Нервный импульс может вызвать в соседнем нейроне может вызвать

1. Импульсы от органа в ЦНС проводят:
а) чувствительные нейроны +
б) вставочные нейроны
в) двигательные нейроны

2. Синапсом называется:
а) нервный узел
б) контакт между нейронами +
в) нервное сплетение

3. Нервные узлы образованы:
а) аксонами
б) нервами
в) телами нейронов +

4. Нервный импульс — это результат:
а) электрохимических процессов +
б) тепловых процессов, происходящих в клетках
в) механических процессов

5. Нервный импульс вызывает в соседнем нейроне:
а) возбуждение и торможение одновременно
б) возбуждение
в) возбуждение или торможение +

6. В промежуточном мозге расположен центр регуляции:
а) пищеварения
б) терморегуляции +
в) сердцебиения

7. В каком отделе головного мозга находятся центры регуляции дыхания, пищеварения:
а) мозжечок
б) кора головного мозга
в) продолговатый мозг +

8. Возбуждение от ЦНС к органу или железам передается по:
а) исполнительным нейронам +
б) чувствительным нейронам
в) вставочным нейронам

9. Дугу спинномозгового рефлекса составляют:
а) мышца — чувствительный нейрон — рецептор — вставочный нейрон — исполнительный нейрон
б) рецептор — исполнительный нейрон — вставочный нейрон — чувствительный нейрон — мышца
в) рецептор — чувствительный нейрон — вставочный нейрон — исполнительный нейрон — мышца +

10. При ожоге возбуждение возникает в(во):
а) теле чувствительного нейрона
б) рецепторе чувствительного нейрона +
в) теле исполнительного нейрона

11. Слюноотделение у человека будет безусловно-рефлекторной реакцией:
а) во время еды +
б) при разговоре о еде
в) при виде любимого блюда

12. Учение об условных рефлексах создал:
а) Сеченов
б) Павлов +
в) Мечников

13. Сколько из названных желез имеет специальные протоки: слюнная, щитовидная, гипофиз, потовая, надпочечник:
а) две +
б) пять
в) три

14. К железам смешанной секреции относится:
а) гипофиз
б) надпочечники
в) поджелудочная железа +

15. Гормоны — это:
а) биологически активные вещества, вырабатываемые организмом +
б) белки, катализирующие химические реакции
в) соединения белков и витаминов

16. Тироксин — это гормон:
а) надпочечников
б) щитовидной железы +
в) поджелудочной железы

17. Избыток или недостаток гормонов в крови воспринимается:
а) мозжечком
б) центрами спинного мозга
в) гипоталамусом +

18. В клетках щитовидной железы больше, чем в остальных тканях, содержится:
а) глюкозы
б) йода +
в) кальция

19. Гигантизм связан с нарушением функций:
а) щитовидной железы
б) вилочковой железы
в) гипофиза +

20. Центральная нервная система образована:
а) спинным мозгом и спинномозговыми нервами
б) головным и спинным мозгом +
в) нервами, нервными сплетениями и узлами

21. Основными свойствами нервной клетки являются:
а) возбудимость и проводимость +
б) сократимость и проводимость
в) возбудимость и сократимость

22. Начальный этап рефлекторной дуги в слюноотделительном рефлексе:
а) исполнительный нейрон
б) рецептор +
в) вставочный нейрон

23. Высшим центром контроля нейрогуморальной регуляции организма человека является:
а) спинной мозг
б) продолговатый мозг
в) гипоталамус +

24. Выделение желудочного сока в ответ на раздражение пищей рецепторов ротовой полости:
а) саморегуляция
б) безусловный рефлекс +
в) торможение

25. Условный рефлекс будет прочным, если условный раздражитель:
а) не подкрепляется безусловным раздражителем
б) нерегулярно подкрепляется безусловным раздражителем
в) постоянно подкрепляется безусловным раздражителем +

26. По чувствительному нейрону возбуждение направляется:
а) к рецепторам
б) в центральную нервную систему +
в) к исполнительному органу

27. Печень относят к железам внешней секреции, так как:
а) желчь выделяется из неё в полость кишечника +
б) в ней глюкоза превращается в гликоген
в) в ней обезвреживаются ядовитые вещества

28. Какую функцию выполняет вилочковая железа:
а) вырабатывает адреналин
б) регулирует иммунитет +
в) секретирует инсулин

29. В ЦНС импульс с чувствительного нейрона на двигательный передаётся:
а) через рецепторы
б) по нейроглии
в) по ставочному нейрону +

30. Рефлекторная дуга заканчивается:
а) чувствительным нейроном
б) исполнительным органом +
в) вставочным нейроном

В отличие от других клеток, нейроны никогда не делятся и не отмирают, чтобы их заменили новые. По той же причине они обычно не могут быть восстановлены после потери, хотя есть несколько исключений.

