Нервные сети типы нервных сетей

Нервные сети

Нейроны неррного центра за счет структурно-функциональных свя­зей (ветвления отростков и установления множества синапсов между разными клетками) объединяются в нервные сети. Связи между нерв­ными клетками являются генетически детерминированными.

Основные типы нервных сетей

Дивергентные сети с одним входом представляют собой нейрон­ные ансамбли, в которых один нейрон образует выходные связи с большим количеством других клеток разных иерархических уровней и, главное, разных нервных центров. Максимально выраженная ди­вергенция связей разных нервных центров свидетельствует о том, что эти нервные сети не являются специфическими для реализации определенных рефлексов, а обеспечивают интеграцию разных реф­лекторных актов и общее состояние активности многочисленных нейронов разных отделов мозга.

Поскольку в нервных сетях включено огромное число вставочных нейронов, они могут, передавая импульсацию, реализовывать как возбуждение, так и торможение.

Типы тор­мозных процессов в нейронных сетях

Реципрокное торможение (рис.3.9-1), т.е. процесс, основанный на том, что сигналы по одним и тем же афферентным путям обес­печивают возбуждение одной группы нейронов, а через вставочные тормозные клетки вызывают торможение другой группы нейронов. Этот тип торможения называют также сопряженным. Проявляется реципрокное торможение, например, на уровне мотонейронов спин­ного мозга, иннервируюших мышцы-антагонисты (сгибатели-разги­батели) конечностей. Передача возбуждения к мотонейронам мышц-сгибателей одновременно через вставочные тормозные нейроны тор­мозит мотонейроны мышц-разгибателей, благодаря чему только и возможно осуществление сгибательного рефлекса;

Возвратное торможение (рис.3.9-2), т.е. процесс торможения эфферентных нейронов сигналами, возвращающимися к ним по коллатералям аксонов через вставочные тормозные клетки.


Рис.3.9. Тормозные процессы в нервных сетях центра.

Возбуждение от одних нейронов поступает через ответвления на аксонах к вставочным тормозным нейронам, а аксоны этих клеток в свою очередь образуют тормозные синапсы на телах первых нейронов. Примером является торможение Реншоу в спинном мозге, где импульсы от двигательных нейронов посылаются по аксонам не только к скелетной мышце, но поступают через аксонные коллатерали к тормозным нейронам Реншоу, а от них назад к двигательным клеткам, приводя к их торможению. Таким образом, осуществляется короткая отрицательная обратная связь, не позволяющая возникнуть избыточному возбуждению мотонейронов спинного мозга.

1 — реципрокное торможение в центрах спинного мозга, управляющих движением нижних конечностей;
2 — возврат­ное торможение (Реншоу) в спинном мозге,
3 — латераль­ное торможение,
4 — окружающая тормозная зона

Латеральное торможение, т.е. процесс торможения группы ней­ронов, расположенной рядом с группой возбужденных клеток. Этот вид торможения распространен в сенсорных системах, где ответвле­ ния аксонов возбужденных нейронов образуют синапсы на вставоч­ных тормозных нейронах, а аксоны последних оканчиваются тор­мозными синапсами на соседних, рядом расположенных клетках, получающих информацию от другого афферентного входа (рис.3.9-3);

Тормозная зона, т.е. процесс торможения нескольких групп нейронов, расположенных рядом с возбужденными клетками. Сигналы от возбужденных нейронов по коллатералям аксонов поступа­ют к вставочным нейронам, а аксоны последних образуют тормоз­ные синапсы на группах клеток, получающих информацию по дру­гим афферентным входам (рис.3.9-4). Если эта группа заторможен­ных клеток располагается вокруг возбужденных нейронов, тормоз­ную зону называют окружающей.

Простейшим нервным центром является нервная цепь, состоящая из трех последовательно соединенных нейронов (рис). Нейроны сложных нервных центров имеют многочисленные связи между собой, образуя нервные сети трех типов:

1. Иерархические. Если возбуждение распространяется на все большее количество нейронов, то такое явление называется дивергенцией (рис). Если же наоборот, от нескольких нейронов пути идут к меньшему количеству, такой механизм называется конвергенцией (рис). В таких сетях вышележащие нейроны управляют нижележащими.

