном долговременные изменения

Специфический путь распространения сигнала

Неспецифический путь сигнала (с кровью по всему телу)к специфической мишени

Ответ часто узко локализован (например, один мускул)

Ответ может быть крайне генерализованным (например, рост)

Нервная система состоит из высокоспециализированных клеток со следующими функциями:

- восприятие сигналов – рецепторы;

- преобразование сигналов в электрические импульсы (трансдукция);

- проведение импульсов к другим специализированным клеткам – эффекторам, которые получив сигнал, дают ответ;

Связь между рецепторами и эффекторами осуществляют нейроны .

Нейрон – это структурно – функциональная единица НС.


Нейрон — электрически возбудимая клетка, которая обрабатывает, хранит и передает информацию с помощью электрических и химических сигналов. Нейрон имеет сложное строение и узкую специализацию. Нервная клетка содержит ядро, тело клетки и отростки (аксоны и дендриты).

В головном мозге человека насчитывается около 90—95 миллиардов нейронов. Нейроны могут соединяться друг с другом, образуя биологические нейронные сети.

Нейроны разделяют на рецепторные, эффекторные и вставочные.

Тело нейрона: ядро (с большим количеством ядерных пор) и органеллы (ЭПС, рибосомы, аппарат Гольджи, микротрубочки), а также из отростков (дендриты и аксоны).

Нейроглия – совокупность вспомогательных клеток НС; составляет 40% общего объема ЦНС.

  • Аксон – длинный отросток нейрона; проводит импульс от тела клетки; покрыт миелиновой оболочкой (образует белое вещество мозга)
  • Дендриты - короткие и сильно разветвлённые отростки нейрона; проводит импульс к телу клетки; не имеют оболочки


Важно! Нейрон может иметь несколько дендритов и обычно только один аксон.

Важно! Один нейрон может иметь связи со многими (до 20 тысяч) другими нейронами.

  • чувствительные – передают возбуждение от органов чувств в спинной и головной мозг
  • двигательные – передают возбуждение от головного и спинного мозга к мышцам и внутренним органам
  • вставочные – осуществляют связь между чувствительными и двигательным нейронами, в спинном и головном мозге

Нервные отростки образуют нервные волокна.

Пучки нервных волокон образуют нервы.

Нервы – чувствительные (образованы дендритами), двигательные (образованы аксонами), смешанные (большинство нервов).

Синапс – это специализированный функциональный контакт между двумя возбудимыми клетками, служащий для передачи возбуждения


У нейронов синапс находится между аксоном одной клетки и дендритом другой; при этом физического контакта не происходит – они разделены пространством - синаптической щель.

Нервная система:

  • периферическая (нервы и нервные узлы) – соматическая и автономная
  • центральная (головной и спинной мозг)

В зависимости от характера иннервации НС:

  • Соматическая – управляет деятельностью скелетной мускулатуры, подчиняется воле человека
  • Вегетативная (автономная) – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека

Соматическая нервная система часть нервной системы человека, представляющая собой совокупность чувствительных и двигательных нервных волокон, иннервирующих мышцы (у позвоночных — скелетные), кожу, суставы.

Она представляет часть периферической нервной системы, которая занимается доставкой моторной (двигательной) и сенсорной (чувственной) информации до центральной нервной системы и обратно. Эта система состоит из нервов, прикрепленных к коже, органам чувств и всем мышцам скелета.

  • спинномозговые нервы – 31 пара; связаны со спинным мозгом; содержат как двигательные, так и сенсорные нейроны, поэтому смешанные;
  • черепномозговые нервы – 12 пар; отходят от головного мозга, иннервируют рецепторы головы (за исключением блуждающего нерва – иннервирует сердце, дыхание, пищеварительный тракт); бывают сенсорными, моторными (двигательными) и смешанными

Рефлекс – это быстрый автоматический ответ на раздражитель, осуществляемый без осознанного контроля головного мозга.

Рефлекторная дуга – путь, проходимый нервными импульсами от рецептора до рабочего органа.

  • в ЦНС – по чувствительному пути;
  • от ЦНС – к рабочему органу – по двигательному пути

- рецептор (окончание дендрита чувствительного нейрона) – воспринимает раздражение

- чувствительное (центростремительное) нервное волокно – передает возбуждение от рецептора к ЦНС

- нервный центр – группа вставочных нейронов, расположены на разных уровнях ЦНС; передает нервные импульсы с чувствительных нейронов на двигательные

- двигательное (центробежное) нервное волокно – передает возбуждение от ЦНС к исполнительному органу


Простая рефлекторная дуга: два нейрона – чувствительный и двигательный (пример – коленный рефлекс)

Сложная рефлекторная дуга: три нейрона – чувствительный, вставочный, двигательный (благодаря вставочным нейронам происходит обратная связь между рабочим органом и ЦНС, что позволяет вносить изменения в работу исполнительных органов)

Вегетативная (автономная) нервная система – управляет деятельностью внутренних органов, желез, гладкой мускулатуры, не подчиняется воле человека.

Делится на симпатическую и парасимпатическую.


Обе состоят из вегетативных ядер (скопления нейронов, лежащих в спинном и головном мозге), вегетативных узлов (скопления нейронов, нейронов, за пределами НС), нервных окончаний (в стенках рабочих органов)

Путь от центра до иннервируемого органа состоит из двух нейронов (в соматической - один).