В отличие от других клеток организма, большинство нейронов в человеческом мозге способны делиться только для того, чтобы создавать новые клетки (процесс, называемый нейрогенезом) во время развития плода и в течение нескольких месяцев после рождения.

Эти клетки мозга могут увеличиваться в размерах до возраста около восемнадцати лет, но они, по существу, рассчитаны на всю жизнь.

Интересно, что единственной областью мозга, где нейрогенез, как было показано, продолжается на протяжении всей жизни, является гиппокамп, область, необходимая для кодирования и хранения памяти.

Объем памяти человека

Средний человеческий мозг имеет около 100 миллиардов нейронов (или нервных клеток) и нейроглии (или глиальные клетки), которые служат для поддержки и защиты нейронов.

Каждый нейрон может быть связан с 10 000 других нейронов, передавая сигналы друг другу через 1000 триллионов синаптических соединений, что, по некоторым оценкам, эквивалентно компьютеру с процессором со скоростью 1 триллион бит в секунду.

Оценки объема памяти человеческого мозга сильно варьируются от 1 до 1000 терабайт (для сравнения, 19 миллионов томов в Библиотеке Конгресса США представляют около 10 терабайт данных).

Симптомы

Клиническая картина определяется видом и локализацией поражения мозга. Частым симптомом повреждения этого органа является головная боль. Она имеет разный характер: острый или ноющий, сдавливающий или распирающий, непрерывный или временный. Заподозрить проблемы наличие болезнь головного мозга можно и по признакам из следующего списка:

  • судороги;
  • обмороки;
  • изменение обоняния;
  • трудности с концентрацией внимания;
  • ухудшения слуха, зрения;
  • отечность;
  • проблемы с памятью;
  • перепады настроения;
  • мышечная слабость;
  • отклонения поведения;
  • тонус затылочных мышц;
  • потеря аппетита;
  • онемение конечностей;
  • утренняя тошнота;
  • нарушение равновесия и координации;
  • проблемы с концентрацией внимания.

Это одна из разновидностей алкогольных психозов. Заболевание развивается из-за регулярного злоупотребления спиртными напитками, что приводит к гибели нейронов – мозговых клеток. Алкогольной энцефалопатии свойственно множество разных симптомов, но основными из них являются психические нарушения, такие как:

  • проблемы со сном в виде ночных кошмаров, сонливостью днем, кошмарными сновидениями;
  • потеря памяти, ухудшение интеллекта;
  • раздражительность;
  • изменение эмоционального фона в виде приступов ярости;
  • галлюцинации;
  • тревожность.

На фоне эти симптомов наблюдается расстройство пищеварения, которое сопровождается тошнотой, рвотой, поносом, недомоганием. У больного отмечаются отвращение к пище, богатой белками и жирами, и общее снижение аппетита. Среди неврологических и кардиалгических признаков у больных алкогольной энцефалопатии наблюдаются следующие симптомы:

  • судороги;
  • сильный тремор конечностей;
  • паралич какой-либо части тела;
  • скованность движений;
  • усиленное потоотделение;
  • озноб;
  • тахикардия.

Эта патология является формой деменции, при которой развиваются кардинальные изменения в характере человека. Недуг представляет собой нейродегенеративное неизлечимое заболевание, которое может привести к полной деградации личности. Среди всех видов старческого слабоумия болезнь Альцгеймера стоит на первом месте. Она протекает у каждого человека по-своему. Патология развивается постепенно, в течение 10–13 лет, а не в один момент. На начальной стадии больной может и не подозревать о своем положении.

Заподозрить болезнь Альцгеймера можно по нарушениям ориентации в пространстве, когда пожилой человек может забыть знакомую ему дорогу в магазин или даже к собственному дому. К общим признакам также относятся:

  • рассеянность, забывчивость;
  • трудности с пониманием фраз, сказанных собеседником;
  • снижение жизненной активности;
  • психическое возбуждение;
  • потеря интереса к окружающим событиям;
  • раздражительность, немотивированная агрессия, неустойчивость настроения;

Ученые до сих пор гадают по поводу причины развития этой болезни. Факторами риска являются возраст старше 65 лет, женский пол и генетическая предрасположенность. На последней стадии недуг вызывает следующие симптомы:

  • утрата бытовых навыков;
  • передвижения затруднены, человек может даже не вставать и не двигаться;
  • амнезия – больной не узнает родных людей;
  • самопроизвольное мочеиспускание;
  • расстройства речи, которая становится непонятной.

Обзор механизмов и принципов передачи информации в мозге, работа памяти человека.