2. Локальные сети. Содержат нейроны с короткими аксонами. Они обеспечивают связь нейронов одного уровня ЦНС и кратковременное сохранение информации на этом уровне. По таким цепям возбуждение циркулирует определенное время. Такая циркуляция называется реверберацией возбуждения (мех. кратковременной памяти).

3. Дивергентные сети с одним входом. В них один нейрон, т.е. вход образует большое количество связей с нейронами многих центров.

В нервных сетях большое количество вставочных нейронов, ряд из которых является тормозными. Поэтому в них может возникать несколько типов тормозных процессов:

1. Реципрокное торможение. В этом случае, сигналы идущие от афферентных нейронов, возбуждают одни нейроны, но одновременно, через вставочные тормозные нейроны, тормозят другие. Такое торможение называется также сопряженным (рис) .

2. Возвратное торможение. Возбуждение идет от нейрона по аксону к другой клетке. Но одновременно по коллатералям (ветвям) к тормозному нейрону, который образует синапс на теле этого же нейрона.

3. Латеральное торможение. Это процесс, при котором возбуждение одной нейронной цепи приводит к торможению параллельной с такими же функциями. Осуществляется через вставочные нейроны.

Торможение в ЦНС (И.М. Сеченов, Ф. Гольц, Мегун). Современные представления об основных видах центрального торможения - постсинаптического, пресинаптического, пессимального и их механизмах

Явление центрального торможения обнаружено И.М. Сеченовым в 1862 году. Он удалял у лягушки полушария мозга и определял время спинномозгового рефлекса на раздражение лапки серной кислотой. Затем на таламус, т.е. зрительные бугры накладывал кристаллик поваренной соли и обнаружил, что время рефлекса значительно увеличивалось. Это свидетельствовало о торможении рефлекса. Сеченов сделал вывод, что вышележащие Н.Ц. при своем возбуждении тормозят нижележащие. Торможение в ЦНС препятствует развитию возбуждения или ослабляет протекающее возбуждение.

Первоначально была предложена унитарно-химическая теория торможения. Согласно ей торможение обеспечивается теми же нейронами и синапсами, что и возбуждение. В последующем была доказана правильность бинарно-химической теории. В соответствии с последней, торможение обеспечивается специальными тормозными нейронами, которые являются вставочными. Это клетки Реншоу спинного мозга и нейроны Пуркинье промежуточного. Торможение в ЦНС необходимо для интеграции нейронов в единый нервный центр.

В ЦНС выделяют следующие механизмы торможения:

o Постсинаптическое. Оно возникает в постсинаптической мембране сомы и дендритов нейронов. Т.е. после передающего синапса. На этих участках образуют аксо-дендритные или аксо-соматические синапсы специализированные тормозные нейроны (рис). Эти синапсы являются глицинергическими. В результате воздействия ГЛИ на глициновые хеморецепторы постсинаптической мембраны, открываются ее калиевые и хлорные каналы. Ионы калия и хлора входят в нейрон, развивается ТПСП. Роль ионов хлора в развитии ТПСП небольшая. В результате возникающей гиперполяризации возбудимость нейрона падает. Проведение нервных импульсов через него прекращается.

o Пресинаптическое торможение. В этом случае тормозной нейрон образует синапс на аксоне нейрона, подходящем к передающему синапсу. Т.е. такой синапс является аксо-аксональным (рис). Медиатором этих синапсов служит ГАМК. Под действием ГАМК активируются хлорные каналы постсинаптической мембраны. Но в этом случае ионы хлора начинают выходить из аксона. Это приводит к небольшой локальной, но длительной деполяризации его мембраны. Значительная часть натриевых каналов мембраны инактивируется, что блокирует проведение нервных импульсов по аксону, а следовательно выделение нейромедиатора в передающем синапсе. Чем ближе тормозной синапс расположен к аксонному холмику, тем сильнее его тормозной эффект.

o Пессимальное торможение. Обнаружено Н.Е. Введенским. Возникает при очень высокой частоте нервных импульсов. Развивается стойкая длительная деполяризация всей мембраны нейрона и инактивация ее натриевых каналов. Нейрон становится невозбудимым.