Место выхода из ЦНС

От спинного мозга – в шейный, поясничный, грудной отделы

От ствола головного мозга и ствола крестцового отдела спинного мозга

Местоположение нервного узла (ганглия)

По обе стороны спинного мозга, за исключением нервных сплетений (непосредственно в этих сплетениях)

В иннервируемых органах или вблизи них

Медиаторы рефлекторной дуги

В предузловом волокне –

в послеузловом - норадреналин

В обоих волокнах - ацетилхолин

Названия основных узлов или нервов

Солнечное, легочное, сердечное сплетения, брыжеечный узел

Общие эффекты симпатической и парасимпатической НС на органы:

  • Симпатическая НС – расширяет зрачки, угнетает слюноотделение, повышает частоту сокращений, расширяет сосуды сердца, расширяет бронхи, усиливает вентиляцию легких, угнетает перистальтику кишечника, угнетает секрецию пищеварительных соков усиливает потоотделение, удаляет с мочой лишний сахар; общий эффект – возбуждающий, повышает интенсивность обмена, снижает порог чувствительности; активизирует во время опасности, стресса, контролирует реакции на стресс
  • Парасимпатическая НС – сужает зрачки, стимулирует слезотечение, уменьшает частоту сердечных сокращений, поддерживает тонус артериол кишечника, скелетных мышц, снижает кровяное давление, уменьшает вентиляцию легких, усиливает перистальтику кишечника, расширяет артериолы в коже лица, увеличивает выделение с мочой хлоридов; общий эффект – тормозящий, снижает или не влияет на интенсивность обмена, восстанавливает порог чувствительности; доминирует в состоянии покоя, контролирует функции в повседневных условиях

Центральная нервная система (ЦНС) – обеспечивает взаимосвязь всех частей НС и их координированную работу

У позвоночных ЦНС развивается из эктодермы (наружного зародышевого листка)

ЦНС – 3 оболочки:

- твердая мозговая (dura mater) - снаружи;

- мягкая мозговая оболочка (pia mater) – прилегает непосредственно к мозгу.

Головной мозг расположен в мозговом отделе черепа; содержит

- белое вещество - проводящие пути между головным мозгом и спинным, между отделами головного мозга

- серое вещество - в виде ядер внутри белого вещества; кора покрывающая большие полушария и мозжечок

Масса головного мозга – 1400-1600 грамм.


5 отделов:

  • продолговатый мозг– продолжение спинного мозга; центры пищеварения, дыхания, сердечной деятельности, рвота, кашель, чихание, глотание, слюноотделение, проводящая функция
  • задний мозг – состоит из варолиевого моста и мозжечка; варолиев мост связывает мозжечок и продолговатый мозг с большими полушариями; мозжечок регулирует двигательные акты (равновесие, координация движений, поддержание позы)
  • промежуточный мозг– регуляция сложных двигательных рефлексов; координация работы внутренних органов; осуществление гуморальной регуляции;
  • средний мозг – поддержание тонуса мыщц, ориентировочные, сторожевые, оборонительные рефлексы на зрительные и звуковые раздражители;
  • передний мозг (большие полушария) – осуществление психической деятельности (память, речь, мышление).

Промежуточный мозг включает таламус, гипоталамус, эпиталамус

Таламус – подкорковый центр всех видов чувствительности (кроме обонятельного), регулирует внешнее проявление эмоций (мимика, жесты, изменение пульса, дыхания)

Гипоталамус – центры вегетативной НС, обеспечивают постоянство внутренней среды, регулируют обмен веществ, температуру тела, чувство жажды, голода, насыщения, сна, бодрствования; гипоталамус контролирует работу гипофиза

Эпиталамус – участие в работе обонятельного анализатора

Передний мозг имеет два больших полушария: левое и правое

  • Серое вещество (кора) находится сверху полушарий, белое – внутри
  • Белое вещество – это проводящие пути полушарий; среди него – ядра серого вещества (подкорковые структуры)

Кора больших полушарий – слой серого вещества, 2-4 мм в толщину; имеет многочисленные складки, извилины

Каждое полушарие разделено бороздами на доли:

- лобная – вкусовая, обонятельная, двигательная, кожно- мускульная зоны;

- теменная – двигательная, кожно- мускульная зоны;

- височная – слуховая зона;

- затылочная – зрительная зона.

Важно! Каждое полушарие отвечает за противоположную сторону тела.

  • Левое полушарие – аналитическое; отвечает за абстрактное мышление, письменную и устную речь;
  • Правое полушарие – синтетическое; отвечает за образное мышление.

Спинной мозг расположен в костном позвоночном канале; имеет вид белого шнура, длина 1м; на передней и задней сторонах есть глубокие продольные борозды

В самом центре спинного мозга – центральный канал, заполненный спинномозговой жидкостью.

Канал окружен серым веществом (имеет вид бабочки), который окружен белым веществом.

  • В белом веществе – восходящие (аксоны нейронов спинного мозга) и нисходящие пути (аксоны нейронов головного мозга)
  • Серое вещество напоминает контур бабочки, имеет три вида рогов.

- передние рога – в них расположены двигательные нейроны (мотонейроны) – их аксоны иннервируют скелетные мышцы

- задние рога – содержат вставочные нейроны – связывают чувствительные и двигательные нейроны

- боковые рога – содержат вегетативные нейроны – их аксоны идут на периферию к вегетативным узлам

Спинной мозг – 31 сегмент; от каждого сегмента отходит 1 пара смешанных спинномозговых нервов, имеющих по паре корешков:

- передний (аксоны двигательных нейронов);

- задний (аксоны чувствительных нейронов.

Функции спинного мозга:

- рефлекторная – осуществление простых рефлексов (сосудодвигательных, дыхательных, дефекации, мочеиспускания, половых);

- проводниковая – проводит нервные импульсы от и к головному мозгу.


Повреждение спинного мозга приводит к нарушению проводниковых функций, вследствие чего – паралич.

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.