Передача информации в мозге, например, во время процессов кодирования и извлечения памяти, достигается с помощью комбинации химических веществ и электричества. Это очень сложный процесс, включающий множество взаимосвязанных этапов, но краткий обзор можно произвести.

Схема нейрона. wikipedia

Каждый нейрон поддерживает градиент напряжения на своей мембране из-за метаболически обусловленных различий в ионах натрия, калия, хлорида и кальция внутри клетки, каждый из которых имеет различный заряд.

Если напряжение существенно изменяется, генерируется электрохимический импульс, называемый потенциалом действия (или нервным импульсом). Эта электрическая активность может быть измерена и отображена в виде волновой формы, называемой мозговой волной или ритмом мозга.

Этот импульс быстро распространяется по аксону клетки и передается через специализированное соединение, известное как синапс, к соседнему нейрону, который получает его через свои дендриты.

Синапс представляет собой сложное мембранное соединение или разрыв (фактический разрыв, также известный как синаптическая щель, составляет порядка 20 нанометров, или 20 миллионных миллиметра), используется для передачи сигналов между клетками, и поэтому известен как синаптическая связь.

Хотя синаптические связи аксон-дендрит являются нормой, возможны и другие варианты (например, дендрит-дендрит, аксон-аксон, дендрит-аксон). Типичный нейрон срабатывает 5 – 50 раз каждую секунду.

Таким образом, каждый отдельный нейрон может образовывать тысячи связей с другими нейронами, давая мозгу более 100 триллионов синапсов (до 1000 триллионов, по некоторым оценкам).

Функционально связанные нейроны соединяются друг с другом, образуя нейронные сети. Однако связи между нейронами не статичны, они меняются со временем.

Чем больше сигналов посылается между двумя нейронами, тем сильнее растет связь, и поэтому с каждым новым опытом и каждым запоминающимся событием или фактом мозг слегка перестраивает свою физическую структуру.

Несмотря на то, что мозг продолжает расти и развиваться, общее количество нейронов и синапсов сокращается до 50%, удаляя ненужные нейронные структуры и позволяя им заменяться более сложными и эффективными структурами, более подходящими к требований взрослой жизни.

Нейротрансмиттеры – это химические посыльные которые передают, усиливают и модулируют сигналы между нейронами и другими клетками.

  • Двумя наиболее распространенными нейротрансмиттерами в мозге являются аминокислоты глутамат и ГАМК;
  • другими важными нейротрансмиттерами являются ацетилхолин, допамин, адреналин, гистамин, серотонин и мелатонин.

При стимуляции электрическим импульсом высвобождаются нейромедиаторы различных типов и пересекают клеточную мембрану в синаптическую щель между нейронами.

Эти химические вещества затем связываются с химическими рецепторами в дендритах принимающего (постсинаптического) нейрона.

В процессе они вызывают изменения проницаемости клеточной мембраны для конкретных ионов, открывая специальные ворота или каналы, которые впускают поток заряженных частиц (ионы кальция, натрия, калия и хлорида).

Это влияет на потенциальный заряд принимающего нейрона, который затем запускает новый электрический сигнал в принимающем нейроне. Весь процесс занимает менее одной пятисотой секунды.

Таким образом, сообщение в мозгу преобразуется, когда оно перемещается от одного нейрона к другому, от электрического сигнала к химическому сигналу и обратно, в непрерывную цепь событий, которая является основой всей деятельности мозга.

Электрохимический сигнал выпущенный определенным нейротрансмиттером может быть как стимулирующим (например, ацетилхолин, глутамат, аспартат, норадреналин, гистамин), так и ингибирующим (например, ГАМК, глицин, сератонин), а некоторые (например, дофамин) могут оказывать и то и другое действие.

Тонкие вариации в механизмах нейромедиации позволяют мозгу реагировать на различные требования, предъявляемые к нему, включая кодирование, консолидацию, хранение и извлечение воспоминаний.

Список болезней

Повседневная работа мозга – это координация и управление движениями, генерация речи, концентрация внимания, запоминание фактов и пр. Этот орган контролирует работу всего организма, поэтому при его заболеваниях появляются самые разные симптомы, хотя основным является боль в голове. В зависимости от источника развития болезни головного мозга разделяются на следующие группы:

  • новообразования – менингиома, глиома;
  • инфекции – туберкулема, нейросифилис, менингит;
  • травмы – огнестрельные ранения, удары, ушибы;
  • сосудистые патологии – инсульт, вегетососудистая дистония;
  • иммунные заболевания – рассеянный склероз;
  • паразитарные инвазии – цистицеркоз;
  • наследственные патологии – болезнь Реклингахаузена.