В нейроне одновременно могут возникать и тормозные и возбуждающие постсинаптические потенциалы. За счет этого и происходит выделение нужных сигналов.

Содержание


Вопросы искусственного интеллекта и нейронных сетей в настоящее время становится популярным, как никогда ранее. Множество пользователей все чаще и чаще обращаются в поисковую систему с вопросами о том, как работают нейронные сети, что они из себя представляют и на чём построен принцип их деятельности?

Эти вопросы вместе с популярностью имеют и немалую сложность, так как процессы представляют собой сложные алгоритмы машинного обучения, предназначенные для различных целей, от анализа изменений до моделирования рисков, связанных с определёнными действиями.

Что такое нейронные сети и их типы?

Первый вопрос, который возникает у интересующихся, что же такое нейронная сеть? В классическом определении это определённая последовательность нейронов, которые объединены между собой синапсами. Нейронные сети являются упрощённой моделью биологических аналогов.

Программа, имеющая структуру нейронной сети, даёт возможность машине анализировать входные данные и запоминать результат, полученный из определённых исходников. В последующем подобный подход позволяет извлечь из памяти результат, соответствующий текущему набору данных, если он уже имелся в опыте циклов сети.

Многие воспринимают нейронную сеть, как аналог человеческого мозга. С одной стороны, можно считать это суждение близким к истине, но, с другой стороны, человеческий мозг слишком сложный механизм, чтобы была возможность воссоздать его с помощью машины хотя бы на долю процента. Нейронная сеть — это в первую очередь программа, основанная на принципе действия головного мозга, но никак не его аналог.

Нейронная сеть представляет собой связку нейронов, каждый из которых получает информацию, обрабатывает её и передаёт другому нейрону. Каждый нейрон обрабатывает сигнал совершенно одинаково.

Как тогда получается различный результат? Все дело в синапсах, которые соединяют нейроны друг с другом. Один нейрон может иметь огромное количество синапсов, усиливающих или ослабляющих сигнал, при этом они имеют особенность изменять свои характеристики с течением времени.

Именно правильно выбранные параметры синапсов дают возможность получить на выходе правильный результат преобразования входных данных.

Определившись в общих чертах, что собой представляет нейронная сеть, можно выделить основные типы их классификации. Прежде чем приступить к классификации необходимо ввести одно уточнение. Каждая сеть имеет первый слой нейронов, который называется входным.

Он не выполняет никаких вычислений и преобразований, его задача состоит только в одном: принять и распределить по остальным нейронам входные сигналы. Это единственный слой, который является общим для всех типов нейронных сетей, дальнейшая их структура и является критерием для основного деления.

  • Однослойная нейронная сеть. Это структура взаимодействия нейронов, при которой после попадания входных данных в первый входной слой сразу передаётся в слой выхода конечного результата. При этом первый входной слой не считается, так как он не выполняет никаких действий, кроме приёма и распределения, об этом уже было сказано выше. А второй слой производит все нужные вычисления и обработки и сразу выдаёт конечный результат. Входные нейроны объединены с основным слоем синапсами, имеющими различный весовой коэффициент, обеспечивающий качество связей.
  • Многослойная нейронная сеть. Как понятно из определения, этот вид нейронных сетей помимо входного и выходного слоёв имеет ещё и промежуточные слои. Их количество зависит от степени сложности самой сети. Она в большей степени напоминает структуру биологической нейронной сети. Такие виды сетей были разработаны совсем недавно, до этого все процессы были реализованы с помощью однослойных сетей. Соответственно подобное решение имеет намного больше возможностей, чем её предок. В процессе обработки информации каждый промежуточный слой представляет собой промежуточный этап обработки и распределения информации.

В зависимости от направления распределения информации по синапсам от одного нейрона к другому, можно также классифицировать сети на две категории.