Многие заболевания еще не до конца изучены, хоть и могут обнаруживаться на ранней стадии благодаря современным методам диагностики. Среди самых распространенных мозговых болезней выделяются следующие:

  • Энцефалопатия. Бывает врожденной или приобретенной. В последнем случае дистрофическое изменение мозговых тканей связано с инфекциями, травмами, алкоголизмом, сосудистыми заболеваниями.
  • Болезнь Альцгеймера. Вызывается поражением коры головного мозга, что приводит к нейропсихологическим нарушениям и грубому нарушению интеллекта.
  • Аневризма аорты и мозговых сосудов. Формируется в результате их расширения, из-за которого образуется мешок, наполненный кровью. Он может разорваться и вызвать кровоизлияние в полость черепа.
  • Инсульт. Представляет собой нарушение мозгового кровообращения, связанное с повышенным давлением, закупориванием сосудов атеросклеротическими бляшками, апластической анемией или другими заболеваниями крови.
  • Болезнь Паркинсона. Это избирательное поражение мозговых нейронов, которому подвержены пожилые люди в возрасте 60–65 лет.
  • Вегетососудистая дистония. Связана с нарушением кровоснабжения головного мозга и сужением просвета сосудов.
  • Деменция. Еще одна болезнь, характерная для пожилых людей. У молодых она возникает при черепно-мозговых травмах (ЧМТ) или инсультах. Недуг представляет собой снижение умственной деятельности.
  • Опухоли. Бывают доброкачественными и злокачественными. Разрастание мозговых тканей приводит к повышению внутричерепного давления.
  • Эпилепсия. У большинства пациентов она является врожденной, но может развиваться и после ЧМТ. Болезнь проявляется припадком, при котором человек падает с громким криком. У больного появляется пена изо рта, хриплое дыхание, развиваются судороги.

Лечение

Заболевания головного мозга особенно сложны в лечении. Для принятия решения о схеме терапии врачи часто созывают консилиум, а для проведения некоторых процедур или операция даже спрашивают разрешение у самого пациенту или его родственников. Если болезнь имеет бактериальную природу, то лечение предполагает прием или внутривенное введение антибиотиков, противовоспалительных средств, витаминов. Схема терапия напрямую зависит от заболевания. Основные патологии мозга имеют следующие принципы лечения:

  1. Болезнь Альцгеймера. Это неизлечимое заболевание, поэтому терапия против него помогает только приостановить отмирание клеток головного мозга у пожилых. Для этого больному назначают специальные препараты, замедляющие процесс гибели нейронов.
  2. Инсульт. Лечение этого заболевания направлено на восстановление кровообращения и обогащение мозга кислородом. Для этого назначают препараты, нормализующие работу сердечно-сосудистой системы и стимулирующие правильную работу мозговых центров.
  3. Вегетососудистая дистония. Пациенту с таким диагнозом показаны здоровый образ жизни, диета, адекватная физическая нагрузка, физиотерапевтические и водные процедуры. Из лекарств назначают транквилизаторы, фитопрепараты, антидепрессанты.
  4. Опухоль головного мозга. В основном лечат хирургическим путем. Если нельзя провести операцию, то пациенту назначают химиотерапию и лучевую терапию. Конкретный метод лечения определяется возрастом пациента, типом опухоли и ее локализацией. Некоторым больным приходится пройти все три вида указанных процедур.
  5. Эпилепсия. Требует пожизненного приема противосудорожных препаратов, соблюдения диеты и режима посильных физических и умственных нагрузок.
  6. Острый лейкоз. При таком заболевании врачи стремятся к достижению пациентом ремиссии. Для этого проводят пересадку костного мозга. При хроническом лейкозе эффективна только медикаментозная терапия, поддерживающая организм.

К какому врачу обратиться?

Для выявления причин появления вышеперечисленных симптомов необходимо обратиться к врачу-неврологу. Многие из симптомов могут наблюдаться при самых различных заболеваниях, и именно поэтому провоцирующие их факторы выявляются в ходе опроса, осмотра, инструментального и лабораторного обследования пациента. Для составления плана дальнейшей диагностики врач обязательно учитывает всю полученную информацию о самочувствии пациента и на основании этих данных определяет необходимость проведения тех или иных видов исследования (КТ, ЭЭГ, МРТ, ангиографии и др.).

Видео версия статьи:

Видео

Патологии этого органа могут нарушать слаженную работу такой сложной системы тотального контроля за телом и приводят к:

  • появлению тех или иных дисфункций организма;
  • изменениям в поведении;
  • деформации и разрушению личности.

Миф о работе мозга

Это неправда! Утверждение о том, что человеческий мозг работает на 10% (5%, 3%), — это старый, абсолютно неверный и совершенно неубиваемый миф. Разберемся, откуда он взялся.