  • Сети прямого распространения или однонаправленная, то есть структура, в которой сигнал движется строго от входного слоя к выходному. Движение сигнала в обратном направлении невозможно. Подобные разработки достаточно широко распространены и в настоящий момент с успехом решают такие задачи, как распознавание, прогнозы или кластеризация.
  • Сети с обратными связями или рекуррентная. Подобные сети позволяют сигналу двигаться не только в прямом, но и в обратном направлении. Что это даёт? В таких сетях результат выхода может возвращаться на вход исходя из этого, выход нейрона определяется весами и сигналами входа, и дополняется предыдущими выходами, которые снова вернулись на вход. Таким сетям свойственна функция кратковременной памяти, на основании которой сигналы восстанавливаются и дополняются в процессе обработки.

Это не единственные варианты классификации сетей.

Их можно разделить на однородные и гибридные опираясь на типы нейронов, составляющих сеть. А также на гетероассоциативные или автоассоциативные, в зависимости от метода обучения сети, с учителем или без. Также можно классифицировать сети по их назначению.

Где используют нейронные сети?

А вот задачи ещё более сложного уровня требуют совсем иного подхода. В частности, это относится к распознаванию образов, речи или сложному прогнозированию. В голове человека подобные процессы происходят неосознанно, то есть, распознавая и запоминая образы, человек не осознаёт, как происходит этот процесс, а соответственно не может его контролировать.

Именно такие задачи помогают решить нейронные сети, то есть то есть они созданы чтобы выполнять процессы, алгоритмы которых неизвестны.

Таким образом, нейронные сети находят широкое применение в следующих областях:

  • распознавание, причём это направление в настоящее время самое широкое;
  • предсказание следующего шага, эта особенность применима на торгах и фондовых рынках;
  • классификация входных данных по параметрам, такую функцию выполняют кредитные роботы, которые способны принять решение в одобрении займа человеку, полагаясь на входной набор разных параметров.

Способности нейросетей делают их очень популярными. Их можно научить многому, например, играть в игры, узнавать определённый голос и так далее. Исходя из того, что искусственные сети строятся по принципу биологических сетей, их можно обучить всем процессам, которые человек выполняет неосознанно.

Что такое нейрон и синапс?

Так что же такое нейрон в разрезе искусственных нейросетей? Под этим понятием подразумевается единица, которая выполняет вычисления. Она получает информацию со входного слоя сети, выполняет с ней простые вычисления и проедает её следующему нейрону.

Уважаемые посетители, сохраните эту статью в социальных сетях. Мы публикуем очень полезные статьи, которые помогут Вам в вашем деле. Поделитесь! Жмите!

В составе сети имеются три типа нейронов: входной, скрытый и выходной. Причём если сеть однослойная, то скрытых нейронов она не содержит. Кроме этого, есть разновидность единиц, носящих названия нейрон смещения и контекстный нейрон.

Каждый нейрон имеет два типа данных: входные и выходные. При этом у первого слоя входные данные равны выходным. В остальных случаях на вход нейрона попадает суммарная информация предыдущих слоёв, затем она проходит процесс нормализации, то есть все значения, выпадающие из нужного диапазона, преобразуются функцией активации.

Как уже упоминалось выше, синапс — это связь между нейронами, каждая из которых имеет свою степень веса. Именно благодаря этой особенности входная информация видоизменяется в процессе передачи. В процессе обработки информация, переданная синапсом, с большим показателем веса будет преобладающей.

Получается, что на результат влияют не нейроны, а именно синапсы, дающие определённую совокупность веса входных данных, так как сами нейроны каждый раз выполняют совершенно одинаковые вычисления.

При этом веса выставляются в случайном порядке.

Схема работы нейронной сети

Чтобы представить принцип работы нейронной сети не требуется особых навыков. На входной слой нейронов поступает определённая информация. Она передаётся посредством синапсов следующему слою, при этом каждый синапс имеет свой коэффициент веса, а каждый следующий нейрон может иметь несколько входящих синапсов.