В середине прошлого века было совершенно непонятно, как мыслит человек (сейчас это тоже непонятно, но уже на другом уровне). Но кое-что было известно — например, что мозг состоит из нейронов и что нейроны могут генерировать электрические сигналы.

Нейронов в мозге несколько миллиардов, и было бы чистым безумием измерять активность каждого из них — это заняло бы много лет. Поэтому вместо того, чтобы изучать все нейроны подряд, ученые исследовали только небольшую часть, определили среди них процент активных и предположили, что по всему мозгу этот процент одинаков (такое предположение называется экстраполяцией).

Нервная система человека выступает своеобразным координатором в нашем организме. Она передаёт команды от мозга мускулатуре, органам, тканям и обрабатывает сигналы, идущие от них. В качестве своеобразного носителя данных используется нервный импульс. Что он собой представляет? С какой скоростью работает? На эти, а также на ряд других вопросов можно будет найти ответ в этой статье.

Чем является нервный импульс?


Исследование строения и работы

Впервые прохождение нервного импульса было продемонстрировано немецкими учеными Э. Герингом и Г. Гельмгольцем на примере лягушки. Тогда же и было установлено, что биоэлектрический сигнал распространяется с указанной ранее скоростью. Вообще, такое является возможным благодаря особенному построению нервных волокон. В некотором роде они напоминают электрический кабель. Так, если проводить параллели с ним, то проводниками являются аксоны, а изоляторами – их миелиновые оболочки (они являют собой мембрану шванновской клетки, которая намотана в несколько слоев). Причем скорость нервного импульса зависит в первую очередь от диаметра волокон. Вторым по важности считается качество электрической изоляции. Кстати, в качестве материала организмом используется липопротеид миелин, который обладает свойствами диэлектрика. При прочих равных условиях, чем больше будет его слой, тем быстрее будут проходить нервные импульсы. Даже на данный момент нельзя сказать, что эта система полноценно исследована. Многое, что относится к нервам и импульсам, ещё остаётся загадкой и предметом исследования.

Особенности строения и функционирования


Где они создаются?

Типы клеток


  1. Рецепторные (чувствительные). Ими кодируются и превращаются в нервные импульсы все температурные, химические, звуковые, механические и световые раздражители.
  2. Вставочные (также называются кондукторными или замыкательными). Они служат для того, чтобы перерабатывать и переключать импульсы. Наибольшее их число находится в головном и спинном мозге человека.
  3. Эффекторные (двигательные). Они получают команды от центральной нервной системы на то, чтобы были совершены определённые действия (при ярком солнце закрыть рукой глаза и так далее).

Каждый нейрон имеет тело клетки и отросток. Путь нервного импульса по телу начинается именно с последнего. Отростки бывают двух типов:

  1. Дендриты. На них возложена функция восприятия раздражения расположенных на них рецепторов.
  2. Аксоны. Благодаря им нервные импульсы передаются от клеток к рабочему органу.

Интересный аспект деятельности


О потенциале действия

Как всё работает в мозгу?


Работа нейромедиаторов

Когда они передают нервные импульсы, то существует несколько вариантов, что произойдёт с ними:

  1. Они будут диффундированы.
  2. Подвергнутся химическому расщеплению.
  3. Вернутся назад в свои пузырьки (это называется обратным захватом).

В конце 20-го века сделали поразительное открытие. Ученые узнали, что лекарства, что влияют на нейромедиаторы (а также их выброс и обратный захват), могут изменять психическое состояние человека коренным образом. Так, к примеру, ряд антидепрессантов вроде "Прозака" блокируют обратный захват серотонина. Есть определённые причины считать, что в болезни Паркинсона виноват дефицит в головном мозге нейромедиатора дофамина.

Если кратко, то они могут работать с тысячами нейромедиаторов, которые посылаются их соседями. Детали относительно обработки и интеграции данного типа импульсов нам почти не известны. Хотя над этим работает много исследовательских групп. На данный момент получилось узнать, что все полученные импульсы интегрируются, а нейрон выносит решение – необходимо ли поддерживать потенциал действия и передавать их дальше. На этом фундаментальном процессе базируется функционирование головного мозга человека. Ну что ж, тогда это неудивительно, что мы не знаем ответа на эту загадку.

Некоторые теоретические особенности


Где же создаются нервные импульсы?