В итоге информация, полученная следующим нейроном, представляет собой сумму всех данных, перемноженных каждый на свой коэффициент веса. Полученное значение подставляется в функцию активации и получается выходная информация, которая передаётся дальше, пока не дойдёт до конечного выхода. Первый запуск сети не даёт верных результатов, так как сеть, ещё не натренированная.

Функция активации применяется для нормализации входных данных. Таких функций много, но можно выделить несколько основных, имеющих наиболее широкое распространение. Их основным отличием является диапазон значений, в котором они работают.

  • Линейная функция f(x) = x, самая простая из всех возможных, используется только для тестирования созданной нейронной сети или передачи данных в исходном виде.
  • Сигмоид считается самой распространённой функцией активации и имеет вид f(x) = 1 / 1+e–×; при этом диапазон её значений от 0 до 1. Она ещё называется логистической функцией.
  • Чтобы охватить и отрицательные значения используют гиперболический тангенс. F(x) = e²× – 1 / e²× + 1 — такой вид имеет эта функция и диапазон который она имеет от -1 до 1. Если нейронная сеть не предусматривает использование отрицательных значений, то использовать её не стоит.

Для того чтобы задать сети данные, которыми она будет оперировать необходимы тренировочные сеты.

Интеграция — это счётчик, который увеличивается с каждым тренировочным сетом.

Эпоха — это показатель натренированности нейронной сети, этот показатель увеличивается каждый раз, когда сеть проходит цикл полного набора тренировочных сетов.

Соответственно, чтобы проводить тренировку сети правильно нужно выполнять сеты, последовательно увеличивая показатель эпохи.

В процессе тренировки будут выявляться ошибки. Это процентный показатель расхождения между полученным и желаемым результатом. Этот показатель должен уменьшаться в процессе увеличения показателя эпохи, в противном случае где-то ошибка разработчика.

Длина статьи зависит от специфики и тематики сайта. Узнай здесь, какая она должна быть для интернет-магазина.

Способны роботы журналисты заменить людей журналистов, читай в нашей статье.

Что такое нейрон смещения и для чего он нужен?

В нейронных сетях есть ещё один вид нейронов — нейрон смещения. Он отличается от основного вида нейронов тем, что его вход и выход в любом случае равняется единице. При этом входных синапсов такие нейроны не имеют.

Расположение таких нейронов происходит по одному на слой и не более, также они не могут соединяться синапсами друг с другом. Размещать такие нейроны на выходном слое не целесообразно.


Для чего они нужны? Бывают ситуации, в которых нейросеть просто не сможет найти верное решение из-за того, что нужная точка будет находиться вне пределов досягаемости. Именно для этого и нужны такие нейроны, чтобы иметь возможность сместить область определения.

То есть вес синапса меняет изгиб графика функции, тогда как нейрон смещения позволяет осуществить сдвиг по оси координат Х, таким образом, чтобы нейросеть смогла захватить область недоступную ей без сдвига. При этом сдвиг может быть осуществлён как вправо, так и влево. Схематически нейроны сдвига обычно не обозначаются, их вес учитывается по умолчанию при расчёте входного значения.

Также нейроны смещения позволят получить результат в том случае, когда все остальные нейроны выдают 0 в качестве выходного параметра. В этом случае независимо от веса синапса на каждый следующий слой будет передаваться именно это значение.

Наличие нейрона смещения позволит исправить ситуацию и получить иной результат. Целесообразность использования нейронов смещения определяется путём тестирования сети с ними и без них и сравнения результатов.

Но важно помнить, что для достижения результатов мало создать нейронную сеть. Её нужно ещё и обучить, что тоже требует особых подходов и имеет свои алгоритмы. Этот процесс сложно назвать простым, так как его реализация требует определённых знаний и усилий.

Нейроны нервного центра за счет структурно-функциональных связей (ветвления отростков и установления множества синапсов между разными клетками) объединяются в нервные сети. При этом связи между нервными клетками являются генетически детерминированными.

Различают три основных типа нервных сетей: иерархические, локальные и дивергентные с одним входом. Иерархические сети обеспечивают постепенное включение нейронных структур более высокого уровня благодаря тому, что каждая нервная клетка способна устанавливать многочисленные синаптические связи с различными нервными клетками, в результате афферентная импульсация поступает к увеличивающемуся числу нейронов. Этот принцип получил название дивергенции. Благодаря этому одна нервная клетка может участвовать в нескольких различных реакциях, передавать возбуждение значительному числу других нейронов, которые, в свою очередь, могут возбудить большее количество нейронов, обеспечивая таким образом широкую иррадиацию возбудительного процесса в ЦНС. Если, напротив, импульсация от многих возбужденных нейронов сходится к меньшему числу нервных клеток, такой принцип распространения сигналов называется конвергенцией. Конвергенция наиболее характерна в эффекторном звене двигательных спинальных рефлексов, когда малое число мотонейронов спинного мозга получает импульсы возбуждения от различных эфферентных путей множества рефлекторных дуг. На мотонейронах спинного мозга кроме первичных афферентных волокон, конвергируют волокна различных нисходящих трактов от центров головного мозга и собственно спинальных центров, а также от возбуждающих и тормозных вставочных промежуточных нейронов. Изучая этот механизм на уровне спинного мозга, Ч.Шеррингтон сформулировал принцип общего конечного пути, согласно которому, мотонейроны спинного мозга являются общим конечным путем многочисленных рефлексов. Так, мотонейроны, управляющие сгибателями правой руки, участвуют в многочисленных двигательных рефлекторных реациях – почесывании, жестикуляции при речи, переносе пищи в рот и других. На уровне многочисленных синапсов конвергентных путей возникает конкуренция за общий конечный путь. Нервные сети обеспечивают реализацию принципа субординации, когда деятельность ниже расположенных нейронных структур подчинена выше расположенным.

Локальные сети содержат нейроны с короткими аксонами, осуществляющие взаимосвязи в пределах одного уровня. Примером такой локальной сети являются кольцевые нейронные цепочки Лоренто де Но, возбуждение в которых циркулирует по замкнутому кругу. Возврат возбуждения к одному и тому же нейрону получил название реверберации возбуждения. Локальные сети обеспечивают надежность системы за счет дублирования элементов, так как многие нейроны локальных сетей имеют одинаковые синаптические связи и функционируют попеременно, то есть являются взаимозаменяемыми.

Дивергентные сети с одним входом представляют собой нейронные ансамбли, в которых один нейрон образует выходные связи с большим количеством других клеток разных иерархических уровней и, главное, разных нервных центров. Максимально выраженная дивергенция связей разных нервных центров свидетельствует о том, что эти нервные сети не являются специфическими для реализации определенных рефлексов, а обеспечивают интеграцию разных рефлекторных актов и общее состояние активности многочисленных нейронов различных отделов мозга.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Искусственный интеллект и искусственные нейронные сети становятся всё популярнее. В этой статье мы рассмотрим основные разновидности нейронных сетей и поговорим о том, как они работают и где применяются. Что включает в себя понятие нейронных сетей, как происходит развитие нейронной сети с точки зрения их эксплуатации в реальной жизни. Немного поговорим и про технологии нейронных сетей.

Что такое нейронная сеть? Базовая информация о нейронных сетях

Классическое определение говорит нам, что нейронной сетью называется некоторая последовательность нейронов, объединённых между собой синапсами. Если программа имеет структуру нейронной сети, появляется возможность на машинном уровне проанализировать входные данные с запоминанием результата.

Т. е нейронные сети и данные для нейронных сетей есть упрощённая модель биологического аналога. Некоторые специалисты, говоря о нейросетях, вспоминают человеческий мозг. Да, это близко к истине, но человеческой мозг чрезмерно сложен, поэтому это весьма приближённое сравнение, ведь мы не способны (пока) воссоздать его механизмы в полной мере даже с помощью современных технологий. В результате нейронную сеть лучше назвать программой, которая основана на принципе работы головного мозга.