Откуда они начинают свой путь? Ответ на этот вопрос может дать любой студент, который прилежно изучал физиологию возбуждения. Есть четыре варианта:

  1. Рецепторное окончание дендрита. Если оно есть (что не факт), то возможным является наличие адекватного раздражителя, что создаст сначала генераторный потенциал, а потом уже и нервный импульс. Подобным образом работают болевые рецепторы.
  2. Мембрана возбуждающего синапса. Как правило, такое возможно только при наличии сильного раздражения или их суммирования.
  3. Триггерная зона дентрида. В этом случае локальные возбуждающие постсинаптические потенциалы формируются как ответ на раздражитель. Если первый перехват Ранвье миелинизирован, то они на нём суммируются. Благодаря наличию там участка мембраны, которая обладает повышенной чувствительностью, здесь возникает нервный импульс.
  4. Аксонный холмик. Так называют место, где начинается аксон. Холмик – это наиболее частый создать импульсов на нейроне. Во всех остальных местах, которые рассматривались ранее, их возникновение гораздо менее вероятное. Это происходит из-за того, что здесь мембрана имеет повышенную чувствительность, а также пониженный критический уровень деполяризации. Поэтому, когда начинается суммирование многочисленных возбуждающих постсинаптических потенциалов, то раньше всего на них реагирует холмик.

Пример распространяющегося возбуждения


Вспомните сводки из новостей прошлого лета (также это скоро можно будет услышать опять). Пожар распространяется! При этом деревья и кустарники, которые горят, остаются на своих местах. А вот фронт огня идёт всё дальше от места, где был очаг возгорания. Аналогичным образом работает нервная система.

Часто бывает необходимо успокоить начавшееся возбуждение нервной системы. Но это не так легко сделать, как и в случае с огнем. Для этого совершают искусственное вмешательство в работу нейрона (в лечебных целях) или используют различные физиологические средства. Это можно сравнить с заливанием пожара водой.

Нервный импульс

Строго говоря, движущееся по нервам возбуждение представляет собой нервные импульсы, а не потенциалы действия.

Можно сказать короче:

Но в физиологической литературе в качестве синонима для нервного импульса принято использовать также и термин "потенциал действия". Хотя потенциал действия - это только электрический компонент нервного импульса.

Потенциал действия – это резкое скачкообразное изменение мембранного потенциала с отрицательного на положительный и обратно.

Потенциал действия - это электрическая характеристика (электрическая составляющая) нервного импульса.

Нервный импульс - это сложный структурно-электро-химический процесс, распространяющийся по мембране нейрона в виде бегущей волны изменений.

Потенциал действия - это только электрический компонент нервного импульса, характеризующий изменения электрического заряда (потенциала) на локальном участке мембраны во время прохождения через него нервного импульса (от -70 до +30 мВ и обратно). (Кликните на изображение слева, чтобы увидеть анимацию.)

Сравните два приведённых выше рисунка (покликайте по ним) и, как говорится, почувствуйте разницу!

Где рождаются нервные импульсы?

Как ни странно, не все студенты, изучившие физиологию возбуждения, могут ответить на этот вопрос. ((

Хотя ответ не сложен. Нервные импульсы рождаются на нейронах всего в нескольких местах:

1) аксонный холмик (это переход тела нейрона в аксон),

2) рецепторное окончание дендрита,

3) первый перехват Ранвье на дендрите (триггерная зона дендрита),

4) постсинаптическая мембрана возбуждающего синапса.

Места возникновения нервных импульсов:

1. Аксонный холмик - главный породитель нервных импульсов.

Аксонный холмик - это самое начало аксона, там где он начинается на теле нейрона. Именно аксонный холмик является главным породителем (генератором) нервных импульсов на нейроне. Во всех остальных местах вероятность рождения нервного импульса намного меньше. Дело в том, что у мембраны аксонного холмика повышена чувствительность к возбуждению и понижен критический уровень деполяризации (КУД) по сравнению с остальными участками мембраны. Поэтому, когда на мембране нейрона начинают суммироваться многочисленные возбуждающие постсинаптические потенциалы (ВПСП), которые возникают в самых разных местах на постсинаптических мембранах всех его синаптических контактов, то раньше всего КУД достигается именно на аксонном холмике. Там-то эта сверхпороговая для холмика деполяризация и открывает потенциал-чувствительные натриевые каналы, в которые входит поток ионов натрия, порождающий потенциал действия и нервный импульс.

Итак, аксонный холмик является интегративной зоной на мембране, он интегрирует все возникающие на нейроне локальные потенциалы (возбуждающие и тормозные) - и первый срабатывает на достижение КУД, порождая нервный импульс.

Важно также учесть следующий факт. От аксонного холмика нервный импульс разбегается по всей мембране своего нейрона: как по аксону к пресинаптическоим окончаниям, так и по дендритам к постсинаптическим "начинаниям". Все локальные потенциалы при этом снимаются с мембраны нейрона и со всех его синапсов, т.к. они "перебиваются" потенциалом действия от пробегающего по всей мембране нервного импульса.