Нейросеть — это связка нейронов. Каждый из этих нейронов получает данные, обрабатывает их, а потом передаёт другому нейрону. И каждый нейрон обрабатывает сигналы одинаково. Но каким же тогда образом мы получаем разный результат? За это отвечают синапсы, соединяющие нейроны друг с другом. Каждый нейрон способен иметь множество синапсов, которые ослабляют или усиливают сигнал. Нейроны способны менять свои характеристики в течение определённого времени. Кстати, правильно выбрав параметры синапсов, мы сможем получать на выходе правильные результаты преобразования входной информации.

Виды нейронных сетей

В общих чертах мы определились с тем, что же такое нейронная сеть. Теперь пришло время поговорить об их разновидностях и типах, то есть о классификации. Но тут потребуется небольшое уточнение. Каждая нейронная сеть включает в себя первый слой нейронов, называемый входным. Этот слой не выполняет каких-либо преобразований и вычислений, его задача в другом: принимать и распределять входные сигналы по остальным нейронам. И этот слой единственный, являющийся общим для всех типов нейросетей, а критерием для деления является уже дальнейшая структура: 1. Однослойная структура нейронной сети. Представляет собой структуру взаимодействия нейронов, в которой сигналы со входного слоя сразу направляются на выходной слой, который, собственно говоря, не только преобразует сигнал, но и сразу же выдаёт ответ. Как уже было сказано, 1-й входной слой только принимает и распределяет сигналы, а нужные вычисления происходят уже во втором слое. Входные нейроны являются объединёнными с основным слоем с помощью синапсов с разными весами, обеспечивающими качество связей. 2. Многослойная нейронная сеть. Здесь, помимо выходного и входного слоёв, имеются ещё несколько скрытых промежуточных слоёв. Число этих слоёв зависит от степени сложности нейронной сети. Она в большей степени напоминает структуру биологической нейронной сети. Такие виды были разработаны совсем недавно, до этого все процессы были реализованы с помощью однослойных нейронных сетей. Соответствующие решения обладают большими возможностями, если сравнивать с однослойными, ведь в процессе обработки данных каждый промежуточный слой — это промежуточный этап, на котором осуществляется обработка и распределение информации.

Кроме количества слоёв, нейронные сети можно классифицировать по направлению распределения информации по синапсам между нейронами: 1. Нейросети прямого распространения (однонаправленные). В этой структуре сигнал перемещается строго по направлению от входного слоя к выходному. Движение сигнала в обратном направлении не осуществляется и в принципе невозможно. Сегодня разработки этого плана распространены широко и на сегодняшний день успешно решают задачи распознавания образов, прогнозирования и кластеризации. 2. Рекуррентные нейронные сети (с обратными связями). Здесь сигнал двигается и в прямом, и в обратном направлении. В итоге результат выхода способен возвращаться на вход. Выход нейрона определяется весовыми характеристиками и входными сигналами, плюс дополняется предыдущими выходами, снова вернувшимися на вход. Этим нейросетям присуща функция кратковременной памяти, на основании чего сигналы восстанавливаются и дополняются во время их обработки. 3. Радиально-базисные функции. 4. Самоорганизующиеся карты.

Но это далеко не все варианты классификации и виды нейронных сетей. Также их делят: 1. В зависимости от типов нейронов: — однородные; — гибридные. 2. В зависимости от метода нейронных сетей по обучению: — обучение с учителем; — без учителя; — с подкреплением. 3. По типу входной информации нейронные сети бывают: — аналоговые; — двоичные; — образные. 4. По характеру настройки синапсов: — с фиксированными связями; — с динамическими связями.

Ещё существуют понятия гетероассоциативные или автоассоциативные нейросети.

Схема и концепция работы

Представить принцип работы нейросети можно, не имея конкретных навыков. Общая схема или алгоритм следующий: — на входной слой нейронов происходит поступление определённых данных; — информация передаётся с помощью синапсов следующему слою, причём каждый синапс имеет собственный коэффициент веса, а любой следующий нейрон способен иметь несколько входящих синапсов; — данные, полученные следующим нейроном, — это сумма всех данных для нейронных сетей, которые перемножены на коэффициенты весов (каждый на свой); — полученное в итоге значение подставляется в функцию активации, в результате чего происходит формирование выходной информации; — информация передаётся дальше до тех пор, пока не дойдёт до конечного выхода.