2. Рецепторное окончание чувствительного (афферентного) нейрона.

Если нейрон имеет рецепторное окончание, то на него может воздействовать адекватный раздражитель и порождать на этом окончании сначала генераторный потенциал, а затем и нервный импульс. Когда генераторный потенциал достигает КУД, то на этом окончании открываются потенциал-зависимые натриевые ионные каналы и рождается потенциал действия и нервный импульс. Нервный импульс бежит по дендриту к телу нейрона, а затем по его аксону к пресинаптическим окончаниям для передачи возбуждения на следующий нейрон. Так работают, к примеру, болевые рецепторы (ноцицепторы), являющиеся дендритными окончаниями болевых нейронов. Нервные импульсы в болевых нейронах вознимают именно на рецепторных окончаниях дендритов.

3. Первый перехват Ранвье на дендрите (триггерная зона дендрита).

Локальные возбуждающие постсинаптические потенциалы (ВПСП) на окончаниях дендрита, которые формируются в ответ на возбуждения, приходящие к дендриту через синапсы, суммируются на первом перехвате Ранвье этого дендрита, если он, конечно, миелинизирован. Там находится участок мембраны с повышенной чувствительностью к возбуждению (пониженным порогом), поэтому именно в этом участке легче всего преодолевается критический уровень деполяризации (КУД), после чего открываются потенциал-управляемые ионные каналы для натрия - и возникает потенциал действия (нервный импульс).

4. Постсинаптическая мембрана возбуждающего синапса.

В редких случаях ВПСП на возбуждающем синапсе может быть настолько силён, что прямо там же достигает КУД и порождает нервный импульс. Но чаще это бывает возможно только в результате суммации нескольких ВПСП: или с нескольких соседних синапсов, сработавших одновременно (пространственная суммация), или за счёт того, что на данный синапс пришло несколько импульсов подряд (временная суммация).

Видео: Проведение нервного импульса по нервному волокну

Потенциал действия как нервный импульс

Ниже размещён материал, взятый из учебно-методического пособия автора данного сайта, на который вполне можно ссылаться в своём списке литературы:

Сазонов В.Ф. Понятие и виды торможения в физиологии центральной нервной системы: Учебно-методическое пособие. Ч. 1. Рязань: РГПУ, 2004. 80 с.

Все процессы мембранных изменений, происходящих в ходе распространяющегося возбуждения, достаточно хорошо изучены и описаны в научной и учебной литературе. Но не всегда это описание легко понять, поскольку в данном процессе задействовано слишком много компонентов (с точки зрения обычного студента, а не вундеркинда, конечно).

Для облегчения понимания мы предлагаем рассматривать единый электрохимический процесс распространяющегося динамичного возбуждения с трех сторон, на трех уровнях:

Электрические явления – развитие потенциала действия.

Химические явления – движение ионных потоков.

Структурные явления – поведение ионных каналов.

Три стороны процесса распространяющегося возбуждения

1. Потенциал действия (ПД)

Потенциал действия – это скачкообразное изменение постоянного мембранного потенциала с отрицательной поляризации на положительную и обратно.

Обычно мембранный потенциал в нейронах ЦНС изменяется от –70 мВ до +30 мВ, а затем вновь возвращается к исходному состоянию, т.е. к –70 мВ. Как видим, понятие потенциала действия характеризуется через электрические явления на мембране.

На электрическом уровне изменения начинаются как смена поляризованного состояния мембраны на деполяризацию. Сначала деполяризация идет в виде локального возбуждающего потенциала. Вплоть до критического уровня деполяризации (примерно –50 мВ) это относительно простое линейное уменьшение электроотрицательности, пропорциональное силе воздействующего раздражителя. А вот потом начинается более крутая самоусиливающаяся деполяризация, она развивается не с постоянной скоростью, а с ускорением . Говоря образно, деполяризация так разгоняется, что перескакивает через нулевую отметку, не заметив этого, и даже переходит в положительную поляризацию. После достижения пика (обычно +30 мВ) начинается обратный процесс – реполяризация , т.е. восстановление отрицательной поляризации мембраны.

Кратко опишем электрические явления во время течения потенциала действия:

Восходящая ветвь графика:

потенциал покоя – исходное обычное поляризованное электроотрицательное состояние мембраны (–70 мВ);

нарастающий локальный потенциал – пропорциональная раздражителю деполяризация;

критический уровень деполяризации (–50 мВ) – резкое ускорение деполяризации (за счет самораскрытия натриевых каналов), с этой точки начинается спайк – высокоамплитудная часть потенциала действия;

самоусиливающаяся круто нарастающая деполяризация;

переход нулевой отметки (0 мВ) – смена полярности мембраны;

пик (+30 мВ) – вершина процесса изменения полярности мембраны, вершина потенциала действия.