Как мы знаем, 1-й запуск нейросети не даст верных результатов, ведь она ещё не натренирована. Если мы говорим о понятии функции активации, то эта функция используется в целях нормализации входных данных. Этих функций бывает много, но хотелось бы выделить основные, имеющие самое широкое распространение. Главное отличие — диапазон значений, где они функционируют: — линейная функция f(x) = x. Является наиболее простой из всех, должна применяться лишь для тестирования созданной нейросети либо передачи данных в исходной форме; — сигмоид — более распространённая функция активации. Диапазон значений — от нуля до единицы. Также её называю логистической функцией; — гиперболический тангенс. Метод нужен для охвата также и отрицательных значений. Когда их применение не предусмотрено, гиперболический тангенс не нужен.

Остаётся сказать, что для задания нейросети данных для дальнейшего оперирования ими, потребуются тренировочные сеты.

Что такое синапс и нейрон?

Говоря об этом в разрезе искусственных нейронных сетей, мы понимаем единицу, выполняющую вычисления. Она получает данные со входного слоя, выполняя с ней простые вычисления, а потом передавая следующему нейрону.

В составе нейросети есть три вида нейронов: входной, выходной и скрытый. В однослойной структуре скрытых нейронов не будет. Также есть единицы, которых называют нейронами смещения и контекстными нейронами.

Любой нейрон состоит из двух типов данных: входных и выходных. У первого слоя входные данные равняются выходным. В других случаях на вход попадает суммарная информация предыдущих слоёв, после чего она нормализуется (все значения, которые выпадают из требуемого диапазона, преобразуются с помощью функции активации).

Мы уже говорили, что синапс — связь между нейронами, причём каждый синапс имеет свой вес. Благодаря этому входные данные видоизменяются при передаче. Во время обработки переданная синапсом информация с большим показателем веса станет преобладающей.

В результате на результат оказывают влияние не нейроны, а конкретно синапсы, которые дают совокупность веса входных данных, ведь собственно сами нейроны постоянно выполняют абсолютно одинаковые вычисления. Выставление весов осуществляется в случайном порядке.

Где применяют нейронные сети?

Нейронные сети применяются для решения множества разных задач. Если мы говорим о простых проектах, то с ними справляется обычная компьютерная программа, если говорить об усложнённых задачах, требующих решения уравнений и прогнозирования, применяется компьютерная программа, поддерживающая статические методы обработки. Есть и совсем сложные задачи, то же распознавание образов. Здесь нужен другой подход, ведь в голове человека все эти процессы проходят неосознанно (при распознавании и запоминании образов человек делает это, если можно так сказать, сам по себе, то есть он не управляет соответствующими процессами в мозгу).

Собственно говоря, нейронные сети как раз для этого и созданы, чтобы помогать людям решать задачи со сложными и не до конца исследованными алгоритмами. Имеет значение и качество нейронных сетей.

Схема нейронной сети:

Сегодня нейронные сети применяются в следующих сферах: — распознавание образов (по этому направлению работают наиболее широко); — предсказание следующего шага (повышает эффективность и качество торговли на тех же фондовых рынках); — классификация входной информации по параметрам (с этой работой легко справляются кредитные роботы, способные быстро принять решение об одобрении или отказе по поводу кредита, используя для этого входные наборы разнообразных параметров).

Так как современные нейронные сети имеют очень большие способности и разные варианты использования, их популярность растёт, а развитие отрасли тоже идёт семимильными шагами. Их учат играть в компьютерные игры, узнавать голоса и т. д. По сути, искусственные сети создаются по принципу биологических, а значит, мы можем обучить их выполнению тех процессов, которые человек выполняет не вполне осознанно.

Это курсы для тех, кому важен результат и нужно получить практические знания. Не пропустите ссылку выше!

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.