Нисходящая ветвь графика:

реполяризация – восстановление прежней электроотрицательности мембраны;

переход нулевой отметки (0 мВ) – обратная смена полярности мембраны на прежнюю, отрицательную;

переход критического уровня деполяризации (–50 мВ) – прекращение фазы относительной рефрактерности (невозбудимости) и возврат возбудимости;

следовые процессы (следовая деполяризация или следовая гиперполяризация);

восстановление потенциала покоя – норма (–70 мВ).

Итак, сначала – деполяризация, затем – реполяризация. Сначала – утрата электроотрицательности, затем – восстановление электроотрицательности.

2. Ионные потоки

Итак, важно осознать, что все электрические токи, которые идут через мембрану, являются ионными потоками . Привычного нам из физики тока в виде потока электронов в клетках, как в водных системах, просто нет. Ссылки на потоки электронов будут ошибкой.

На химическом уровне мы, описывая распространяющееся возбуждение, должны рассмотреть, как изменяются характеристики ионных потоков, идущих через мембрану. Главное в этом процессе то, что при деполяризации резко усиливается поток ионов натрия внутрь клетки, а затем он внезапно прекращается на спайке потенциала действия. Входящий поток натрия как раз и вызывает деполяризацию, так как ионы натрия приносят с собой положительные заряды в клетку (чем и снижают электроотрицательность). Затем, после спайка, значительно нарастает выходящий наружу поток ионов калия, что вызывает реполяризацию. Ведь калий, как мы неоднократно говорили, выносит с собой из клетки положительные заряды. Отрицательные заряды остаются внутри клетки в большинстве, и за счет этого усиливается электроотрицательность. Это и есть восстановление поляризации за счет выходящего потока ионов калия. Заметим, что выходящий поток ионов калия возникает практически одновременно с появлением натриевого потока, но нарастает медленно и длится в 10 раз дольше. Несмотря на продолжительность калиевого потока самих ионов расходуется немного – всего одна миллионная доля от запаса калия в клетке (0,000001 часть).

Подведем итоги. Восходящая ветвь графика потенциала действия образуется за счет входа в клетку ионов натрия, а нисходящая – за счет выхода из клетки ионов калия.

3. Ионные каналы

Все три стороны процесса возбуждения – электрическая, химическая и структурная – необходимы для понимания его сущности. Но все-таки все начинается с работы ионных каналов. Именно состояние ионных каналов предопределяет поведение ионов, а поведение ионов в свою очередь сопровождается электрическими явлениями. Начинают процесс возбуждения натриевые каналы .

Пожар как метафора распространяющегося возбуждения

Когда мы искали образный пример, аналогию или метафору, которая может наглядно передать смысл распространяющегося возбуждения, то остановились на образе пожара. Действительно, распространяющееся возбуждение похоже на лесной пожар, когда горящие деревья остаются на месте, а фронт огня распространяется и уходит все дальше и дальше во все стороны от очага возгорания.

Как же в этой метафоре будет выглядеть явление торможения?

Ответ очевиден – торможение будет выглядеть как тушение пожара, как уменьшение горения и затухание огня. Но если огонь распространяется сам по себе, то тушение требует усилий. Из потушенного участка процесс тушения сам по себе не пойдет во все стороны.

Существует три варианта борьбы с пожаром: (1) либо надо ждать, когда все сгорит и огонь истощит все горючие запасы, (2) либо надо поливать водой горящие участки, чтобы они погасли, (3) либо надо поливать заранее ближайшие нетронутые огнем участки, чтобы они не загорелись.

АВТОВОЛНЫ В АКТИВНО-ВОЗБУДИМЫХ СРЕДАХ (АВС)

При распространении волны в активно-возбудимых средах не происходит переноса энергии. Энергия не переносится, а освобождается, когда до участка АВС доходит возбуждение. Можно провести аналогию с серией взрывов зарядов, заложенных на некотором расстоянии друг от друга (например, при тушении лесных пожаров, строительстве, мелиоративных работах), когда взрыв одного заряда вызывает взрыв рядом расположенного и так далее. Лесной пожар также является примером распространения волны в активно- возбудимой среде. Пламя распространяется по области с распределенными запасами энергии - деревья, валежник, сухой мох.

Основные свойства волн, распространяющихся в активно-возбудимых средах (АВС)

Волна возбуждения распространяется в АВС без затухания; прохождение волны возбуждения связано с рефрактерностью - невозбудимостью среды в течение некоторого промежутка времени (периода рефрактерности).

Видео: Потенциал действия (Action potential)

Читайте также:

Пожалуйста, не занимайтесь самолечением!
При симпотмах заболевания - обратитесь к врачу.